cavis/libnd4j/tests_cpu/layers_tests/ParityOpsTests.cpp

1717 lines
69 KiB
C++
Raw Normal View History

2019-06-06 14:21:15 +02:00
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// Created by raver119 on 12.10.2017.
//
#include "testlayers.h"
#include <array/NDArray.h>
2019-06-06 14:21:15 +02:00
#include <ops/declarable/CustomOperations.h>
using namespace sd;
using namespace sd::ops;
2019-06-06 14:21:15 +02:00
class ParityOpsTests : public testing::Test {
public:
};
TEST_F(ParityOpsTests, TestZeroAs1) {
auto x = NDArrayFactory::create<float>('c', {10, 10});
x.assign(1.0);
auto exp = NDArrayFactory::create<float>('c', {10, 10});
exp.assign(0.0f);
sd::ops::zeros_as op;
2019-06-06 14:21:15 +02:00
auto result = op.evaluate({&x}, {}, {});
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(z->isSameShape(&x));
ASSERT_TRUE(z->equalsTo(&exp));
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, TestMaximum1) {
auto x = NDArrayFactory::create<float>('c', {10, 10});
x.assign(1.0);
auto y = NDArrayFactory::create<float>('c', {10, 10});
y.assign(2.0);
sd::ops::maximum op;
2019-06-06 14:21:15 +02:00
auto result = op.evaluate({&x, &y}, {}, {});
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(y.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, TestMinimum1) {
auto x = NDArrayFactory::create<float>('c', {10, 10});
x.assign(1.0f);
auto y = NDArrayFactory::create<float>('c', {10, 10});
y.assign(-2.0f);
sd::ops::minimum op;
2019-06-06 14:21:15 +02:00
auto result = op.evaluate({&x, &y}, {}, {});
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(y.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, TestTear1) {
auto input = NDArrayFactory::create<float>('c', {10, 5});
auto tads = input.allTensorsAlongDimension({1});
Shyrma temp (#131) * - specifying template instantiation for certain types in float16 and bloat16 Signed-off-by: Yurii <iuriish@yahoo.com> * - polishing bfloat16 and float16 member functions template specialization Signed-off-by: Yurii <iuriish@yahoo.com> * - rewrite and overload array +-*/ scalar and scalar +-*/ arr in NDAray class Signed-off-by: Yurii <iuriish@yahoo.com> * - make corrections which have to do with and rvalue lvalue conversions Signed-off-by: Yurii <iuriish@yahoo.com> * - provide move semantic in NDArray operators array +-/* array Signed-off-by: Yurii <iuriish@yahoo.com> * float16/bfloat16 tweaks Signed-off-by: raver119 <raver119@gmail.com> * one more tweak Signed-off-by: raver119 <raver119@gmail.com> * - make float16 and bfloat16 to compile successfully on cuda Signed-off-by: Yurii <iuriish@yahoo.com> * - do not use resources of view-like arrays when move semantics is applied Signed-off-by: Yurii <iuriish@yahoo.com> * - get rid of pointers in signatures NDArray methods 1 Signed-off-by: Yurii <iuriish@yahoo.com> * - correction of signature of NDArray::dup method Signed-off-by: Yurii <iuriish@yahoo.com> * - correction of signature of NDArray::reduceAlongDimension method Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyIndexReduce and applyTrueBroadcast methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyReduce3 and varianceAlongDimension methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::tensorsAlongDimension and diagonal methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::allTensorsAlongDimension Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::reduceAlongDimension 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyTransform 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyPairwiseTransform 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyBroadcast 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyTrueBroadcast 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyScalar and applyScalarArr Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::lambda methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::reduce3 methods 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of following NDArray methods: add/sub/mul/div row/column and fillAsTriangular Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::tileToShape methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::isShapeSameStrict method Signed-off-by: Yurii <iuriish@yahoo.com> * minor corrections in tests Signed-off-by: Yurii <iuriish@yahoo.com> * - replace reduce op in batchnorm mkldnn Signed-off-by: Yurii <iuriish@yahoo.com> * - add explicit templates instantiations for operator+(NDArray&&. const scalar) Signed-off-by: Yurii <iuriish@yahoo.com> * - corrections of casts in float16/bfloat16 Signed-off-by: Yurii <iuriish@yahoo.com> * - provide move semantics in following NDArray methods: transform, applyTrueBroadcast, transpose, reshape, permute Signed-off-by: Yurii <iuriish@yahoo.com> * - get rid of input array A duplicate in svd cuda op Signed-off-by: Yurii <iuriish@yahoo.com> * - avoid available bug in svd cuda API Signed-off-by: Yurii <iuriish@yahoo.com> * - add temporary global memory buffer in svd cuda when calcUV = false and m != n Signed-off-by: Yurii <iuriish@yahoo.com> * - remove test with blfoat16 type for betainC Signed-off-by: Yurii <iuriish@yahoo.com> * - resolve conflicts after master has been merged in Signed-off-by: Yurii <iuriish@yahoo.com> * - changed type of affected input array in fused_batch_norm Signed-off-by: Yurii <iuriish@yahoo.com> * - add several explicit type castings Signed-off-by: Yurii <iuriish@yahoo.com> * - add ND4J_EXPORT to operators Signed-off-by: Yurii <iuriish@yahoo.com> * - add explicit template types in instantiations of template arithm operators of NDArray class Signed-off-by: Yurii <iuriish@yahoo.com> * - one more test fix Signed-off-by: Yurii <iuriish@yahoo.com> Co-authored-by: raver119 <raver119@gmail.com>
2019-12-20 20:35:39 +01:00
for (int e = 0; e < tads.size(); e++) {
ASSERT_EQ(5, tads.at(e)->lengthOf());
tads.at(e)->assign((float) e + 1);
2019-06-06 14:21:15 +02:00
}
sd::ops::tear op;
2019-06-06 14:21:15 +02:00
auto result = op.evaluate({&input}, {}, {1});
2019-06-06 14:21:15 +02:00
ASSERT_EQ(10, result.size());
2019-06-06 14:21:15 +02:00
for (int e = 0; e < result.size(); e++)
ASSERT_TRUE(tads.at(e)->equalsTo(result.at(e)));
2019-06-06 14:21:15 +02:00
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, TestUnstack1) {
auto input = NDArrayFactory::create<float>('c', {10, 5});
auto tads = input.allTensorsAlongDimension({1});
Shyrma temp (#131) * - specifying template instantiation for certain types in float16 and bloat16 Signed-off-by: Yurii <iuriish@yahoo.com> * - polishing bfloat16 and float16 member functions template specialization Signed-off-by: Yurii <iuriish@yahoo.com> * - rewrite and overload array +-*/ scalar and scalar +-*/ arr in NDAray class Signed-off-by: Yurii <iuriish@yahoo.com> * - make corrections which have to do with and rvalue lvalue conversions Signed-off-by: Yurii <iuriish@yahoo.com> * - provide move semantic in NDArray operators array +-/* array Signed-off-by: Yurii <iuriish@yahoo.com> * float16/bfloat16 tweaks Signed-off-by: raver119 <raver119@gmail.com> * one more tweak Signed-off-by: raver119 <raver119@gmail.com> * - make float16 and bfloat16 to compile successfully on cuda Signed-off-by: Yurii <iuriish@yahoo.com> * - do not use resources of view-like arrays when move semantics is applied Signed-off-by: Yurii <iuriish@yahoo.com> * - get rid of pointers in signatures NDArray methods 1 Signed-off-by: Yurii <iuriish@yahoo.com> * - correction of signature of NDArray::dup method Signed-off-by: Yurii <iuriish@yahoo.com> * - correction of signature of NDArray::reduceAlongDimension method Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyIndexReduce and applyTrueBroadcast methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyReduce3 and varianceAlongDimension methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::tensorsAlongDimension and diagonal methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::allTensorsAlongDimension Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::reduceAlongDimension 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyTransform 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyPairwiseTransform 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyBroadcast 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyTrueBroadcast 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyScalar and applyScalarArr Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::lambda methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::reduce3 methods 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of following NDArray methods: add/sub/mul/div row/column and fillAsTriangular Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::tileToShape methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::isShapeSameStrict method Signed-off-by: Yurii <iuriish@yahoo.com> * minor corrections in tests Signed-off-by: Yurii <iuriish@yahoo.com> * - replace reduce op in batchnorm mkldnn Signed-off-by: Yurii <iuriish@yahoo.com> * - add explicit templates instantiations for operator+(NDArray&&. const scalar) Signed-off-by: Yurii <iuriish@yahoo.com> * - corrections of casts in float16/bfloat16 Signed-off-by: Yurii <iuriish@yahoo.com> * - provide move semantics in following NDArray methods: transform, applyTrueBroadcast, transpose, reshape, permute Signed-off-by: Yurii <iuriish@yahoo.com> * - get rid of input array A duplicate in svd cuda op Signed-off-by: Yurii <iuriish@yahoo.com> * - avoid available bug in svd cuda API Signed-off-by: Yurii <iuriish@yahoo.com> * - add temporary global memory buffer in svd cuda when calcUV = false and m != n Signed-off-by: Yurii <iuriish@yahoo.com> * - remove test with blfoat16 type for betainC Signed-off-by: Yurii <iuriish@yahoo.com> * - resolve conflicts after master has been merged in Signed-off-by: Yurii <iuriish@yahoo.com> * - changed type of affected input array in fused_batch_norm Signed-off-by: Yurii <iuriish@yahoo.com> * - add several explicit type castings Signed-off-by: Yurii <iuriish@yahoo.com> * - add ND4J_EXPORT to operators Signed-off-by: Yurii <iuriish@yahoo.com> * - add explicit template types in instantiations of template arithm operators of NDArray class Signed-off-by: Yurii <iuriish@yahoo.com> * - one more test fix Signed-off-by: Yurii <iuriish@yahoo.com> Co-authored-by: raver119 <raver119@gmail.com>
2019-12-20 20:35:39 +01:00
for (int e = 0; e < tads.size(); e++) {
ASSERT_EQ(5, tads.at(e)->lengthOf());
tads.at(e)->assign((float) e + 1);
2019-06-06 14:21:15 +02:00
}
sd::ops::unstack op;
2019-06-06 14:21:15 +02:00
auto result = op.evaluate({&input}, {}, {0});
2019-06-06 14:21:15 +02:00
ASSERT_EQ(10, result.size());
2019-06-06 14:21:15 +02:00
for (int e = 0; e < result.size(); e++)
ASSERT_TRUE(tads.at(e)->equalsTo(result.at(e)));
2019-06-06 14:21:15 +02:00
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, TestUnstack2) {
auto input = NDArrayFactory::create<float>('c', {5,2,6});
auto tads = input.allTensorsAlongDimension({0,1});
