448 lines
22 KiB
Plaintext
448 lines
22 KiB
Plaintext
|
/*******************************************************************************
|
||
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
||
|
*
|
||
|
* This program and the accompanying materials are made available under the
|
||
|
* terms of the Apache License, Version 2.0 which is available at
|
||
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||
|
* License for the specific language governing permissions and limitations
|
||
|
* under the License.
|
||
|
*
|
||
|
* SPDX-License-Identifier: Apache-2.0
|
||
|
******************************************************************************/
|
||
|
|
||
|
//
|
||
|
// @author raver119@gmail.com
|
||
|
//
|
||
|
|
||
|
#include <op_boilerplate.h>
|
||
|
#include <loops/random.h>
|
||
|
#include <dll.h>
|
||
|
#include <cuda.h>
|
||
|
#include <cuda_runtime.h>
|
||
|
#include <helpers/DebugHelper.h>
|
||
|
#include <specials_cuda.h>
|
||
|
|
||
|
using namespace randomOps;
|
||
|
|
||
|
template <typename T, typename OpClass>
|
||
|
static inline __device__ void randomSingleGeneric(
|
||
|
Nd4jPointer state,
|
||
|
void *z,
|
||
|
Nd4jLong *zShapeBuffer,
|
||
|
void *extraArguments) {
|
||
|
|
||
|
|
||
|
functions::random::RandomFunction<T>::template execTransformCuda<OpClass>(
|
||
|
state,
|
||
|
z,
|
||
|
zShapeBuffer,
|
||
|
extraArguments);
|
||
|
}
|
||
|
|
||
|
template <typename T, typename OpClass>
|
||
|
static inline __device__ void randomDoubleGeneric(
|
||
|
Nd4jPointer state,
|
||
|
void *x,
|
||
|
Nd4jLong *xShapeBuffer,
|
||
|
void *z,
|
||
|
Nd4jLong *zShapeBuffer,
|
||
|
void *extraArguments) {
|
||
|
|
||
|
|
||
|
functions::random::RandomFunction<T>::template execTransformCuda<OpClass>(
|
||
|
state,
|
||
|
x,
|
||
|
xShapeBuffer,
|
||
|
z,
|
||
|
zShapeBuffer,
|
||
|
extraArguments);
|
||
|
}
|
||
|
|
||
|
|
||
|
template <typename T, typename OpClass>
|
||
|
static inline __device__ void randomTripleGeneric(
|
||
|
Nd4jPointer state,
|
||
|
void *x,
|
||
|
Nd4jLong *xShapeBuffer,
|
||
|
void *y,
|
||
|
Nd4jLong *yShapeBuffer,
|
||
|
void *z,
|
||
|
Nd4jLong *zShapeBuffer,
|
||
|
void *extraArguments) {
|
||
|
|
||
|
|
||
|
functions::random::RandomFunction<T>::template execTransformCuda<OpClass>(
|
||
|
state,
|
||
|
x,
|
||
|
xShapeBuffer,
|
||
|
y,
|
||
|
yShapeBuffer,
|
||
|
z,
|
||
|
zShapeBuffer,
|
||
|
extraArguments);
|
||
|
}
|
||
|
|
||
|
|
||
|
#ifndef __CLION_IDE__
|
||
|
// here we generate kernels for target operations
|
||
|
DISPATCH_KERNEL_SIMPLE(randomSingle_, randomSingleGeneric, float, INPUT(Nd4jPointer state, void *z, Nd4jLong *zShapeBuffer, void *extraArguments), PARAMS(state, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
|
||
|
DISPATCH_KERNEL_SIMPLE(randomSingle_, randomSingleGeneric, double, INPUT(Nd4jPointer state, void *z, Nd4jLong *zShapeBuffer, void *extraArguments), PARAMS(state, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
|
||
|
