cavis/libnd4j/include/ops/declarable/generic/nn/activations/thresholdedrelu.cpp

76 lines
2.5 KiB
C++
Raw Normal View History

2021-02-01 13:31:45 +01:00
/* ******************************************************************************
*
2019-06-06 14:21:15 +02:00
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
2021-02-01 13:31:45 +01:00
* See the NOTICE file distributed with this work for additional
* information regarding copyright ownership.
2019-06-06 14:21:15 +02:00
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma, created on 24.07.2018
//
#include <system/op_boilerplate.h>
2019-06-06 14:21:15 +02:00
#if NOT_EXCLUDED(OP_thresholdedrelu)
#include <ops/declarable/CustomOperations.h>
#include <ops/declarable/helpers/legacy_helpers.h>
#include <ops/declarable/helpers/activations.h>
namespace sd {
2019-06-06 14:21:15 +02:00
namespace ops {
////////////////////////////////////////////////////////////////////////
CONFIGURABLE_OP_IMPL(thresholdedrelu, 1, 1, true, 0, 0) {
auto input = INPUT_VARIABLE(0);
auto output = OUTPUT_VARIABLE(0);
auto scalar = block.numT() > 0 ? block.getTArguments()->at(0) : 0.0;
helpers::thresholdRelu(block.launchContext(), *input, scalar, *output);
return Status::OK();
}
DECLARE_TYPES(thresholdedrelu) {
getOpDescriptor()
->setAllowedInputTypes(0, DataType::ANY)
->setSameMode(true);
}
////////////////////////////////////////////////////////////////////////
CONFIGURABLE_OP_IMPL(thresholdedrelu_bp, 2, 1, true, 0, 0) {
auto input = INPUT_VARIABLE(0);
auto dLdO = INPUT_VARIABLE(1);
auto dLdI = OUTPUT_VARIABLE(0);
auto threshold = block.numT() > 0 ? block.getTArguments()->at(0) : 0.0;
helpers::thresholdReluDerivative(block.launchContext(), input, threshold, dLdO, dLdI);
return Status::OK();
}
DECLARE_TYPES(thresholdedrelu_bp) {
getOpDescriptor()
->setAllowedInputTypes(0, DataType::ANY)
->setAllowedInputTypes(1, {DataType::FLOAT32, DataType ::DOUBLE, DataType::HALF})
->setAllowedOutputTypes(0, {DataType::FLOAT32, DataType ::DOUBLE, DataType::HALF});
}
}
}
#endif