Shyrma temp (#131) * - specifying template instantiation for certain types in float16 and bloat16 Signed-off-by: Yurii <iuriish@yahoo.com> * - polishing bfloat16 and float16 member functions template specialization Signed-off-by: Yurii <iuriish@yahoo.com> * - rewrite and overload array +-*/ scalar and scalar +-*/ arr in NDAray class Signed-off-by: Yurii <iuriish@yahoo.com> * - make corrections which have to do with and rvalue lvalue conversions Signed-off-by: Yurii <iuriish@yahoo.com> * - provide move semantic in NDArray operators array +-/* array Signed-off-by: Yurii <iuriish@yahoo.com> * float16/bfloat16 tweaks Signed-off-by: raver119 <raver119@gmail.com> * one more tweak Signed-off-by: raver119 <raver119@gmail.com> * - make float16 and bfloat16 to compile successfully on cuda Signed-off-by: Yurii <iuriish@yahoo.com> * - do not use resources of view-like arrays when move semantics is applied Signed-off-by: Yurii <iuriish@yahoo.com> * - get rid of pointers in signatures NDArray methods 1 Signed-off-by: Yurii <iuriish@yahoo.com> * - correction of signature of NDArray::dup method Signed-off-by: Yurii <iuriish@yahoo.com> * - correction of signature of NDArray::reduceAlongDimension method Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyIndexReduce and applyTrueBroadcast methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyReduce3 and varianceAlongDimension methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::tensorsAlongDimension and diagonal methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::allTensorsAlongDimension Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::reduceAlongDimension 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyTransform 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyPairwiseTransform 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyBroadcast 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyTrueBroadcast 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyScalar and applyScalarArr Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::lambda methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::reduce3 methods 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of following NDArray methods: add/sub/mul/div row/column and fillAsTriangular Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::tileToShape methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::isShapeSameStrict method Signed-off-by: Yurii <iuriish@yahoo.com> * minor corrections in tests Signed-off-by: Yurii <iuriish@yahoo.com> * - replace reduce op in batchnorm mkldnn Signed-off-by: Yurii <iuriish@yahoo.com> * - add explicit templates instantiations for operator+(NDArray&&. const scalar) Signed-off-by: Yurii <iuriish@yahoo.com> * - corrections of casts in float16/bfloat16 Signed-off-by: Yurii <iuriish@yahoo.com> * - provide move semantics in following NDArray methods: transform, applyTrueBroadcast, transpose, reshape, permute Signed-off-by: Yurii <iuriish@yahoo.com> * - get rid of input array A duplicate in svd cuda op Signed-off-by: Yurii <iuriish@yahoo.com> * - avoid available bug in svd cuda API Signed-off-by: Yurii <iuriish@yahoo.com> * - add temporary global memory buffer in svd cuda when calcUV = false and m != n Signed-off-by: Yurii <iuriish@yahoo.com> * - remove test with blfoat16 type for betainC Signed-off-by: Yurii <iuriish@yahoo.com> * - resolve conflicts after master has been merged in Signed-off-by: Yurii <iuriish@yahoo.com> * - changed type of affected input array in fused_batch_norm Signed-off-by: Yurii <iuriish@yahoo.com> * - add several explicit type castings Signed-off-by: Yurii <iuriish@yahoo.com> * - add ND4J_EXPORT to operators Signed-off-by: Yurii <iuriish@yahoo.com> * - add explicit template types in instantiations of template arithm operators of NDArray class Signed-off-by: Yurii <iuriish@yahoo.com> * - one more test fix Signed-off-by: Yurii <iuriish@yahoo.com> Co-authored-by: raver119 <raver119@gmail.com>
2019-12-20 20:35:39 +01:00
for (int e = 0; e < tads.size(); e++) {
ASSERT_EQ(10, tads.at(e)->lengthOf());
tads.at(e)->assign((float) e + 1);
2019-06-06 14:21:15 +02:00
}
sd::ops::unstack op;
2019-06-06 14:21:15 +02:00
auto result = op.evaluate({&input}, {}, {2});
2019-06-06 14:21:15 +02:00
ASSERT_EQ(6, result.size());
2019-06-06 14:21:15 +02:00
for (int e = 0; e < result.size(); e++)
ASSERT_TRUE(tads.at(e)->equalsTo(result.at(e)));
2019-06-06 14:21:15 +02:00
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, TestUnstack3) {
auto input = NDArrayFactory::create<float>('c', {3,2,3});
auto exp = NDArrayFactory::create<float>('c', {3, 2}, {1.f, 4., 7., 10.f, 13.f, 16.f});
input.linspace(1);
sd::ops::unstack op;
2019-06-06 14:21:15 +02:00
auto result = op.evaluate({&input}, {}, {2});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, TestUnstack4) {
auto input = NDArrayFactory::create<float>('c', {3,2,3});
auto exp = NDArrayFactory::create<float>('c', {3, 3}, { 1, 2, 3, 7, 8, 9, 13, 14, 15.});
input.linspace(1);
sd::ops::unstack op;
2019-06-06 14:21:15 +02:00
auto result = op.evaluate({&input}, {}, {1});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, TestUnstack5) {
auto input = NDArrayFactory::create<float>('c', {3,2,3});
auto exp = NDArrayFactory::create<float>('c', {2, 3}, { 1, 2, 3, 4, 5, 6});
input.linspace(1);
sd::ops::unstack op;
2019-06-06 14:21:15 +02:00
auto result = op.evaluate({&input}, {}, {0});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, TestUnstack6) {
auto input = NDArrayFactory::create<float>('c', {1, 1, 1});
auto exp = NDArrayFactory::create<float>('c', {1, 1}, {1});
input.linspace(1);
sd::ops::unstack op;
2019-06-06 14:21:15 +02:00
auto result = op.evaluate({&input}, {}, {0});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, TestUnstack7) {
auto input = NDArrayFactory::create<float>('c', {1, 1, 1});
auto exp = NDArrayFactory::create<float>('c', {1, 1}, {1});
input.linspace(1);
sd::ops::unstack op;
2019-06-06 14:21:15 +02:00
auto result = op.evaluate({&input}, {}, {1});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, TestUnstack8) {
auto input = NDArrayFactory::create<float>('c', {1, 1});
auto exp = NDArrayFactory::create<float>('c', {1}, {1});
input.linspace(1);
sd::ops::unstack op;
2019-06-06 14:21:15 +02:00
auto result = op.evaluate({&input}, {}, {0});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, TestUnstack9) {
auto input = NDArrayFactory::create<float>('c', {1, 1});
auto exp = NDArrayFactory::create<float>('c', {1}, {1});
input.linspace(1);
sd::ops::unstack op;
2019-06-06 14:21:15 +02:00
auto result = op.evaluate({&input}, {}, {1});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
Dev branch merge: dev_20190606 (#7904) * correct logsoftmax looss (#2) * Small SameDiff listener fix (#4) * Various fixes (#6) * #7839 Fix for asXMatrix and tests * #7866 EmbeddingSequenceLayer dtype fix + test * #7856 SameDiff save/load stream methods * #7859 RegressionEvaluation rank 4 fix + tests + axis configuration * EvaluationBinary 3d/4d * More evaluation 3d/4d tests * #7847 Evaluation empty checks * Small test ifx * #7848 Fix median edge case * Improve DL4J samediff layer tests * [WIP] FastText wrapper implemented (#8) * FastText implemented * Some fixes * Fix shapes for wordsNearest * Validation of input vectors * Fixes * Fixed test * Thread tagged * Some tweaks * setContextClassLoader for DeallocatorServiceThread * Numpy format tests (#1) * Various fixes (#11) * #7852 SameDiff gather fix * #7892 SameDiff placeholder to constant conversion * #7890 validate input rank for MLN/CG init methods * Fix broken permute shape calculation * Permute and gather fixes * Tests * #7850 LogSumExp fix + test * Handful of test fixes * Empty arrays with non-scalar shapes (#10) * minor rearrangements for lambdas * empty tensors with non-scalar shapes * numpy empty tensors with non-scalar shapes * few more empty tweaks * Small fixes * conv3d signature update * micro fix in batchnorm mkldnn * Import fixes * Fix * MKL-DNN update * Small fill fix * fill with empty input + test * Fixes * Small error improvement * Fix * one special test * couple of fixes for lstm * Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone * Fixes * FP16 * Unsigned * BFloat16 * Fill op - empty tweaks * - couple of fixes for empty arrays construction - stack updated * strided slice fix * one transform test * provide method for reducing shapeInfo in case of input array is empty * Fixed reduceAlongDimensions to use empty input properly. * couple of broadcast tests * couple of tests broadcast tests + tweak to make them pass * add check of non-empty to methods producing sub-arrays * Fixed reshapeC with zeros in shape. * complete empty check in reduce_... legacy ops * Concat and cumsum/prod * Tweak to empty shape inference on import * add empty check to the rest of reduce legacy ops * one more test * correct typo in evalReduceShapeInfoEmpty * Added tests for reduce_* ops to tests with zero shapes. * few more tests for empty reductions * Fixed strided_slice op with empty case and tests. * one more empty reduction test * Fixed strided_slice test. * add empty check to NDArray::reshapei * infOrMax * empty min/max with infinity tests * made unstack working correctly with empty arrays * few IndexReduce tests + tweaks for empty shapes * add test for empty concat * few tests fixed * Validation fix for reductions on empty shapes * Reverse fix * Reduction shape calc fixes * SameDiff.generateOutputVariable: don't use shape function to determine number of outputs * Range fix * - NDArray constructor updated for scalars/empty arrays - few tests fixed * More fixes * Empty creator fixes * concat fix * concat fix * TF import tests: allow 'both all NaN' and 'both all inf' to pass * Slice, zero fraction, and reshape fixes * transpose, gather * Zero fraction * scalar cast fix * Empty reduction axis support * few more tests fixed * Fixed input checks conforming with TF for concat op and tests. * few tests fixed * matmul scalar shape fix * Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats. * broadcast bool fix * few more tests * few more tests * correct evalReduceShapeInfoEmpty * argmax/argmin + tests * one more empty edge case + one more test * argmax/argmin/realdiv_bp tweaks * empty reshape test + fix * Helper fixes * Small fixes * Gather test fix * Gather test fix * Small fixes * reduce scalar zero values * scalar mean workaround * Remove debug code * along dim mean workaround * one more test * - equalsTo() tweak for empty arrays - one more test * broadcast tweaks
2019-06-15 13:34:34 +02:00
////////////////////////////////////////////////////////////////////////
TEST_F(ParityOpsTests, TestUnstack10) {
auto input = NDArrayFactory::create<float>('c', {3, 0, 2});
auto exp = NDArrayFactory::create<float>('c', {0,2});
sd::ops::unstack op;
Dev branch merge: dev_20190606 (#7904) * correct logsoftmax looss (#2) * Small SameDiff listener fix (#4) * Various fixes (#6) * #7839 Fix for asXMatrix and tests * #7866 EmbeddingSequenceLayer dtype fix + test * #7856 SameDiff save/load stream methods * #7859 RegressionEvaluation rank 4 fix + tests + axis configuration * EvaluationBinary 3d/4d * More evaluation 3d/4d tests * #7847 Evaluation empty checks * Small test ifx * #7848 Fix median edge case * Improve DL4J samediff layer tests * [WIP] FastText wrapper implemented (#8) * FastText implemented * Some fixes * Fix shapes for wordsNearest * Validation of input vectors * Fixes * Fixed test * Thread tagged * Some tweaks * setContextClassLoader for DeallocatorServiceThread * Numpy format tests (#1) * Various fixes (#11) * #7852 SameDiff gather fix * #7892 SameDiff placeholder to constant conversion * #7890 validate input rank for MLN/CG init methods * Fix broken permute shape calculation * Permute and gather fixes * Tests * #7850 LogSumExp fix + test * Handful of test fixes * Empty arrays with non-scalar shapes (#10) * minor rearrangements for lambdas * empty tensors with non-scalar shapes * numpy empty tensors with non-scalar shapes * few more empty tweaks * Small fixes * conv3d signature update * micro fix in batchnorm mkldnn * Import fixes * Fix * MKL-DNN update * Small fill fix * fill with empty input + test * Fixes * Small error improvement * Fix * one special test * couple of fixes for lstm * Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone * Fixes * FP16 * Unsigned * BFloat16 * Fill op - empty tweaks * - couple of fixes for empty arrays construction - stack updated * strided slice fix * one transform test * provide method for reducing shapeInfo in case of input array is empty * Fixed reduceAlongDimensions to use empty input properly. * couple of broadcast tests * couple of tests broadcast tests + tweak to make them pass * add check of non-empty to methods producing sub-arrays * Fixed reshapeC with zeros in shape. * complete empty check in reduce_... legacy ops * Concat and cumsum/prod * Tweak to empty shape inference on import * add empty check to the rest of reduce legacy ops * one more test * correct typo in evalReduceShapeInfoEmpty * Added tests for reduce_* ops to tests with zero shapes. * few more tests for empty reductions * Fixed strided_slice op with empty case and tests. * one more empty reduction test * Fixed strided_slice test. * add empty check to NDArray::reshapei * infOrMax * empty min/max with infinity tests * made unstack working correctly with empty arrays * few IndexReduce tests + tweaks for empty shapes * add test for empty concat * few tests fixed * Validation fix for reductions on empty shapes * Reverse fix * Reduction shape calc fixes * SameDiff.generateOutputVariable: don't use shape function to determine number of outputs * Range fix * - NDArray constructor updated for scalars/empty arrays - few tests fixed * More fixes * Empty creator fixes * concat fix * concat fix * TF import tests: allow 'both all NaN' and 'both all inf' to pass * Slice, zero fraction, and reshape fixes * transpose, gather * Zero fraction * scalar cast fix * Empty reduction axis support * few more tests fixed * Fixed input checks conforming with TF for concat op and tests. * few tests fixed * matmul scalar shape fix * Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats. * broadcast bool fix * few more tests * few more tests * correct evalReduceShapeInfoEmpty * argmax/argmin + tests * one more empty edge case + one more test * argmax/argmin/realdiv_bp tweaks * empty reshape test + fix * Helper fixes * Small fixes * Gather test fix * Gather test fix * Small fixes * reduce scalar zero values * scalar mean workaround * Remove debug code * along dim mean workaround * one more test * - equalsTo() tweak for empty arrays - one more test * broadcast tweaks