DISPATCH_KERNEL_SIMPLE(randomSingle_, randomSingleGeneric, float16, INPUT(Nd4jPointer state, void *z, Nd4jLong *zShapeBuffer, void *extraArguments), PARAMS(state, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
|
||
|
DISPATCH_KERNEL_SIMPLE(randomSingle_, randomSingleGeneric, bfloat16, INPUT(Nd4jPointer state, void *z, Nd4jLong *zShapeBuffer, void *extraArguments), PARAMS(state, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
|
||
|
|
||
|
DISPATCH_KERNEL_SIMPLE(randomDouble_, randomDoubleGeneric, float, INPUT(Nd4jPointer state, void *x, Nd4jLong *xShapeBuffer, void *z, Nd4jLong *zShapeBuffer, void *extraArguments), PARAMS(state, x, xShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
|
||
|
DISPATCH_KERNEL_SIMPLE(randomDouble_, randomDoubleGeneric, double, INPUT(Nd4jPointer state, void *x, Nd4jLong *xShapeBuffer, void *z, Nd4jLong *zShapeBuffer, void *extraArguments), PARAMS(state, x, xShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
|
||
|
DISPATCH_KERNEL_SIMPLE(randomDouble_, randomDoubleGeneric, float16, INPUT(Nd4jPointer state, void *x, Nd4jLong *xShapeBuffer, void *z, Nd4jLong *zShapeBuffer, void *extraArguments), PARAMS(state, x, xShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
|
||
|
DISPATCH_KERNEL_SIMPLE(randomDouble_, randomDoubleGeneric, bfloat16, INPUT(Nd4jPointer state, void *x, Nd4jLong *xShapeBuffer, void *z, Nd4jLong *zShapeBuffer, void *extraArguments), PARAMS(state, x, xShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
|
||
|
|
||
|
DISPATCH_KERNEL_SIMPLE(randomTriple_, randomTripleGeneric, float, INPUT(Nd4jPointer state, void *x, Nd4jLong *xShapeBuffer, void *y, Nd4jLong *yShapeBuffer, void *z, Nd4jLong *zShapeBuffer, void *extraArguments), PARAMS(state, x, xShapeBuffer, y, yShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
|
||
|
DISPATCH_KERNEL_SIMPLE(randomTriple_, randomTripleGeneric, double, INPUT(Nd4jPointer state, void *x, Nd4jLong *xShapeBuffer, void *y, Nd4jLong *yShapeBuffer, void *z, Nd4jLong *zShapeBuffer, void *extraArguments), PARAMS(state, x, xShapeBuffer, y, yShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
|
||
|
DISPATCH_KERNEL_SIMPLE(randomTriple_, randomTripleGeneric, float16, INPUT(Nd4jPointer state, void *x, Nd4jLong *xShapeBuffer, void *y, Nd4jLong *yShapeBuffer, void *z, Nd4jLong *zShapeBuffer, void *extraArguments), PARAMS(state, x, xShapeBuffer, y, yShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
|
||
|
DISPATCH_KERNEL_SIMPLE(randomTriple_, randomTripleGeneric, bfloat16, INPUT(Nd4jPointer state, void *x, Nd4jLong *xShapeBuffer, void *y, Nd4jLong *yShapeBuffer, void *z, Nd4jLong *zShapeBuffer, void *extraArguments), PARAMS(state, x, xShapeBuffer, y, yShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
|
||
|
|
||
|
#endif
|
||
|
|
||
|
namespace functions {
|
||
|
namespace random {
|
||
|
template<typename T>
|
||
|
template<typename OpClass>
|
||
|
void _CUDA_D RandomFunction<T>::execTransformCuda(Nd4jPointer state, void *vx, Nd4jLong *xShapeBuffer, void *vy, Nd4jLong *yShapeBuffer, void *vz, Nd4jLong *zShapeBuffer, void *vextraArguments) {
