cavis/libnd4j/tests_cpu/layers_tests/DeclarableOpsTests15.cpp

209 lines
6.6 KiB
C++
Raw Normal View History

2019-06-06 14:21:15 +02:00
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// Created by raver on 8/4/2018.
//
#include "testlayers.h"
#include <ops/declarable/CustomOperations.h>
#include <NDArray.h>
#include <ops/ops.h>
#include <GradCheck.h>
using namespace nd4j;
class DeclarableOpsTests15 : public testing::Test {
public:
DeclarableOpsTests15() {
printf("\n");
fflush(stdout);
}
};
TEST_F(DeclarableOpsTests15, Test_NormalizeMoments_1) {
auto d = NDArrayFactory::create<double>('c', {10, 10});
auto w = NDArrayFactory::create<double>(10);
auto x = NDArrayFactory::create<double>('c', {10});
auto y = NDArrayFactory::create<double>('c', {10});
auto z0 = NDArrayFactory::create<double>('c', {10});
auto z1 = NDArrayFactory::create<double>('c', {10});
nd4j::ops::normalize_moments op;
auto result = op.execute({&w, &x, &y}, {&z0, &z1}, {1e-4}, {}, {});
ASSERT_EQ(Status::OK(), result);
}
TEST_F(DeclarableOpsTests15, Test_Add_1) {
auto x = NDArrayFactory::create<int>('c', {5}, {1, 1, 1, 1, 1});
auto y = NDArrayFactory::create<int>('c', {5}, {1, 1, 1, 1, 1});
auto e = NDArrayFactory::create<int>('c', {5}, {2, 2, 2, 2, 2});
nd4j::ops::add op;
auto result = op.execute({&x, &y}, {&x}, {}, {}, {});
ASSERT_EQ(Status::OK(), result);
ASSERT_EQ(e, x);
}
TEST_F(DeclarableOpsTests15, Test_Half_assign_1) {
auto x = NDArrayFactory::create<float16>('c', {2, 5});
int y = 1;
x.assign(y);
ASSERT_EQ(10, x.sumNumber().e<int>(0));
}
TEST_F(DeclarableOpsTests15, test_avgpooling_edge_1) {
int inOutH = 35;
int inOutW = 35;
int inOutC = 192;
auto x = NDArrayFactory::create<double>('c', {1, inOutH, inOutW, inOutC});
x.linspace(1.0);
nd4j::ops::avgpool2d op;
auto result = op.execute({&x}, {}, {3,3, 1,1, 0,0, 1,1, 1, 0, 1});
ASSERT_EQ(Status::OK(), result->status());
auto z = result->at(0);
int totalPadHeight = (inOutH - 1) * 1 + 3 - inOutH;
int padTop = totalPadHeight / 2;
int padBottom = totalPadHeight - totalPadHeight / 2;
int k = 3;
auto m = NDArrayFactory::create<double>('c', {1, inOutH, inOutW, inOutC});
auto c = NDArrayFactory::create<double>('c', {1, inOutH, inOutW, inOutC});
for (int h = 0; h < inOutH; h++) {
for (int w = 0; w < inOutW; w++) {
int hFrom = h - padTop;
int wFrom = w - padBottom;
int hTo = hFrom + k;
int wTo = wFrom + k;
hFrom = nd4j::math::nd4j_max<int>(0, hFrom);
wFrom = nd4j::math::nd4j_max<int>(0, wFrom);
hTo = nd4j::math::nd4j_min<int>(inOutH, hTo);
wTo = nd4j::math::nd4j_min<int>(inOutW, wTo);
int idxOut[4];
int idxIn[4];
for (int ch = 0; ch < inOutC; ch++) {
idxOut[1] = h;
idxOut[2] = w;
idxOut[3] = ch;
idxIn[3] = ch;