2019-06-15 13:34:34 +02:00
auto result = op.evaluate({&input}, {}, {0});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
Dev branch merge: dev_20190606 (#7904) * correct logsoftmax looss (#2) * Small SameDiff listener fix (#4) * Various fixes (#6) * #7839 Fix for asXMatrix and tests * #7866 EmbeddingSequenceLayer dtype fix + test * #7856 SameDiff save/load stream methods * #7859 RegressionEvaluation rank 4 fix + tests + axis configuration * EvaluationBinary 3d/4d * More evaluation 3d/4d tests * #7847 Evaluation empty checks * Small test ifx * #7848 Fix median edge case * Improve DL4J samediff layer tests * [WIP] FastText wrapper implemented (#8) * FastText implemented * Some fixes * Fix shapes for wordsNearest * Validation of input vectors * Fixes * Fixed test * Thread tagged * Some tweaks * setContextClassLoader for DeallocatorServiceThread * Numpy format tests (#1) * Various fixes (#11) * #7852 SameDiff gather fix * #7892 SameDiff placeholder to constant conversion * #7890 validate input rank for MLN/CG init methods * Fix broken permute shape calculation * Permute and gather fixes * Tests * #7850 LogSumExp fix + test * Handful of test fixes * Empty arrays with non-scalar shapes (#10) * minor rearrangements for lambdas * empty tensors with non-scalar shapes * numpy empty tensors with non-scalar shapes * few more empty tweaks * Small fixes * conv3d signature update * micro fix in batchnorm mkldnn * Import fixes * Fix * MKL-DNN update * Small fill fix * fill with empty input + test * Fixes * Small error improvement * Fix * one special test * couple of fixes for lstm * Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone * Fixes * FP16 * Unsigned * BFloat16 * Fill op - empty tweaks * - couple of fixes for empty arrays construction - stack updated * strided slice fix * one transform test * provide method for reducing shapeInfo in case of input array is empty * Fixed reduceAlongDimensions to use empty input properly. * couple of broadcast tests * couple of tests broadcast tests + tweak to make them pass * add check of non-empty to methods producing sub-arrays * Fixed reshapeC with zeros in shape. * complete empty check in reduce_... legacy ops * Concat and cumsum/prod * Tweak to empty shape inference on import * add empty check to the rest of reduce legacy ops * one more test * correct typo in evalReduceShapeInfoEmpty * Added tests for reduce_* ops to tests with zero shapes. * few more tests for empty reductions * Fixed strided_slice op with empty case and tests. * one more empty reduction test * Fixed strided_slice test. * add empty check to NDArray::reshapei * infOrMax * empty min/max with infinity tests * made unstack working correctly with empty arrays * few IndexReduce tests + tweaks for empty shapes * add test for empty concat * few tests fixed * Validation fix for reductions on empty shapes * Reverse fix * Reduction shape calc fixes * SameDiff.generateOutputVariable: don't use shape function to determine number of outputs * Range fix * - NDArray constructor updated for scalars/empty arrays - few tests fixed * More fixes * Empty creator fixes * concat fix * concat fix * TF import tests: allow 'both all NaN' and 'both all inf' to pass * Slice, zero fraction, and reshape fixes * transpose, gather * Zero fraction * scalar cast fix * Empty reduction axis support * few more tests fixed * Fixed input checks conforming with TF for concat op and tests. * few tests fixed * matmul scalar shape fix * Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats. * broadcast bool fix * few more tests * few more tests * correct evalReduceShapeInfoEmpty * argmax/argmin + tests * one more empty edge case + one more test * argmax/argmin/realdiv_bp tweaks * empty reshape test + fix * Helper fixes * Small fixes * Gather test fix * Gather test fix * Small fixes * reduce scalar zero values * scalar mean workaround * Remove debug code * along dim mean workaround * one more test * - equalsTo() tweak for empty arrays - one more test * broadcast tweaks
2019-06-15 13:34:34 +02:00
ASSERT_TRUE(exp.isSameShape(result.at(0)));
ASSERT_TRUE(exp.isSameShape(result.at(1)));
ASSERT_TRUE(exp.isSameShape(result.at(2)));
Dev branch merge: dev_20190606 (#7904) * correct logsoftmax looss (#2) * Small SameDiff listener fix (#4) * Various fixes (#6) * #7839 Fix for asXMatrix and tests * #7866 EmbeddingSequenceLayer dtype fix + test * #7856 SameDiff save/load stream methods * #7859 RegressionEvaluation rank 4 fix + tests + axis configuration * EvaluationBinary 3d/4d * More evaluation 3d/4d tests * #7847 Evaluation empty checks * Small test ifx * #7848 Fix median edge case * Improve DL4J samediff layer tests * [WIP] FastText wrapper implemented (#8) * FastText implemented * Some fixes * Fix shapes for wordsNearest * Validation of input vectors * Fixes * Fixed test * Thread tagged * Some tweaks * setContextClassLoader for DeallocatorServiceThread * Numpy format tests (#1) * Various fixes (#11) * #7852 SameDiff gather fix * #7892 SameDiff placeholder to constant conversion * #7890 validate input rank for MLN/CG init methods * Fix broken permute shape calculation * Permute and gather fixes * Tests * #7850 LogSumExp fix + test * Handful of test fixes * Empty arrays with non-scalar shapes (#10) * minor rearrangements for lambdas * empty tensors with non-scalar shapes * numpy empty tensors with non-scalar shapes * few more empty tweaks * Small fixes * conv3d signature update * micro fix in batchnorm mkldnn * Import fixes * Fix * MKL-DNN update * Small fill fix * fill with empty input + test * Fixes * Small error improvement * Fix * one special test * couple of fixes for lstm * Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone * Fixes * FP16 * Unsigned * BFloat16 * Fill op - empty tweaks * - couple of fixes for empty arrays construction - stack updated * strided slice fix * one transform test * provide method for reducing shapeInfo in case of input array is empty * Fixed reduceAlongDimensions to use empty input properly. * couple of broadcast tests * couple of tests broadcast tests + tweak to make them pass * add check of non-empty to methods producing sub-arrays * Fixed reshapeC with zeros in shape. * complete empty check in reduce_... legacy ops * Concat and cumsum/prod * Tweak to empty shape inference on import * add empty check to the rest of reduce legacy ops * one more test * correct typo in evalReduceShapeInfoEmpty * Added tests for reduce_* ops to tests with zero shapes. * few more tests for empty reductions * Fixed strided_slice op with empty case and tests. * one more empty reduction test * Fixed strided_slice test. * add empty check to NDArray::reshapei * infOrMax * empty min/max with infinity tests * made unstack working correctly with empty arrays * few IndexReduce tests + tweaks for empty shapes * add test for empty concat * few tests fixed * Validation fix for reductions on empty shapes * Reverse fix * Reduction shape calc fixes * SameDiff.generateOutputVariable: don't use shape function to determine number of outputs * Range fix * - NDArray constructor updated for scalars/empty arrays - few tests fixed * More fixes * Empty creator fixes * concat fix * concat fix * TF import tests: allow 'both all NaN' and 'both all inf' to pass * Slice, zero fraction, and reshape fixes * transpose, gather * Zero fraction * scalar cast fix * Empty reduction axis support * few more tests fixed * Fixed input checks conforming with TF for concat op and tests. * few tests fixed * matmul scalar shape fix * Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats. * broadcast bool fix * few more tests * few more tests * correct evalReduceShapeInfoEmpty * argmax/argmin + tests * one more empty edge case + one more test * argmax/argmin/realdiv_bp tweaks * empty reshape test + fix * Helper fixes * Small fixes * Gather test fix * Gather test fix * Small fixes * reduce scalar zero values * scalar mean workaround * Remove debug code * along dim mean workaround * one more test * - equalsTo() tweak for empty arrays - one more test * broadcast tweaks
2019-06-15 13:34:34 +02:00
Dev branch merge: dev_20190606 (#7904) * correct logsoftmax looss (#2) * Small SameDiff listener fix (#4) * Various fixes (#6) * #7839 Fix for asXMatrix and tests * #7866 EmbeddingSequenceLayer dtype fix + test * #7856 SameDiff save/load stream methods * #7859 RegressionEvaluation rank 4 fix + tests + axis configuration * EvaluationBinary 3d/4d * More evaluation 3d/4d tests * #7847 Evaluation empty checks * Small test ifx * #7848 Fix median edge case * Improve DL4J samediff layer tests * [WIP] FastText wrapper implemented (#8) * FastText implemented * Some fixes * Fix shapes for wordsNearest * Validation of input vectors * Fixes * Fixed test * Thread tagged * Some tweaks * setContextClassLoader for DeallocatorServiceThread * Numpy format tests (#1) * Various fixes (#11) * #7852 SameDiff gather fix * #7892 SameDiff placeholder to constant conversion * #7890 validate input rank for MLN/CG init methods * Fix broken permute shape calculation * Permute and gather fixes * Tests * #7850 LogSumExp fix + test * Handful of test fixes * Empty arrays with non-scalar shapes (#10) * minor rearrangements for lambdas * empty tensors with non-scalar shapes * numpy empty tensors with non-scalar shapes * few more empty tweaks * Small fixes * conv3d signature update * micro fix in batchnorm mkldnn * Import fixes * Fix * MKL-DNN update * Small fill fix * fill with empty input + test * Fixes * Small error improvement * Fix * one special test * couple of fixes for lstm * Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone * Fixes * FP16 * Unsigned * BFloat16 * Fill op - empty tweaks * - couple of fixes for empty arrays construction - stack updated * strided slice fix * one transform test * provide method for reducing shapeInfo in case of input array is empty * Fixed reduceAlongDimensions to use empty input properly. * couple of broadcast tests * couple of tests broadcast tests + tweak to make them pass * add check of non-empty to methods producing sub-arrays * Fixed reshapeC with zeros in shape. * complete empty check in reduce_... legacy ops * Concat and cumsum/prod * Tweak to empty shape inference on import * add empty check to the rest of reduce legacy ops * one more test * correct typo in evalReduceShapeInfoEmpty * Added tests for reduce_* ops to tests with zero shapes. * few more tests for empty reductions * Fixed strided_slice op with empty case and tests. * one more empty reduction test * Fixed strided_slice test. * add empty check to NDArray::reshapei * infOrMax * empty min/max with infinity tests * made unstack working correctly with empty arrays * few IndexReduce tests + tweaks for empty shapes * add test for empty concat * few tests fixed * Validation fix for reductions on empty shapes * Reverse fix * Reduction shape calc fixes * SameDiff.generateOutputVariable: don't use shape function to determine number of outputs * Range fix * - NDArray constructor updated for scalars/empty arrays - few tests fixed * More fixes * Empty creator fixes * concat fix * concat fix * TF import tests: allow 'both all NaN' and 'both all inf' to pass * Slice, zero fraction, and reshape fixes * transpose, gather * Zero fraction * scalar cast fix * Empty reduction axis support * few more tests fixed * Fixed input checks conforming with TF for concat op and tests. * few tests fixed * matmul scalar shape fix * Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats. * broadcast bool fix * few more tests * few more tests * correct evalReduceShapeInfoEmpty * argmax/argmin + tests * one more empty edge case + one more test * argmax/argmin/realdiv_bp tweaks * empty reshape test + fix * Helper fixes * Small fixes * Gather test fix * Gather test fix * Small fixes * reduce scalar zero values * scalar mean workaround * Remove debug code * along dim mean workaround * one more test * - equalsTo() tweak for empty arrays - one more test * broadcast tweaks