|
||
|
|
||
|
auto x = reinterpret_cast<T*>(vx);
|
||
|
auto y = reinterpret_cast<T*>(vy);
|
||
|
auto z = reinterpret_cast<T*>(vz);
|
||
|
auto extraArguments = reinterpret_cast<T*>(vextraArguments);
|
||
|
|
||
|
if (OpClass::requiresSpecial) {
|
||
|
OpClass::specialOpCuda(state, x, xShapeBuffer, y, yShapeBuffer, z, zShapeBuffer, extraArguments);
|
||
|
return;
|
||
|
} else {
|
||
|
|
||
|
__shared__ Nd4jLong length;
|
||
|
__shared__ int xEWS;
|
||
|
__shared__ int yEWS;
|
||
|
__shared__ int zEWS;
|
||
|
__shared__ char xOrder;
|
||
|
__shared__ char yOrder;
|
||
|
__shared__ char zOrder;
|
||
|
|
||
|
__shared__ nd4j::graph::RandomGenerator *buffer;
|
||
|
__shared__ unsigned char *cB;
|
||
|
__shared__ unsigned char *dB;
|
||
|
nd4j::graph::RandomGenerator *devBuffer;
|
||
|
if (threadIdx.x == 0) {
|
||
|
length = shape::length(zShapeBuffer);
|
||
|
xEWS = shape::elementWiseStride(xShapeBuffer);
|
||
|
yEWS = shape::elementWiseStride(yShapeBuffer);
|
||
|
zEWS = shape::elementWiseStride(zShapeBuffer);
|
||
|
xOrder = shape::order(xShapeBuffer);
|
||
|
yOrder = shape::order(yShapeBuffer);
|
||
|
zOrder = shape::order(zShapeBuffer);
|
||
|
|
||
|
extern __shared__ unsigned char shmem[];
|
||
|
buffer = (nd4j::graph::RandomGenerator *) shmem;
|
||
|
cB = shmem;
|
||
|
devBuffer = reinterpret_cast<nd4j::graph::RandomGenerator *> (state);
|
||
|
dB = reinterpret_cast<unsigned char *> (state);
|
||
|
}
|
||
|
__syncthreads();
|
||
|
|
||
|
// using this loop instead of memcpy
|
||
|
for (int e = threadIdx.x; e < sizeof(nd4j::graph::RandomGenerator); e+= blockDim.x) {
|
||
|
cB[e] = dB[e];
|
||
|
}
|
||
|
__syncthreads();
|
||
|
|
||
|
|
||
|
int tid = blockIdx.x * blockDim.x + threadIdx.x;
|
||
|
|
||
|
if (xEWS >= 1 && yEWS >= 1 && zEWS >= 1 && xOrder == yOrder && xOrder == zOrder) {
|
||
|
for (Nd4jLong e = tid; e < length; e += blockDim.x * gridDim.x) {
|
||
|
z[e * zEWS] = OpClass::op(x[e * xEWS], y[e * yEWS], e, length, buffer, extraArguments);
|
||
|
}
|
||
|
} else {
|
||
|
for (Nd4jLong i = tid; i < length; i += blockDim.x * gridDim.x) {
|
||
|
|
||
|
auto xOffset2 = shape::getIndexOffset(i, xShapeBuffer, length);
|
||
|
auto yOffset2 = shape::getIndexOffset(i, yShapeBuffer, length);
|
||
|
auto zOffset2 = shape::getIndexOffset(i, zShapeBuffer, length);
|
||
|
|
||
|
z[zOffset2] = OpClass::op(x[xOffset2], y[yOffset2], i, length, buffer, extraArguments);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
|
||
|
template<typename T>
|
||
|
template<typename OpClass>
|
||
|
void _CUDA_D RandomFunction<T>::execTransformCuda(Nd4jPointer state, void *vx, Nd4jLong *xShapeBuffer, void *vz, Nd4jLong *zShapeBuffer, void *vextraArguments) {
|
||
|
|
||
|
auto x = reinterpret_cast<T*>(vx);
|
||
|
auto z = reinterpret_cast<T*>(vz);
|
||
|
auto extraArguments = reinterpret_cast<T*>(vextraArguments);
|
||
|
|
||
|
__shared__ Nd4jLong length;
|