for (int kh = hFrom; kh < hTo; kh++) {
for (int kw = wFrom; kw < wTo; kw++) {
idxIn[1] = kh;
idxIn[2] = kw;
auto inVal = x.e<double>(0, kh, kw, ch);
m.p(0, h, w, ch, inVal + m.e<double>(0, h, w, ch));
c.p(0, h, w, ch, 1 + c.e<int>(0, h, w, ch));
}
}
}
}
}
m /= c;
ASSERT_EQ(m, *z);
delete result;
}
TEST_F(DeclarableOpsTests15, Test_standarize_1) {
auto x = NDArrayFactory::create<float>('c', {5}, {1, 1, 1, 1, 1});
auto e = NDArrayFactory::create<float>('c', {5}, {0, 0, 0, 0, 0});
nd4j::ops::standardize op;
auto result = op.execute({&x}, {&x}, {}, {0}, {});
ASSERT_EQ(Status::OK(), result);
ASSERT_EQ(e, x);
}
TEST_F(DeclarableOpsTests15, Test_standarize_bp_1) {
auto x = NDArrayFactory::create<float>('c', {5}, {1., 1., 1., 1., 1.});
auto eps = NDArrayFactory::create<float>('c', {5}, {0., 0., 0., 0., 0.});
nd4j::ops::standardize_bp op;
auto result = op.execute({&x, &eps}, {}, {0}, {});
ASSERT_EQ(Status::OK(), result->status());
delete result;
}
TEST_F(DeclarableOpsTests15, test_matmul_bp_1) {
auto a = NDArrayFactory::create<double>('c', {1, 3});
auto b = NDArrayFactory::create<double>('c', {1, 4});
auto gI = NDArrayFactory::create<double>('c', {3, 4});
auto gA = NDArrayFactory::create<double>('c', {1, 3});
auto gB = NDArrayFactory::create<double>('c', {1, 4});
nd4j::ops::matmul_bp op;
auto status = op.execute({&a, &b, &gI}, {&gA, &gB}, {}, {1, 0, 0}, {});
ASSERT_EQ(Status::OK(), status);
}
TEST_F(DeclarableOpsTests15, test_non_decreasing_1) {
auto x = NDArrayFactory::create<double>(1.0);
auto z = NDArrayFactory::create<bool>(false);
auto e = NDArrayFactory::create<bool>(true);
nd4j::ops::is_non_decreasing op;
Context ctx(1);
ctx.setInputArray(0, &x);
ctx.setOutputArray(0, &z);
auto status = op.execute(&ctx);
ASSERT_EQ(Status::OK(), status);
ASSERT_EQ(e, z);
}
TEST_F(DeclarableOpsTests15, Test_layer_norm_1) {
auto x = NDArrayFactory::create<float>('c', {1, 5}, {1., 2., 3., 4., 5.});
auto g = NDArrayFactory::create<float>('c', {1, 5}, {1., 2., 3., 4., 5.});
auto b = NDArrayFactory::create<float>('c', {1, 5}, {1., 2., 3., 4., 5.});
nd4j::ops::layer_norm op;
auto result = op.execute({&x, &g, &b}, {}, {0}, {});
ASSERT_EQ(Status::OK(), result->status());
delete result;
}
TEST_F(DeclarableOpsTests15, Test_layer_norm_bp_1) {
auto x = NDArrayFactory::create<float>('c', {1, 5}, {1., 2., 3., 4., 5.});
auto g = NDArrayFactory::create<float>('c', {1, 5}, {1., 2., 3., 4., 5.});
auto b = NDArrayFactory::create<float>('c', {1, 5}, {1., 2., 3., 4., 5.});
auto eps = NDArrayFactory::create<float>('c', {1, 5}, {0., 0., 0., 0., 0.});
nd4j::ops::layer_norm_bp op;
auto result = op.execute({&x, &g, &b, &eps}, {}, {0}, {});
ASSERT_EQ(Status::OK(), result->status());
delete result;
}