2019-06-15 13:34:34 +02:00
}
////////////////////////////////////////////////////////////////////////
TEST_F(ParityOpsTests, TestUnstack11) {
auto input = NDArrayFactory::create<float>('c', {3, 0, 2});
auto exp = NDArrayFactory::create<float>('c', {3,0});
sd::ops::unstack op;
Dev branch merge: dev_20190606 (#7904) * correct logsoftmax looss (#2) * Small SameDiff listener fix (#4) * Various fixes (#6) * #7839 Fix for asXMatrix and tests * #7866 EmbeddingSequenceLayer dtype fix + test * #7856 SameDiff save/load stream methods * #7859 RegressionEvaluation rank 4 fix + tests + axis configuration * EvaluationBinary 3d/4d * More evaluation 3d/4d tests * #7847 Evaluation empty checks * Small test ifx * #7848 Fix median edge case * Improve DL4J samediff layer tests * [WIP] FastText wrapper implemented (#8) * FastText implemented * Some fixes * Fix shapes for wordsNearest * Validation of input vectors * Fixes * Fixed test * Thread tagged * Some tweaks * setContextClassLoader for DeallocatorServiceThread * Numpy format tests (#1) * Various fixes (#11) * #7852 SameDiff gather fix * #7892 SameDiff placeholder to constant conversion * #7890 validate input rank for MLN/CG init methods * Fix broken permute shape calculation * Permute and gather fixes * Tests * #7850 LogSumExp fix + test * Handful of test fixes * Empty arrays with non-scalar shapes (#10) * minor rearrangements for lambdas * empty tensors with non-scalar shapes * numpy empty tensors with non-scalar shapes * few more empty tweaks * Small fixes * conv3d signature update * micro fix in batchnorm mkldnn * Import fixes * Fix * MKL-DNN update * Small fill fix * fill with empty input + test * Fixes * Small error improvement * Fix * one special test * couple of fixes for lstm * Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone * Fixes * FP16 * Unsigned * BFloat16 * Fill op - empty tweaks * - couple of fixes for empty arrays construction - stack updated * strided slice fix * one transform test * provide method for reducing shapeInfo in case of input array is empty * Fixed reduceAlongDimensions to use empty input properly. * couple of broadcast tests * couple of tests broadcast tests + tweak to make them pass * add check of non-empty to methods producing sub-arrays * Fixed reshapeC with zeros in shape. * complete empty check in reduce_... legacy ops * Concat and cumsum/prod * Tweak to empty shape inference on import * add empty check to the rest of reduce legacy ops * one more test * correct typo in evalReduceShapeInfoEmpty * Added tests for reduce_* ops to tests with zero shapes. * few more tests for empty reductions * Fixed strided_slice op with empty case and tests. * one more empty reduction test * Fixed strided_slice test. * add empty check to NDArray::reshapei * infOrMax * empty min/max with infinity tests * made unstack working correctly with empty arrays * few IndexReduce tests + tweaks for empty shapes * add test for empty concat * few tests fixed * Validation fix for reductions on empty shapes * Reverse fix * Reduction shape calc fixes * SameDiff.generateOutputVariable: don't use shape function to determine number of outputs * Range fix * - NDArray constructor updated for scalars/empty arrays - few tests fixed * More fixes * Empty creator fixes * concat fix * concat fix * TF import tests: allow 'both all NaN' and 'both all inf' to pass * Slice, zero fraction, and reshape fixes * transpose, gather * Zero fraction * scalar cast fix * Empty reduction axis support * few more tests fixed * Fixed input checks conforming with TF for concat op and tests. * few tests fixed * matmul scalar shape fix * Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats. * broadcast bool fix * few more tests * few more tests * correct evalReduceShapeInfoEmpty * argmax/argmin + tests * one more empty edge case + one more test * argmax/argmin/realdiv_bp tweaks * empty reshape test + fix * Helper fixes * Small fixes * Gather test fix * Gather test fix * Small fixes * reduce scalar zero values * scalar mean workaround * Remove debug code * along dim mean workaround * one more test * - equalsTo() tweak for empty arrays - one more test * broadcast tweaks
2019-06-15 13:34:34 +02:00
auto result = op.evaluate({&input}, {}, {2});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
Dev branch merge: dev_20190606 (#7904) * correct logsoftmax looss (#2) * Small SameDiff listener fix (#4) * Various fixes (#6) * #7839 Fix for asXMatrix and tests * #7866 EmbeddingSequenceLayer dtype fix + test * #7856 SameDiff save/load stream methods * #7859 RegressionEvaluation rank 4 fix + tests + axis configuration * EvaluationBinary 3d/4d * More evaluation 3d/4d tests * #7847 Evaluation empty checks * Small test ifx * #7848 Fix median edge case * Improve DL4J samediff layer tests * [WIP] FastText wrapper implemented (#8) * FastText implemented * Some fixes * Fix shapes for wordsNearest * Validation of input vectors * Fixes * Fixed test * Thread tagged * Some tweaks * setContextClassLoader for DeallocatorServiceThread * Numpy format tests (#1) * Various fixes (#11) * #7852 SameDiff gather fix * #7892 SameDiff placeholder to constant conversion * #7890 validate input rank for MLN/CG init methods * Fix broken permute shape calculation * Permute and gather fixes * Tests * #7850 LogSumExp fix + test * Handful of test fixes * Empty arrays with non-scalar shapes (#10) * minor rearrangements for lambdas * empty tensors with non-scalar shapes * numpy empty tensors with non-scalar shapes * few more empty tweaks * Small fixes * conv3d signature update * micro fix in batchnorm mkldnn * Import fixes * Fix * MKL-DNN update * Small fill fix * fill with empty input + test * Fixes * Small error improvement * Fix * one special test * couple of fixes for lstm * Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone * Fixes * FP16 * Unsigned * BFloat16 * Fill op - empty tweaks * - couple of fixes for empty arrays construction - stack updated * strided slice fix * one transform test * provide method for reducing shapeInfo in case of input array is empty * Fixed reduceAlongDimensions to use empty input properly. * couple of broadcast tests * couple of tests broadcast tests + tweak to make them pass * add check of non-empty to methods producing sub-arrays * Fixed reshapeC with zeros in shape. * complete empty check in reduce_... legacy ops * Concat and cumsum/prod * Tweak to empty shape inference on import * add empty check to the rest of reduce legacy ops * one more test * correct typo in evalReduceShapeInfoEmpty * Added tests for reduce_* ops to tests with zero shapes. * few more tests for empty reductions * Fixed strided_slice op with empty case and tests. * one more empty reduction test * Fixed strided_slice test. * add empty check to NDArray::reshapei * infOrMax * empty min/max with infinity tests * made unstack working correctly with empty arrays * few IndexReduce tests + tweaks for empty shapes * add test for empty concat * few tests fixed * Validation fix for reductions on empty shapes * Reverse fix * Reduction shape calc fixes * SameDiff.generateOutputVariable: don't use shape function to determine number of outputs * Range fix * - NDArray constructor updated for scalars/empty arrays - few tests fixed * More fixes * Empty creator fixes * concat fix * concat fix * TF import tests: allow 'both all NaN' and 'both all inf' to pass * Slice, zero fraction, and reshape fixes * transpose, gather * Zero fraction * scalar cast fix * Empty reduction axis support * few more tests fixed * Fixed input checks conforming with TF for concat op and tests. * few tests fixed * matmul scalar shape fix * Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats. * broadcast bool fix * few more tests * few more tests * correct evalReduceShapeInfoEmpty * argmax/argmin + tests * one more empty edge case + one more test * argmax/argmin/realdiv_bp tweaks * empty reshape test + fix * Helper fixes * Small fixes * Gather test fix * Gather test fix * Small fixes * reduce scalar zero values * scalar mean workaround * Remove debug code * along dim mean workaround * one more test * - equalsTo() tweak for empty arrays - one more test * broadcast tweaks
2019-06-15 13:34:34 +02:00
ASSERT_TRUE(exp.isSameShape(result.at(0)));
ASSERT_TRUE(exp.isSameShape(result.at(1)));
Dev branch merge: dev_20190606 (#7904) * correct logsoftmax looss (#2) * Small SameDiff listener fix (#4) * Various fixes (#6) * #7839 Fix for asXMatrix and tests * #7866 EmbeddingSequenceLayer dtype fix + test * #7856 SameDiff save/load stream methods * #7859 RegressionEvaluation rank 4 fix + tests + axis configuration * EvaluationBinary 3d/4d * More evaluation 3d/4d tests * #7847 Evaluation empty checks * Small test ifx * #7848 Fix median edge case * Improve DL4J samediff layer tests * [WIP] FastText wrapper implemented (#8) * FastText implemented * Some fixes * Fix shapes for wordsNearest * Validation of input vectors * Fixes * Fixed test * Thread tagged * Some tweaks * setContextClassLoader for DeallocatorServiceThread * Numpy format tests (#1) * Various fixes (#11) * #7852 SameDiff gather fix * #7892 SameDiff placeholder to constant conversion * #7890 validate input rank for MLN/CG init methods * Fix broken permute shape calculation * Permute and gather fixes * Tests * #7850 LogSumExp fix + test * Handful of test fixes * Empty arrays with non-scalar shapes (#10) * minor rearrangements for lambdas * empty tensors with non-scalar shapes * numpy empty tensors with non-scalar shapes * few more empty tweaks * Small fixes * conv3d signature update * micro fix in batchnorm mkldnn * Import fixes * Fix * MKL-DNN update * Small fill fix * fill with empty input + test * Fixes * Small error improvement * Fix * one special test * couple of fixes for lstm * Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone * Fixes * FP16 * Unsigned * BFloat16 * Fill op - empty tweaks * - couple of fixes for empty arrays construction - stack updated * strided slice fix * one transform test * provide method for reducing shapeInfo in case of input array is empty * Fixed reduceAlongDimensions to use empty input properly. * couple of broadcast tests * couple of tests broadcast tests + tweak to make them pass * add check of non-empty to methods producing sub-arrays * Fixed reshapeC with zeros in shape. * complete empty check in reduce_... legacy ops * Concat and cumsum/prod * Tweak to empty shape inference on import * add empty check to the rest of reduce legacy ops * one more test * correct typo in evalReduceShapeInfoEmpty * Added tests for reduce_* ops to tests with zero shapes. * few more tests for empty reductions * Fixed strided_slice op with empty case and tests. * one more empty reduction test * Fixed strided_slice test. * add empty check to NDArray::reshapei * infOrMax * empty min/max with infinity tests * made unstack working correctly with empty arrays * few IndexReduce tests + tweaks for empty shapes * add test for empty concat * few tests fixed * Validation fix for reductions on empty shapes * Reverse fix * Reduction shape calc fixes * SameDiff.generateOutputVariable: don't use shape function to determine number of outputs * Range fix * - NDArray constructor updated for scalars/empty arrays - few tests fixed * More fixes * Empty creator fixes * concat fix * concat fix * TF import tests: allow 'both all NaN' and 'both all inf' to pass * Slice, zero fraction, and reshape fixes * transpose, gather * Zero fraction * scalar cast fix * Empty reduction axis support * few more tests fixed * Fixed input checks conforming with TF for concat op and tests. * few tests fixed * matmul scalar shape fix * Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats. * broadcast bool fix * few more tests * few more tests * correct evalReduceShapeInfoEmpty * argmax/argmin + tests * one more empty edge case + one more test * argmax/argmin/realdiv_bp tweaks * empty reshape test + fix * Helper fixes * Small fixes * Gather test fix * Gather test fix * Small fixes * reduce scalar zero values * scalar mean workaround * Remove debug code * along dim mean workaround * one more test * - equalsTo() tweak for empty arrays - one more test * broadcast tweaks