||
|
__shared__ int xEWS;
|
||
|
__shared__ int zEWS;
|
||
|
__shared__ char xOrder;
|
||
|
__shared__ char zOrder;
|
||
|
|
||
|
__shared__ nd4j::graph::RandomGenerator *buffer;
|
||
|
__shared__ unsigned char *cB;
|
||
|
__shared__ unsigned char *dB;
|
||
|
__shared__ nd4j::graph::RandomGenerator *devBuffer;
|
||
|
|
||
|
if (threadIdx.x == 0) {
|
||
|
extern __shared__ unsigned char shmem[];
|
||
|
buffer = (nd4j::graph::RandomGenerator *) shmem;
|
||
|
cB = shmem;
|
||
|
devBuffer = reinterpret_cast<nd4j::graph::RandomGenerator *> (state);
|
||
|
dB = reinterpret_cast<unsigned char *> (state);
|
||
|
|
||
|
length = shape::length(zShapeBuffer);
|
||
|
xEWS = shape::elementWiseStride(xShapeBuffer);
|
||
|
zEWS = shape::elementWiseStride(zShapeBuffer);
|
||
|
xOrder = shape::order(xShapeBuffer);
|
||
|
zOrder = shape::order(zShapeBuffer);
|
||
|
}
|
||
|
__syncthreads();
|
||
|
|
||
|
// using this loop instead of memcpy
|
||
|
for (int e = threadIdx.x; e < sizeof(nd4j::graph::RandomGenerator); e+= blockDim.x) {
|
||
|
cB[e] = dB[e];
|
||
|
}
|
||
|
__syncthreads();
|
||
|
|
||
|
|
||
|
if (xEWS >= 1 && zEWS >= 1 && xOrder == zOrder) {
|
||
|
for (Nd4jLong e = blockIdx.x * blockDim.x + threadIdx.x; e < length; e += blockDim.x * gridDim.x) {
|
||
|
z[e * zEWS] = OpClass::op(x[e * xEWS], e, length, buffer, extraArguments);
|
||
|
}
|
||
|
} else {
|
||
|
|
||
|
for (Nd4jLong i = blockIdx.x * blockDim.x + threadIdx.x; i < length; i += blockDim.x * gridDim.x) {
|
||
|
|
||
|
auto xOffset2 = shape::getIndexOffset(i, xShapeBuffer, length);
|
||
|
auto zOffset2 = shape::getIndexOffset(i, zShapeBuffer, length);
|
||
|
|
||
|
z[zOffset2] = OpClass::op(x[xOffset2], i, length, buffer, extraArguments);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
template<typename T>
|
||
|
template<typename OpClass>
|
||
|
void _CUDA_D RandomFunction<T>::execTransformCuda(Nd4jPointer state, void *vz, Nd4jLong *zShapeBuffer, void *vextraArguments) {
|
||
|
|
||
|
auto z = reinterpret_cast<T*>(vz);
|
||
|
auto extraArguments = reinterpret_cast<T*>(vextraArguments);
|
||
|
|
||
|
__shared__ Nd4jLong length;
|
||
|
__shared__ Nd4jLong ews;
|
||
|
__shared__ nd4j::graph::RandomGenerator *buffer;
|
||
|
__shared__ unsigned char *cB;
|
||
|
__shared__ unsigned char *dB;
|
||
|
__shared__ nd4j::graph::RandomGenerator *devBuffer;
|
||
|
|
||
|
if (threadIdx.x == 0) {
|
||
|
extern __shared__ unsigned char shmem[];
|
||
|
buffer = (nd4j::graph::RandomGenerator *) shmem;
|
||
|
cB = shmem;
|
||
|
devBuffer = reinterpret_cast<nd4j::graph::RandomGenerator *> (state);
|
||
|
dB = reinterpret_cast<unsigned char *> (state);
|
||
|
length = shape::length(zShapeBuffer);
|
||
|
ews = shape::elementWiseStride(zShapeBuffer);
|
||
|
}
|
||
|
__syncthreads();
|
||
|
|
||
|
// using this loop instead of memcpy
|
||
|
for (int e = threadIdx.x; e < sizeof(nd4j::graph::RandomGenerator); e+= blockDim.x) {
|
||
|
cB[e] = dB[e];
|
||
|
}
|
||
|
__syncthreads();
|
||
|
|
||
|
int tid = blockIdx.x * blockDim.x + threadIdx.x;
|
||
|
|
||
|
if (ews > 0) {
|
||
|
for (Nd4jLong i = tid; i < length; i += blockDim.x * gridDim.x) {
|
||
|
z[i * ews] = OpClass::op(i, length, buffer, extraArguments);
|
||
|
}
|
||
|
} else {
|
||
|
|
||
|
for (Nd4jLong i = tid; i < length; i += blockDim.x * gridDim.x) {
|
||
|
auto zOffset2 = shape::getIndexOffset(i, zShapeBuffer, length);
|
||
|
z[zOffset2] = OpClass::op(i, length, buffer, extraArguments);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <>
|
||
|
_CUDA_H void RandomFunction<float>::executeCudaSingle(dim3& launchDims, cudaStream_t* stream, int opNum, Nd4jPointer stateHost, void *vz, Nd4jLong *zShapeBuffer, void *vextraArguments) {
|
||
|
|
||
|
auto z = reinterpret_cast<float*>(vz);
|
||
|
auto extraArguments = reinterpret_cast<float*>(vextraArguments);
|
||
|
|
||
|
// this macro builds bunch of IF/ELSE selectors for kernel launch
|
||
|
DISPATCH_SIMPLE(randomSingle, float, PARAMS(stateHost, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
|
||
|
|
||
|
DEBUG_KERNEL(stream, opNum);
|
||
|
}
|
||
|
|
||
|
template <>
|
||
|
_CUDA_H void RandomFunction<float16>::executeCudaSingle(dim3& launchDims, cudaStream_t* stream, int opNum, Nd4jPointer stateHost, void *vz, Nd4jLong *zShapeBuffer, void *vextraArguments) {
|
||
|
|
||
|
auto z = reinterpret_cast<float16*>(vz);
|
||
|
auto extraArguments = reinterpret_cast<float16*>(vextraArguments);
|
||
|
|
||
|
// this macro builds bunch of IF/ELSE selectors for kernel launch
|
||
|
DISPATCH_SIMPLE(randomSingle, float16, PARAMS(stateHost, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
|
||
|
|
||
|
DEBUG_KERNEL(stream, opNum);
|
||
|
}
|
||
|
|
||
|
template <>
|
||
|
_CUDA_H void RandomFunction<bfloat16>::executeCudaSingle(dim3& launchDims, cudaStream_t* stream, int opNum, Nd4jPointer stateHost, void *vz, Nd4jLong *zShapeBuffer, void *vextraArguments) {
|
||
|
|
||
|
auto z = reinterpret_cast<bfloat16*>(vz);
|
||
|
auto extraArguments = reinterpret_cast<bfloat16*>(vextraArguments);
|
||
|
|
||
|
// this macro builds bunch of IF/ELSE selectors for kernel launch
|
||
|
DISPATCH_SIMPLE(randomSingle, bfloat16, PARAMS(stateHost, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
|
||
|
|
||
|
DEBUG_KERNEL(stream, opNum);
|
||
|
}
|
||
|
|
||
|
template <>
|
||
|
_CUDA_H void RandomFunction<double>::executeCudaSingle(dim3& launchDims, cudaStream_t *stream, int opNum, Nd4jPointer stateHost, void *vz, Nd4jLong *zShapeBuffer, void *vextraArguments) {
|
||
|
|
||
|
auto z = reinterpret_cast<double*>(vz);
|
||
|
auto extraArguments = reinterpret_cast<double*>(vextraArguments);
|
||
|
|
||
|
// this macro builds bunch of IF/ELSE selectors for kernel launch
|
||
|
DISPATCH_SIMPLE(randomSingle, double, PARAMS(stateHost, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
|
||
|
|
||
|
DEBUG_KERNEL(stream, opNum);
|
||
|
}
|
||
|
|
||
|
template <>
|
||
|