2019-06-15 13:34:34 +02:00
Dev branch merge: dev_20190606 (#7904) * correct logsoftmax looss (#2) * Small SameDiff listener fix (#4) * Various fixes (#6) * #7839 Fix for asXMatrix and tests * #7866 EmbeddingSequenceLayer dtype fix + test * #7856 SameDiff save/load stream methods * #7859 RegressionEvaluation rank 4 fix + tests + axis configuration * EvaluationBinary 3d/4d * More evaluation 3d/4d tests * #7847 Evaluation empty checks * Small test ifx * #7848 Fix median edge case * Improve DL4J samediff layer tests * [WIP] FastText wrapper implemented (#8) * FastText implemented * Some fixes * Fix shapes for wordsNearest * Validation of input vectors * Fixes * Fixed test * Thread tagged * Some tweaks * setContextClassLoader for DeallocatorServiceThread * Numpy format tests (#1) * Various fixes (#11) * #7852 SameDiff gather fix * #7892 SameDiff placeholder to constant conversion * #7890 validate input rank for MLN/CG init methods * Fix broken permute shape calculation * Permute and gather fixes * Tests * #7850 LogSumExp fix + test * Handful of test fixes * Empty arrays with non-scalar shapes (#10) * minor rearrangements for lambdas * empty tensors with non-scalar shapes * numpy empty tensors with non-scalar shapes * few more empty tweaks * Small fixes * conv3d signature update * micro fix in batchnorm mkldnn * Import fixes * Fix * MKL-DNN update * Small fill fix * fill with empty input + test * Fixes * Small error improvement * Fix * one special test * couple of fixes for lstm * Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone * Fixes * FP16 * Unsigned * BFloat16 * Fill op - empty tweaks * - couple of fixes for empty arrays construction - stack updated * strided slice fix * one transform test * provide method for reducing shapeInfo in case of input array is empty * Fixed reduceAlongDimensions to use empty input properly. * couple of broadcast tests * couple of tests broadcast tests + tweak to make them pass * add check of non-empty to methods producing sub-arrays * Fixed reshapeC with zeros in shape. * complete empty check in reduce_... legacy ops * Concat and cumsum/prod * Tweak to empty shape inference on import * add empty check to the rest of reduce legacy ops * one more test * correct typo in evalReduceShapeInfoEmpty * Added tests for reduce_* ops to tests with zero shapes. * few more tests for empty reductions * Fixed strided_slice op with empty case and tests. * one more empty reduction test * Fixed strided_slice test. * add empty check to NDArray::reshapei * infOrMax * empty min/max with infinity tests * made unstack working correctly with empty arrays * few IndexReduce tests + tweaks for empty shapes * add test for empty concat * few tests fixed * Validation fix for reductions on empty shapes * Reverse fix * Reduction shape calc fixes * SameDiff.generateOutputVariable: don't use shape function to determine number of outputs * Range fix * - NDArray constructor updated for scalars/empty arrays - few tests fixed * More fixes * Empty creator fixes * concat fix * concat fix * TF import tests: allow 'both all NaN' and 'both all inf' to pass * Slice, zero fraction, and reshape fixes * transpose, gather * Zero fraction * scalar cast fix * Empty reduction axis support * few more tests fixed * Fixed input checks conforming with TF for concat op and tests. * few tests fixed * matmul scalar shape fix * Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats. * broadcast bool fix * few more tests * few more tests * correct evalReduceShapeInfoEmpty * argmax/argmin + tests * one more empty edge case + one more test * argmax/argmin/realdiv_bp tweaks * empty reshape test + fix * Helper fixes * Small fixes * Gather test fix * Gather test fix * Small fixes * reduce scalar zero values * scalar mean workaround * Remove debug code * along dim mean workaround * one more test * - equalsTo() tweak for empty arrays - one more test * broadcast tweaks
2019-06-15 13:34:34 +02:00
}
////////////////////////////////////////////////////////////////////////
TEST_F(ParityOpsTests, TestUnstack12) {
auto input = NDArrayFactory::create<float>('c', {3, 0, 2});
sd::ops::unstack op;
Dev branch merge: dev_20190606 (#7904) * correct logsoftmax looss (#2) * Small SameDiff listener fix (#4) * Various fixes (#6) * #7839 Fix for asXMatrix and tests * #7866 EmbeddingSequenceLayer dtype fix + test * #7856 SameDiff save/load stream methods * #7859 RegressionEvaluation rank 4 fix + tests + axis configuration * EvaluationBinary 3d/4d * More evaluation 3d/4d tests * #7847 Evaluation empty checks * Small test ifx * #7848 Fix median edge case * Improve DL4J samediff layer tests * [WIP] FastText wrapper implemented (#8) * FastText implemented * Some fixes * Fix shapes for wordsNearest * Validation of input vectors * Fixes * Fixed test * Thread tagged * Some tweaks * setContextClassLoader for DeallocatorServiceThread * Numpy format tests (#1) * Various fixes (#11) * #7852 SameDiff gather fix * #7892 SameDiff placeholder to constant conversion * #7890 validate input rank for MLN/CG init methods * Fix broken permute shape calculation * Permute and gather fixes * Tests * #7850 LogSumExp fix + test * Handful of test fixes * Empty arrays with non-scalar shapes (#10) * minor rearrangements for lambdas * empty tensors with non-scalar shapes * numpy empty tensors with non-scalar shapes * few more empty tweaks * Small fixes * conv3d signature update * micro fix in batchnorm mkldnn * Import fixes * Fix * MKL-DNN update * Small fill fix * fill with empty input + test * Fixes * Small error improvement * Fix * one special test * couple of fixes for lstm * Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone * Fixes * FP16 * Unsigned * BFloat16 * Fill op - empty tweaks * - couple of fixes for empty arrays construction - stack updated * strided slice fix * one transform test * provide method for reducing shapeInfo in case of input array is empty * Fixed reduceAlongDimensions to use empty input properly. * couple of broadcast tests * couple of tests broadcast tests + tweak to make them pass * add check of non-empty to methods producing sub-arrays * Fixed reshapeC with zeros in shape. * complete empty check in reduce_... legacy ops * Concat and cumsum/prod * Tweak to empty shape inference on import * add empty check to the rest of reduce legacy ops * one more test * correct typo in evalReduceShapeInfoEmpty * Added tests for reduce_* ops to tests with zero shapes. * few more tests for empty reductions * Fixed strided_slice op with empty case and tests. * one more empty reduction test * Fixed strided_slice test. * add empty check to NDArray::reshapei * infOrMax * empty min/max with infinity tests * made unstack working correctly with empty arrays * few IndexReduce tests + tweaks for empty shapes * add test for empty concat * few tests fixed * Validation fix for reductions on empty shapes * Reverse fix * Reduction shape calc fixes * SameDiff.generateOutputVariable: don't use shape function to determine number of outputs * Range fix * - NDArray constructor updated for scalars/empty arrays - few tests fixed * More fixes * Empty creator fixes * concat fix * concat fix * TF import tests: allow 'both all NaN' and 'both all inf' to pass * Slice, zero fraction, and reshape fixes * transpose, gather * Zero fraction * scalar cast fix * Empty reduction axis support * few more tests fixed * Fixed input checks conforming with TF for concat op and tests. * few tests fixed * matmul scalar shape fix * Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats. * broadcast bool fix * few more tests * few more tests * correct evalReduceShapeInfoEmpty * argmax/argmin + tests * one more empty edge case + one more test * argmax/argmin/realdiv_bp tweaks * empty reshape test + fix * Helper fixes * Small fixes * Gather test fix * Gather test fix * Small fixes * reduce scalar zero values * scalar mean workaround * Remove debug code * along dim mean workaround * one more test * - equalsTo() tweak for empty arrays - one more test * broadcast tweaks
2019-06-15 13:34:34 +02:00
auto result = op.evaluate({&input}, {}, {1});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
Dev branch merge: dev_20190606 (#7904) * correct logsoftmax looss (#2) * Small SameDiff listener fix (#4) * Various fixes (#6) * #7839 Fix for asXMatrix and tests * #7866 EmbeddingSequenceLayer dtype fix + test * #7856 SameDiff save/load stream methods * #7859 RegressionEvaluation rank 4 fix + tests + axis configuration * EvaluationBinary 3d/4d * More evaluation 3d/4d tests * #7847 Evaluation empty checks * Small test ifx * #7848 Fix median edge case * Improve DL4J samediff layer tests * [WIP] FastText wrapper implemented (#8) * FastText implemented * Some fixes * Fix shapes for wordsNearest * Validation of input vectors * Fixes * Fixed test * Thread tagged * Some tweaks * setContextClassLoader for DeallocatorServiceThread * Numpy format tests (#1) * Various fixes (#11) * #7852 SameDiff gather fix * #7892 SameDiff placeholder to constant conversion * #7890 validate input rank for MLN/CG init methods * Fix broken permute shape calculation * Permute and gather fixes * Tests * #7850 LogSumExp fix + test * Handful of test fixes * Empty arrays with non-scalar shapes (#10) * minor rearrangements for lambdas * empty tensors with non-scalar shapes * numpy empty tensors with non-scalar shapes * few more empty tweaks * Small fixes * conv3d signature update * micro fix in batchnorm mkldnn * Import fixes * Fix * MKL-DNN update * Small fill fix * fill with empty input + test * Fixes * Small error improvement * Fix * one special test * couple of fixes for lstm * Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone * Fixes * FP16 * Unsigned * BFloat16 * Fill op - empty tweaks * - couple of fixes for empty arrays construction - stack updated * strided slice fix * one transform test * provide method for reducing shapeInfo in case of input array is empty * Fixed reduceAlongDimensions to use empty input properly. * couple of broadcast tests * couple of tests broadcast tests + tweak to make them pass * add check of non-empty to methods producing sub-arrays * Fixed reshapeC with zeros in shape. * complete empty check in reduce_... legacy ops * Concat and cumsum/prod * Tweak to empty shape inference on import * add empty check to the rest of reduce legacy ops * one more test * correct typo in evalReduceShapeInfoEmpty * Added tests for reduce_* ops to tests with zero shapes. * few more tests for empty reductions * Fixed strided_slice op with empty case and tests. * one more empty reduction test * Fixed strided_slice test. * add empty check to NDArray::reshapei * infOrMax * empty min/max with infinity tests * made unstack working correctly with empty arrays * few IndexReduce tests + tweaks for empty shapes * add test for empty concat * few tests fixed * Validation fix for reductions on empty shapes * Reverse fix * Reduction shape calc fixes * SameDiff.generateOutputVariable: don't use shape function to determine number of outputs * Range fix * - NDArray constructor updated for scalars/empty arrays - few tests fixed * More fixes * Empty creator fixes * concat fix * concat fix * TF import tests: allow 'both all NaN' and 'both all inf' to pass * Slice, zero fraction, and reshape fixes * transpose, gather * Zero fraction * scalar cast fix * Empty reduction axis support * few more tests fixed * Fixed input checks conforming with TF for concat op and tests. * few tests fixed * matmul scalar shape fix * Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats. * broadcast bool fix * few more tests * few more tests * correct evalReduceShapeInfoEmpty * argmax/argmin + tests * one more empty edge case + one more test * argmax/argmin/realdiv_bp tweaks * empty reshape test + fix * Helper fixes * Small fixes * Gather test fix * Gather test fix * Small fixes * reduce scalar zero values * scalar mean workaround * Remove debug code * along dim mean workaround * one more test * - equalsTo() tweak for empty arrays - one more test * broadcast tweaks