_CUDA_H void RandomFunction<float>::executeCudaDouble(dim3& launchDims, cudaStream_t* stream, int opNum, Nd4jPointer stateHost, void *vx, Nd4jLong *xShapeBuffer, void *vz, Nd4jLong *zShapeBuffer, void *vextraArguments) {
|
||
|
|
||
|
auto x = reinterpret_cast<float*>(vx);
|
||
|
auto z = reinterpret_cast<float*>(vz);
|
||
|
auto extraArguments = reinterpret_cast<float*>(vextraArguments);
|
||
|
|
||
|
// this macro builds bunch of IF/ELSE selectors for kernel launch
|
||
|
DISPATCH_SIMPLE(randomDouble, float, PARAMS(stateHost, x, xShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
|
||
|
|
||
|
DEBUG_KERNEL(stream, opNum);
|
||
|
}
|
||
|
|
||
|
|
||
|
template <>
|
||
|
_CUDA_H void RandomFunction<float16>::executeCudaDouble(dim3& launchDims, cudaStream_t* stream, int opNum, Nd4jPointer stateHost, void *vx, Nd4jLong *xShapeBuffer, void *vz, Nd4jLong *zShapeBuffer, void *vextraArguments) {
|
||
|
|
||
|
auto x = reinterpret_cast<float16*>(vx);
|
||
|
auto z = reinterpret_cast<float16*>(vz);
|
||
|
auto extraArguments = reinterpret_cast<float16*>(vextraArguments);
|
||
|
|
||
|
// this macro builds bunch of IF/ELSE selectors for kernel launch
|
||
|
DISPATCH_SIMPLE(randomDouble, float16, PARAMS(stateHost, x, xShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
|
||
|
|
||
|
DEBUG_KERNEL(stream, opNum);
|
||
|
}
|
||
|
|
||
|
template <>
|
||
|
_CUDA_H void RandomFunction<bfloat16>::executeCudaDouble(dim3& launchDims, cudaStream_t* stream, int opNum, Nd4jPointer stateHost, void *vx, Nd4jLong *xShapeBuffer, void *vz, Nd4jLong *zShapeBuffer, void *vextraArguments) {
|
||
|
|
||
|
auto x = reinterpret_cast<bfloat16*>(vx);
|
||
|
auto z = reinterpret_cast<bfloat16*>(vz);
|
||
|
auto extraArguments = reinterpret_cast<bfloat16*>(vextraArguments);
|
||
|
|
||
|
// this macro builds bunch of IF/ELSE selectors for kernel launch
|
||
|
DISPATCH_SIMPLE(randomDouble, bfloat16, PARAMS(stateHost, x, xShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
|
||
|
|
||
|
DEBUG_KERNEL(stream, opNum);
|
||
|
}
|
||
|
|
||
|
template <>
|
||
|
_CUDA_H void RandomFunction<double>::executeCudaDouble(dim3& launchDims, cudaStream_t* stream, int opNum, Nd4jPointer stateHost, void *vx, Nd4jLong *xShapeBuffer, void *vz, Nd4jLong *zShapeBuffer, void *vextraArguments) {
|
||
|
|
||
|
auto x = reinterpret_cast<double*>(vx);
|
||
|
auto z = reinterpret_cast<double*>(vz);
|
||
|
auto extraArguments = reinterpret_cast<double*>(vextraArguments);
|
||
|
|
||
|
// this macro builds bunch of IF/ELSE selectors for kernel launch
|
||
|
DISPATCH_SIMPLE(randomDouble, double, PARAMS(stateHost, x, xShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
|
||
|
|
||
|
DEBUG_KERNEL(stream, opNum);
|
||
|
}
|
||
|
|
||
|
template <>
|
||
|
_CUDA_H void RandomFunction<float>::executeCudaTriple(dim3& launchDims, cudaStream_t* stream, int opNum, Nd4jPointer stateHost, void *vx, Nd4jLong *xShapeBuffer, void *vy, Nd4jLong *yShapeBuffer, void *vz, Nd4jLong *zShapeBuffer, void *vextraArguments) {
|
||
|
|
||
|
|
||
|