2019-06-15 13:34:34 +02:00
ASSERT_TRUE(result.size() == 0);
Dev branch merge: dev_20190606 (#7904) * correct logsoftmax looss (#2) * Small SameDiff listener fix (#4) * Various fixes (#6) * #7839 Fix for asXMatrix and tests * #7866 EmbeddingSequenceLayer dtype fix + test * #7856 SameDiff save/load stream methods * #7859 RegressionEvaluation rank 4 fix + tests + axis configuration * EvaluationBinary 3d/4d * More evaluation 3d/4d tests * #7847 Evaluation empty checks * Small test ifx * #7848 Fix median edge case * Improve DL4J samediff layer tests * [WIP] FastText wrapper implemented (#8) * FastText implemented * Some fixes * Fix shapes for wordsNearest * Validation of input vectors * Fixes * Fixed test * Thread tagged * Some tweaks * setContextClassLoader for DeallocatorServiceThread * Numpy format tests (#1) * Various fixes (#11) * #7852 SameDiff gather fix * #7892 SameDiff placeholder to constant conversion * #7890 validate input rank for MLN/CG init methods * Fix broken permute shape calculation * Permute and gather fixes * Tests * #7850 LogSumExp fix + test * Handful of test fixes * Empty arrays with non-scalar shapes (#10) * minor rearrangements for lambdas * empty tensors with non-scalar shapes * numpy empty tensors with non-scalar shapes * few more empty tweaks * Small fixes * conv3d signature update * micro fix in batchnorm mkldnn * Import fixes * Fix * MKL-DNN update * Small fill fix * fill with empty input + test * Fixes * Small error improvement * Fix * one special test * couple of fixes for lstm * Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone * Fixes * FP16 * Unsigned * BFloat16 * Fill op - empty tweaks * - couple of fixes for empty arrays construction - stack updated * strided slice fix * one transform test * provide method for reducing shapeInfo in case of input array is empty * Fixed reduceAlongDimensions to use empty input properly. * couple of broadcast tests * couple of tests broadcast tests + tweak to make them pass * add check of non-empty to methods producing sub-arrays * Fixed reshapeC with zeros in shape. * complete empty check in reduce_... legacy ops * Concat and cumsum/prod * Tweak to empty shape inference on import * add empty check to the rest of reduce legacy ops * one more test * correct typo in evalReduceShapeInfoEmpty * Added tests for reduce_* ops to tests with zero shapes. * few more tests for empty reductions * Fixed strided_slice op with empty case and tests. * one more empty reduction test * Fixed strided_slice test. * add empty check to NDArray::reshapei * infOrMax * empty min/max with infinity tests * made unstack working correctly with empty arrays * few IndexReduce tests + tweaks for empty shapes * add test for empty concat * few tests fixed * Validation fix for reductions on empty shapes * Reverse fix * Reduction shape calc fixes * SameDiff.generateOutputVariable: don't use shape function to determine number of outputs * Range fix * - NDArray constructor updated for scalars/empty arrays - few tests fixed * More fixes * Empty creator fixes * concat fix * concat fix * TF import tests: allow 'both all NaN' and 'both all inf' to pass * Slice, zero fraction, and reshape fixes * transpose, gather * Zero fraction * scalar cast fix * Empty reduction axis support * few more tests fixed * Fixed input checks conforming with TF for concat op and tests. * few tests fixed * matmul scalar shape fix * Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats. * broadcast bool fix * few more tests * few more tests * correct evalReduceShapeInfoEmpty * argmax/argmin + tests * one more empty edge case + one more test * argmax/argmin/realdiv_bp tweaks * empty reshape test + fix * Helper fixes * Small fixes * Gather test fix * Gather test fix * Small fixes * reduce scalar zero values * scalar mean workaround * Remove debug code * along dim mean workaround * one more test * - equalsTo() tweak for empty arrays - one more test * broadcast tweaks
2019-06-15 13:34:34 +02:00
Dev branch merge: dev_20190606 (#7904) * correct logsoftmax looss (#2) * Small SameDiff listener fix (#4) * Various fixes (#6) * #7839 Fix for asXMatrix and tests * #7866 EmbeddingSequenceLayer dtype fix + test * #7856 SameDiff save/load stream methods * #7859 RegressionEvaluation rank 4 fix + tests + axis configuration * EvaluationBinary 3d/4d * More evaluation 3d/4d tests * #7847 Evaluation empty checks * Small test ifx * #7848 Fix median edge case * Improve DL4J samediff layer tests * [WIP] FastText wrapper implemented (#8) * FastText implemented * Some fixes * Fix shapes for wordsNearest * Validation of input vectors * Fixes * Fixed test * Thread tagged * Some tweaks * setContextClassLoader for DeallocatorServiceThread * Numpy format tests (#1) * Various fixes (#11) * #7852 SameDiff gather fix * #7892 SameDiff placeholder to constant conversion * #7890 validate input rank for MLN/CG init methods * Fix broken permute shape calculation * Permute and gather fixes * Tests * #7850 LogSumExp fix + test * Handful of test fixes * Empty arrays with non-scalar shapes (#10) * minor rearrangements for lambdas * empty tensors with non-scalar shapes * numpy empty tensors with non-scalar shapes * few more empty tweaks * Small fixes * conv3d signature update * micro fix in batchnorm mkldnn * Import fixes * Fix * MKL-DNN update * Small fill fix * fill with empty input + test * Fixes * Small error improvement * Fix * one special test * couple of fixes for lstm * Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone * Fixes * FP16 * Unsigned * BFloat16 * Fill op - empty tweaks * - couple of fixes for empty arrays construction - stack updated * strided slice fix * one transform test * provide method for reducing shapeInfo in case of input array is empty * Fixed reduceAlongDimensions to use empty input properly. * couple of broadcast tests * couple of tests broadcast tests + tweak to make them pass * add check of non-empty to methods producing sub-arrays * Fixed reshapeC with zeros in shape. * complete empty check in reduce_... legacy ops * Concat and cumsum/prod * Tweak to empty shape inference on import * add empty check to the rest of reduce legacy ops * one more test * correct typo in evalReduceShapeInfoEmpty * Added tests for reduce_* ops to tests with zero shapes. * few more tests for empty reductions * Fixed strided_slice op with empty case and tests. * one more empty reduction test * Fixed strided_slice test. * add empty check to NDArray::reshapei * infOrMax * empty min/max with infinity tests * made unstack working correctly with empty arrays * few IndexReduce tests + tweaks for empty shapes * add test for empty concat * few tests fixed * Validation fix for reductions on empty shapes * Reverse fix * Reduction shape calc fixes * SameDiff.generateOutputVariable: don't use shape function to determine number of outputs * Range fix * - NDArray constructor updated for scalars/empty arrays - few tests fixed * More fixes * Empty creator fixes * concat fix * concat fix * TF import tests: allow 'both all NaN' and 'both all inf' to pass * Slice, zero fraction, and reshape fixes * transpose, gather * Zero fraction * scalar cast fix * Empty reduction axis support * few more tests fixed * Fixed input checks conforming with TF for concat op and tests. * few tests fixed * matmul scalar shape fix * Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats. * broadcast bool fix * few more tests * few more tests * correct evalReduceShapeInfoEmpty * argmax/argmin + tests * one more empty edge case + one more test * argmax/argmin/realdiv_bp tweaks * empty reshape test + fix * Helper fixes * Small fixes * Gather test fix * Gather test fix * Small fixes * reduce scalar zero values * scalar mean workaround * Remove debug code * along dim mean workaround * one more test * - equalsTo() tweak for empty arrays - one more test * broadcast tweaks
2019-06-15 13:34:34 +02:00
}
2019-06-06 14:21:15 +02:00
profiling of stack and unstack ops (#261) * - profiling of stack and unstack ops Signed-off-by: Yurii <iuriish@yahoo.com> * - fix bug in cpu concat op Signed-off-by: Yurii <iuriish@yahoo.com> * - correction of cuda stack and unstack Signed-off-by: Yurii <iuriish@yahoo.com> * - change shape.h method which operates with unity dimensions strides Signed-off-by: Yurii <iuriish@yahoo.com> * - rearrange stack tests Signed-off-by: Yurii <iuriish@yahoo.com> * - correct evaluation of smallest stride for moving through contiguous axis Signed-off-by: Yurii <iuriish@yahoo.com> * - forgot to update signature of function strideOverContigAxis in cuda concat and split ops Signed-off-by: Yurii <iuriish@yahoo.com> * - remove ShapeUtils::shapeAsString method applied before input arrays validations Signed-off-by: Yurii <iuriish@yahoo.com> * - further removing of ShapeUtils::shapeAsString Signed-off-by: Yurii <iuriish@yahoo.com> * - take sub-array shapeIndo/offset calculation out of NDArray class - add possibility of contiguous memory copy in execTransformAny op if opNum == assign Signed-off-by: Yurii <iuriish@yahoo.com> * - correct test_empty_scatter_2 in EmptyTests.cpp Signed-off-by: Yurii <iuriish@yahoo.com> * - profiling of slice op Signed-off-by: Yurii <iuriish@yahoo.com> * - get rid of contiguous memcpy for some cases in concat and split ops Signed-off-by: Yurii <iuriish@yahoo.com> * - forgot to declare oid nd4j::SpecialMethods<T>::splitCpuGeneric Signed-off-by: Yurii <iuriish@yahoo.com> * - correct typo in calculation of threads in cuda split op Signed-off-by: Yurii <iuriish@yahoo.com> * - forgot to correct another set of threads variables in split cuda ops Signed-off-by: Yurii <iuriish@yahoo.com> * - further conflicts resolving Signed-off-by: Yurii <iuriish@yahoo.com> Co-authored-by: raver119 <raver119@gmail.com>
2020-03-03 05:32:37 +01:00
TEST_F(ParityOpsTests, TestUnstack13) {
auto x = NDArrayFactory::create<double>('c', {2, 3});
sd::ops::unstack op;
auto result = op.evaluate({&x}, {}, {1});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