auto x = reinterpret_cast<float*>(vx);
|
||
|
auto y = reinterpret_cast<float*>(vy);
|
||
|
auto z = reinterpret_cast<float*>(vz);
|
||
|
auto extraArguments = reinterpret_cast<float*>(vextraArguments);
|
||
|
|
||
|
// this macro builds bunch of IF/ELSE selectors for kernel launch
|
||
|
DISPATCH_SIMPLE(randomTriple, float, PARAMS(stateHost, x, xShapeBuffer, y, yShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
|
||
|
|
||
|
DEBUG_KERNEL(stream, opNum);
|
||
|
}
|
||
|
|
||
|
template <>
|
||
|
_CUDA_H void RandomFunction<float16>::executeCudaTriple(dim3& launchDims, cudaStream_t* stream, int opNum, Nd4jPointer stateHost, void *vx, Nd4jLong *xShapeBuffer, void *vy, Nd4jLong *yShapeBuffer, void *vz, Nd4jLong *zShapeBuffer, void *vextraArguments) {
|
||
|
|
||
|
auto x = reinterpret_cast<float16*>(vx);
|
||
|
auto y = reinterpret_cast<float16*>(vy);
|
||
|
auto z = reinterpret_cast<float16*>(vz);
|
||
|
auto extraArguments = reinterpret_cast<float16*>(vextraArguments);
|
||
|
|
||
|
// this macro builds bunch of IF/ELSE selectors for kernel launch
|
||
|
DISPATCH_SIMPLE(randomTriple, float16, PARAMS(stateHost, x, xShapeBuffer, y, yShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
|
||
|
|
||
|
DEBUG_KERNEL(stream, opNum);
|
||
|
}
|
||
|
|
||
|
template <>
|
||
|
_CUDA_H void RandomFunction<bfloat16>::executeCudaTriple(dim3& launchDims, cudaStream_t* stream, int opNum, Nd4jPointer stateHost, void *vx, Nd4jLong *xShapeBuffer, void *vy, Nd4jLong *yShapeBuffer, void *vz, Nd4jLong *zShapeBuffer, void *vextraArguments) {
|
||
|
|
||
|
auto x = reinterpret_cast<bfloat16*>(vx);
|
||
|
auto y = reinterpret_cast<bfloat16*>(vy);
|
||
|
auto z = reinterpret_cast<bfloat16*>(vz);
|
||
|
auto extraArguments = reinterpret_cast<bfloat16*>(vextraArguments);
|
||
|
|
||
|
// this macro builds bunch of IF/ELSE selectors for kernel launch
|
||
|
DISPATCH_SIMPLE(randomTriple, bfloat16, PARAMS(stateHost, x, xShapeBuffer, y, yShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
|
||
|
|
||
|
DEBUG_KERNEL(stream, opNum);
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
template <>
|
||
|
_CUDA_H void RandomFunction<double>::executeCudaTriple(dim3& launchDims, cudaStream_t* stream, int opNum, Nd4jPointer stateHost, void *vx, Nd4jLong *xShapeBuffer, void *vy, Nd4jLong *yShapeBuffer, void *vz, Nd4jLong *zShapeBuffer, void *vextraArguments) {
|
||
|
|
||
|
auto x = reinterpret_cast<double*>(vx);
|
||
|
auto y = reinterpret_cast<double*>(vy);
|
||
|
auto z = reinterpret_cast<double*>(vz);
|
||
|
auto extraArguments = reinterpret_cast<double*>(vextraArguments);
|
||
|
|
||
|
// this macro builds bunch of IF/ELSE selectors for kernel launch
|
||
|
DISPATCH_SIMPLE(randomTriple, double, PARAMS(stateHost, x, xShapeBuffer, y, yShapeBuffer, z, zShapeBuffer, extraArguments), OPS_A(RANDOM_OPS))
|
||
|
|
||
|
DEBUG_KERNEL(stream, opNum);
|
||
|
}
|
||
|
|
||
|
BUILD_SINGLE_TEMPLATE(template class ND4J_EXPORT RandomFunction, , FLOAT_TYPES);
|
||
|
}
|
||
|
}
|