profiling of stack and unstack ops (#261) * - profiling of stack and unstack ops Signed-off-by: Yurii <iuriish@yahoo.com> * - fix bug in cpu concat op Signed-off-by: Yurii <iuriish@yahoo.com> * - correction of cuda stack and unstack Signed-off-by: Yurii <iuriish@yahoo.com> * - change shape.h method which operates with unity dimensions strides Signed-off-by: Yurii <iuriish@yahoo.com> * - rearrange stack tests Signed-off-by: Yurii <iuriish@yahoo.com> * - correct evaluation of smallest stride for moving through contiguous axis Signed-off-by: Yurii <iuriish@yahoo.com> * - forgot to update signature of function strideOverContigAxis in cuda concat and split ops Signed-off-by: Yurii <iuriish@yahoo.com> * - remove ShapeUtils::shapeAsString method applied before input arrays validations Signed-off-by: Yurii <iuriish@yahoo.com> * - further removing of ShapeUtils::shapeAsString Signed-off-by: Yurii <iuriish@yahoo.com> * - take sub-array shapeIndo/offset calculation out of NDArray class - add possibility of contiguous memory copy in execTransformAny op if opNum == assign Signed-off-by: Yurii <iuriish@yahoo.com> * - correct test_empty_scatter_2 in EmptyTests.cpp Signed-off-by: Yurii <iuriish@yahoo.com> * - profiling of slice op Signed-off-by: Yurii <iuriish@yahoo.com> * - get rid of contiguous memcpy for some cases in concat and split ops Signed-off-by: Yurii <iuriish@yahoo.com> * - forgot to declare oid nd4j::SpecialMethods<T>::splitCpuGeneric Signed-off-by: Yurii <iuriish@yahoo.com> * - correct typo in calculation of threads in cuda split op Signed-off-by: Yurii <iuriish@yahoo.com> * - forgot to correct another set of threads variables in split cuda ops Signed-off-by: Yurii <iuriish@yahoo.com> * - further conflicts resolving Signed-off-by: Yurii <iuriish@yahoo.com> Co-authored-by: raver119 <raver119@gmail.com>
2020-03-03 05:32:37 +01:00
ASSERT_EQ(3, result.size());
profiling of stack and unstack ops (#261) * - profiling of stack and unstack ops Signed-off-by: Yurii <iuriish@yahoo.com> * - fix bug in cpu concat op Signed-off-by: Yurii <iuriish@yahoo.com> * - correction of cuda stack and unstack Signed-off-by: Yurii <iuriish@yahoo.com> * - change shape.h method which operates with unity dimensions strides Signed-off-by: Yurii <iuriish@yahoo.com> * - rearrange stack tests Signed-off-by: Yurii <iuriish@yahoo.com> * - correct evaluation of smallest stride for moving through contiguous axis Signed-off-by: Yurii <iuriish@yahoo.com> * - forgot to update signature of function strideOverContigAxis in cuda concat and split ops Signed-off-by: Yurii <iuriish@yahoo.com> * - remove ShapeUtils::shapeAsString method applied before input arrays validations Signed-off-by: Yurii <iuriish@yahoo.com> * - further removing of ShapeUtils::shapeAsString Signed-off-by: Yurii <iuriish@yahoo.com> * - take sub-array shapeIndo/offset calculation out of NDArray class - add possibility of contiguous memory copy in execTransformAny op if opNum == assign Signed-off-by: Yurii <iuriish@yahoo.com> * - correct test_empty_scatter_2 in EmptyTests.cpp Signed-off-by: Yurii <iuriish@yahoo.com> * - profiling of slice op Signed-off-by: Yurii <iuriish@yahoo.com> * - get rid of contiguous memcpy for some cases in concat and split ops Signed-off-by: Yurii <iuriish@yahoo.com> * - forgot to declare oid nd4j::SpecialMethods<T>::splitCpuGeneric Signed-off-by: Yurii <iuriish@yahoo.com> * - correct typo in calculation of threads in cuda split op Signed-off-by: Yurii <iuriish@yahoo.com> * - forgot to correct another set of threads variables in split cuda ops Signed-off-by: Yurii <iuriish@yahoo.com> * - further conflicts resolving Signed-off-by: Yurii <iuriish@yahoo.com> Co-authored-by: raver119 <raver119@gmail.com>
2020-03-03 05:32:37 +01:00
for (int e = 0; e < 3; e++)
ASSERT_EQ(1, result.at(e)->rankOf());
profiling of stack and unstack ops (#261) * - profiling of stack and unstack ops Signed-off-by: Yurii <iuriish@yahoo.com> * - fix bug in cpu concat op Signed-off-by: Yurii <iuriish@yahoo.com> * - correction of cuda stack and unstack Signed-off-by: Yurii <iuriish@yahoo.com> * - change shape.h method which operates with unity dimensions strides Signed-off-by: Yurii <iuriish@yahoo.com> * - rearrange stack tests Signed-off-by: Yurii <iuriish@yahoo.com> * - correct evaluation of smallest stride for moving through contiguous axis Signed-off-by: Yurii <iuriish@yahoo.com> * - forgot to update signature of function strideOverContigAxis in cuda concat and split ops Signed-off-by: Yurii <iuriish@yahoo.com> * - remove ShapeUtils::shapeAsString method applied before input arrays validations Signed-off-by: Yurii <iuriish@yahoo.com> * - further removing of ShapeUtils::shapeAsString Signed-off-by: Yurii <iuriish@yahoo.com> * - take sub-array shapeIndo/offset calculation out of NDArray class - add possibility of contiguous memory copy in execTransformAny op if opNum == assign Signed-off-by: Yurii <iuriish@yahoo.com> * - correct test_empty_scatter_2 in EmptyTests.cpp Signed-off-by: Yurii <iuriish@yahoo.com> * - profiling of slice op Signed-off-by: Yurii <iuriish@yahoo.com> * - get rid of contiguous memcpy for some cases in concat and split ops Signed-off-by: Yurii <iuriish@yahoo.com> * - forgot to declare oid nd4j::SpecialMethods<T>::splitCpuGeneric Signed-off-by: Yurii <iuriish@yahoo.com> * - correct typo in calculation of threads in cuda split op Signed-off-by: Yurii <iuriish@yahoo.com> * - forgot to correct another set of threads variables in split cuda ops Signed-off-by: Yurii <iuriish@yahoo.com> * - further conflicts resolving Signed-off-by: Yurii <iuriish@yahoo.com> Co-authored-by: raver119 <raver119@gmail.com>
2020-03-03 05:32:37 +01:00
}
2019-06-06 14:21:15 +02:00
TEST_F(ParityOpsTests, ExpandDimsTest1) {
auto input = NDArrayFactory::create<float>('c', {5, 5});
input.linspace(1);
auto reshaped = input.reshape('c', {5, 1, 5});
sd::ops::expand_dims op;
auto result = op.evaluate({&input}, {}, {1});
2019-06-06 14:21:15 +02:00
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
Merge master to upstream (#7945) * Shugeo strided slice zeros (#14) * Modified strided_slice op to properly work with empty-like shapes. * Fixed test for reduce_mean with empty-like input. * [WIP] Last merge (#15) * correct logsoftmax looss (#2) * Small SameDiff listener fix (#4) * Various fixes (#6) * #7839 Fix for asXMatrix and tests * #7866 EmbeddingSequenceLayer dtype fix + test * #7856 SameDiff save/load stream methods * #7859 RegressionEvaluation rank 4 fix + tests + axis configuration * EvaluationBinary 3d/4d * More evaluation 3d/4d tests * #7847 Evaluation empty checks * Small test ifx * #7848 Fix median edge case * Improve DL4J samediff layer tests * [WIP] FastText wrapper implemented (#8) * FastText implemented * Some fixes * Fix shapes for wordsNearest * Validation of input vectors * Fixes * Fixed test * Thread tagged * Some tweaks * setContextClassLoader for DeallocatorServiceThread * Numpy format tests (#1) * Various fixes (#11) * #7852 SameDiff gather fix * #7892 SameDiff placeholder to constant conversion * #7890 validate input rank for MLN/CG init methods * Fix broken permute shape calculation * Permute and gather fixes * Tests * #7850 LogSumExp fix + test * Handful of test fixes * Empty arrays with non-scalar shapes (#10) * minor rearrangements for lambdas * empty tensors with non-scalar shapes * numpy empty tensors with non-scalar shapes * few more empty tweaks * Small fixes * conv3d signature update * micro fix in batchnorm mkldnn * Import fixes * Fix * MKL-DNN update * Small fill fix * fill with empty input + test * Fixes * Small error improvement * Fix * one special test * couple of fixes for lstm * Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone * Fixes * FP16 * Unsigned * BFloat16 * Fill op - empty tweaks * - couple of fixes for empty arrays construction - stack updated * strided slice fix * one transform test * provide method for reducing shapeInfo in case of input array is empty * Fixed reduceAlongDimensions to use empty input properly. * couple of broadcast tests * couple of tests broadcast tests + tweak to make them pass * add check of non-empty to methods producing sub-arrays * Fixed reshapeC with zeros in shape. * complete empty check in reduce_... legacy ops * Concat and cumsum/prod * Tweak to empty shape inference on import * add empty check to the rest of reduce legacy ops * one more test * correct typo in evalReduceShapeInfoEmpty * Added tests for reduce_* ops to tests with zero shapes. * few more tests for empty reductions * Fixed strided_slice op with empty case and tests. * one more empty reduction test * Fixed strided_slice test. * add empty check to NDArray::reshapei * infOrMax * empty min/max with infinity tests * made unstack working correctly with empty arrays * few IndexReduce tests + tweaks for empty shapes * add test for empty concat * few tests fixed * Validation fix for reductions on empty shapes * Reverse fix * Reduction shape calc fixes * SameDiff.generateOutputVariable: don't use shape function to determine number of outputs * Range fix * - NDArray constructor updated for scalars/empty arrays - few tests fixed * More fixes * Empty creator fixes * concat fix * concat fix * TF import tests: allow 'both all NaN' and 'both all inf' to pass * Slice, zero fraction, and reshape fixes * transpose, gather * Zero fraction * scalar cast fix * Empty reduction axis support * few more tests fixed * Fixed input checks conforming with TF for concat op and tests. * few tests fixed * matmul scalar shape fix * Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats. * broadcast bool fix * few more tests * few more tests * correct evalReduceShapeInfoEmpty * argmax/argmin + tests * one more empty edge case + one more test * argmax/argmin/realdiv_bp tweaks * empty reshape test + fix * Helper fixes * Small fixes * Gather test fix * Gather test fix * Small fixes * reduce scalar zero values * scalar mean workaround * Remove debug code * along dim mean workaround * one more test * - equalsTo() tweak for empty arrays - one more test * broadcast tweaks * [WIP] Fixing outstanding issues for NLP (#9) * Avoid using not-inited objects * Test fixed. * Redundant method avoided for models like FastText * KMeans++ implementation * KMeans++ implementation * Disable parallel execution * KMeans++ * Tests * Dev branch merge (#16) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Fix some issues on master (#17) * Fix DataVec test issue * Fix issue with dl4j SameDiff output layer * Dtype fix for lambda layers * #7912 BertIterator dtype fix (use float32 not global default) * [WIP] Next set of CUDA stuff (#7) New CUDA implementations and improvements * bad file * Dev branch master merge (#23) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Compatibility of deserialization (#18) Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> * SameDiff: add activation gradient checking support for debugging (#19) * SameDiff gradient checker: first pass on activation gradient checks * Fixes + tests for activation gradient checking * Javadoc * [WIP] Some nd4j data type corrections (#20) * Adjust data type * Set correct Data type. * Size of proper data type. * fix averaged cpu load (#22) * SameDiff ops, TF import and fixes (#24) * CheckNumerics tests + fixes + misc fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fake quant Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * FakeQuantWithMinMaxArgs Signed-off-by: AlexDBlack <blacka101@gmail.com> * CheckNumerics fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix libnd4j ALL_INTS and ALL_FLOATS declaration (uint and bfloat types) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Small fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Javadoc Signed-off-by: AlexDBlack <blacka101@gmail.com> * Exception tweak Signed-off-by: AlexDBlack <blacka101@gmail.com> * fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix for out of scope stack allocated var use Signed-off-by: AlexDBlack <blacka101@gmail.com> * Ignores Signed-off-by: AlexDBlack <blacka101@gmail.com> * Ignore for known failing test (already logged issue) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Merge upstream to fork (#25) * Add thousand-separator commas to TotalParams (#7915) * Add thousand-separator commas to TotalParams The number of parameters can be quite large, and it would help the reading of the summary printout to have the TotalParams column & values at the bottom have thousand-separator-commas in them. * Add thousand-separator commas to MultiLayerNetwork Corresponding change to MultiLayerNetwork Signed-off-by: Jxtps Jxtps <jxtps435@gmail.com> * Update contributing and issue/PR templates (#7934) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix link to AdaDelta paper (#7942) Fix link to AdaDelta paper hosted on matthewzeiler.com Signed-off-by: Jxtps * Fixes, and ignores for known/logged failing issues (#7943) Signed-off-by: AlexDBlack <blacka101@gmail.com> * SameDiff + DL4J/SameDiff: Multiple fixes (#28) * #7919 HDF5 attribute buffer length fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7909 Arbiter constructor exception ux improvements Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7925 RNN output layer length checks Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7939 Add listener for validating inputs are not incorrectly modified Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7939 Integrate NonInplaceValidationListener into tests * #7844 DL4J SameDiff fixes for variable minibatch size * DL4J SameDiff fixes - ensure gradient for input placeholder is available Signed-off-by: AlexDBlack <blacka101@gmail.com> * Tweaks to ExternalErrorsFunction - use placeholders, make more robust * Another fix * More fixes * More SameDiff/DL4J fixes * Scope out scalar array creation in BaseScalarOp * Remove debug code Signed-off-by: AlexDBlack <blacka101@gmail.com> * [WIP] Final dev branch merge (#29) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Compatibility of deserialization (#18) Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> * SameDiff: add activation gradient checking support for debugging (#19) * SameDiff gradient checker: first pass on activation gradient checks * Fixes + tests for activation gradient checking * Javadoc * [WIP] Some nd4j data type corrections (#20) * Adjust data type * Set correct Data type. * Size of proper data type. * fix averaged cpu load (#22) * [WIP] Multiple dataset iterators (#27) * Splitting dataset into arbitrary number * Fixes * Multiple split of iterator * Test * Test * Some fixes * signature change * one more tweak Signed-off-by: raver119 <raver119@gmail.com> * one more test for sequential use of DataSetIteratorSplitter Signed-off-by: raver119 <raver119@gmail.com> * Fixes * Fixes * one more test for Alexander Signed-off-by: raver119 <raver119@gmail.com> * Some fixes * Some fixes * one more test for Alexander Signed-off-by: raver119 <raver119@gmail.com> * minor test fix Signed-off-by: raver119 <raver119@gmail.com> * Some fixes * Some fixes * couple of assertions tweaked Signed-off-by: raver119 <raver119@gmail.com> * MDS splitter test :/ Signed-off-by: raver119 <raver119@gmail.com> * Minor refactoring * Multi dataset * Some fixes * More tests * Small number of test fixes/improvements (failures on CI) (#31) Signed-off-by: AlexDBlack <blacka101@gmail.com> * [WIP] More CUDA stuff (#26) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * LRN BP CUDA Signed-off-by: raver119 <raver119@gmail.com> * less memory Signed-off-by: raver119 <raver119@gmail.com> * Fixed bug with crop_and_resize op helper. * get rid of unnecessary index-calculation dunction Signed-off-by: Yurii <yurii@skymind.io> * Fixed sort with nth_element cuda-based helper. * Refactored nth_element. * Refactored nth_element op and tests. * Modified usage of dim array with sortTad routine. * Refactored main routine of helper for non_max_image_suppression op. * non_max_image_suppression op helper with cuda kernel implementation. Initial revision. * fix vol2col cuda kernel * meh Signed-off-by: raver119 <raver119@gmail.com> * topK concept Signed-off-by: raver119 <raver119@gmail.com> * unsorted topK with scanWitdh of 1 Signed-off-by: raver119 <raver119@gmail.com> * correct vol2col tests * sorted/unsorted topK Signed-off-by: raver119 <raver119@gmail.com> * implementation and fixing col2im/col2vol * Corrected usage flags with input/output with reverse op. * dup is const now Signed-off-by: raver119 <raver119@gmail.com> * percentile op Signed-off-by: raver119 <raver119@gmail.com> * group tests for mapool2d Signed-off-by: Yurii <yurii@skymind.io> * special test for george Signed-off-by: raver119 <raver119@gmail.com> * less threads for sortTad Signed-off-by: raver119 <raver119@gmail.com> * provide conv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * remove auther in sort tad kernel code Signed-off-by: Yurii <yurii@skymind.io> * provide depthwise_conv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * - max_pooling_with_argmax - null check for special use Signed-off-by: raver119 <raver119@gmail.com> * dts cuda Signed-off-by: raver119 <raver119@gmail.com> * provide sconv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * std cuda Signed-off-by: raver119 <raver119@gmail.com> * Refactored non_max_suppression op to conform TF implementation. * Improved suppression helper. * provide pooling3d for cuda Signed-off-by: Yurii <yurii@skymind.io> * minor lstm rearrangements Signed-off-by: raver119 <raver119@gmail.com> * more of minor lstm rearrangements Signed-off-by: raver119 <raver119@gmail.com> * (bi)dynamic_rnn Signed-off-by: raver119 <raver119@gmail.com> * templates init order Signed-off-by: raver119 <raver119@gmail.com> * Refactored non_max_suppression op. * Added cuda kernel for non_max_suppression. * CPU sort by key/value Signed-off-by: raver119 <raver119@gmail.com> * CPU sort TAD by key/value Signed-off-by: raver119 <raver119@gmail.com> * CPU sort TAD by key/value tests Signed-off-by: raver119 <raver119@gmail.com> * Eliminate compiler error with cuda implementation. * - repaired gradCheck in cuda - provide conv2d_bp for cuda Signed-off-by: Yurii <yurii@skymind.io> * missed signature Signed-off-by: raver119 <raver119@gmail.com> * provide depthwise_conv2d_bp for cuda Signed-off-by: Yurii <yurii@skymind.io> * Implementation of lup helper with cuda kernel. Initial commit. * further work on backprops for convolutions Signed-off-by: Yurii <yurii@skymind.io> * CUDA linear sort by key/val Signed-off-by: raver119 <raver119@gmail.com> * CUDA tad sort by key/val Signed-off-by: raver119 <raver119@gmail.com> * start providing of backprop for pooling2d/3d Signed-off-by: Yurii <yurii@skymind.io> * Added atomicAdd for bool datatype. * dynamic partition concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic partition concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic partition scalar CUDA Signed-off-by: raver119 <raver119@gmail.com> * important comment Signed-off-by: raver119 <raver119@gmail.com> * fix pooling2d/3d backprop helpers Signed-off-by: Yurii <yurii@skymind.io> * Added non-linear test with dynamic_partition. * Improved test for dynamic_partition. * dynamic_partition TAD concept Signed-off-by: raver119 <raver119@gmail.com> * - dynamic_partition TAD CUDA impl - dynamic_partition TAD CPU fix Signed-off-by: raver119 <raver119@gmail.com> * - rewrite cpu code for usampling2d/3d - write cuda code for usampling2d/3d Signed-off-by: Yurii <yurii@skymind.io> * dynamic_stitch CUDA vector case Signed-off-by: raver119 <raver119@gmail.com> * dynamic_stitch CUDA TAD case concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic_stitch CUDA TAD case impl Signed-off-by: raver119 <raver119@gmail.com> * Added tests for dynamic_stitch 3D-4D cases. * minor tests tweaks Signed-off-by: raver119 <raver119@gmail.com> * Fixed type check for dynamic stitch. * min/max bp Signed-off-by: raver119 <raver119@gmail.com> * rewrite code for upsampling2d/3d cpu Signed-off-by: Yurii <yurii@skymind.io> * reduce min/max/norm_max bp Signed-off-by: raver119 <raver119@gmail.com> * lup implementation. Additional enhancements. * provide code for upsamling2d/3d backprop Signed-off-by: Yurii <yurii@skymind.io> * weightedCrossEntropyWithLogits Signed-off-by: raver119 <raver119@gmail.com> * Fixed template math atomicMul for 64bit ints. * Refactored dynamic_partition_bp op. * inverseBroadcast fix Signed-off-by: raver119 <raver119@gmail.com> * DynamicPartitionBP test datatype fixed. * - nd4j_atomicMul Windows fix - cpu/NDArrayLambda.hpp excluded from CUDA Signed-off-by: raver119 <raver119@gmail.com>
2019-06-27 17:37:04 +02:00
ASSERT_TRUE(reshaped.isSameShape(z));
ASSERT_TRUE(reshaped.equalsTo(z));
2019-06-06 14:21:15 +02:00
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, ExpandDimsTest2) {
auto input = NDArrayFactory::create<float>('c', {3, 4});
input.linspace(1);
auto reshaped = input.reshape('c', {1, 3, 4});
sd::ops::expand_dims op;
auto result = op.evaluate({&input}, {}, {0});
2019-06-06 14:21:15 +02:00
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
Merge master to upstream (#7945) * Shugeo strided slice zeros (#14) * Modified strided_slice op to properly work with empty-like shapes. * Fixed test for reduce_mean with empty-like input. * [WIP] Last merge (#15) * correct logsoftmax looss (#2) * Small SameDiff listener fix (#4) * Various fixes (#6) * #7839 Fix for asXMatrix and tests * #7866 EmbeddingSequenceLayer dtype fix + test * #7856 SameDiff save/load stream methods * #7859 RegressionEvaluation rank 4 fix + tests + axis configuration * EvaluationBinary 3d/4d * More evaluation 3d/4d tests * #7847 Evaluation empty checks * Small test ifx * #7848 Fix median edge case * Improve DL4J samediff layer tests * [WIP] FastText wrapper implemented (#8) * FastText implemented * Some fixes * Fix shapes for wordsNearest * Validation of input vectors * Fixes * Fixed test * Thread tagged * Some tweaks * setContextClassLoader for DeallocatorServiceThread * Numpy format tests (#1) * Various fixes (#11) * #7852 SameDiff gather fix * #7892 SameDiff placeholder to constant conversion * #7890 validate input rank for MLN/CG init methods * Fix broken permute shape calculation * Permute and gather fixes * Tests * #7850 LogSumExp fix + test * Handful of test fixes * Empty arrays with non-scalar shapes (#10) * minor rearrangements for lambdas * empty tensors with non-scalar shapes * numpy empty tensors with non-scalar shapes * few more empty tweaks * Small fixes * conv3d signature update * micro fix in batchnorm mkldnn * Import fixes * Fix * MKL-DNN update * Small fill fix * fill with empty input + test * Fixes * Small error improvement * Fix * one special test * couple of fixes for lstm * Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone * Fixes * FP16 * Unsigned * BFloat16 * Fill op - empty tweaks * - couple of fixes for empty arrays construction - stack updated * strided slice fix * one transform test * provide method for reducing shapeInfo in case of input array is empty * Fixed reduceAlongDimensions to use empty input properly. * couple of broadcast tests * couple of tests broadcast tests + tweak to make them pass * add check of non-empty to methods producing sub-arrays * Fixed reshapeC with zeros in shape. * complete empty check in reduce_... legacy ops * Concat and cumsum/prod * Tweak to empty shape inference on import * add empty check to the rest of reduce legacy ops * one more test * correct typo in evalReduceShapeInfoEmpty * Added tests for reduce_* ops to tests with zero shapes. * few more tests for empty reductions * Fixed strided_slice op with empty case and tests. * one more empty reduction test * Fixed strided_slice test. * add empty check to NDArray::reshapei * infOrMax * empty min/max with infinity tests * made unstack working correctly with empty arrays * few IndexReduce tests + tweaks for empty shapes * add test for empty concat * few tests fixed * Validation fix for reductions on empty shapes * Reverse fix * Reduction shape calc fixes * SameDiff.generateOutputVariable: don't use shape function to determine number of outputs * Range fix * - NDArray constructor updated for scalars/empty arrays - few tests fixed * More fixes * Empty creator fixes * concat fix * concat fix * TF import tests: allow 'both all NaN' and 'both all inf' to pass * Slice, zero fraction, and reshape fixes * transpose, gather * Zero fraction * scalar cast fix * Empty reduction axis support * few more tests fixed * Fixed input checks conforming with TF for concat op and tests. * few tests fixed * matmul scalar shape fix * Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats. * broadcast bool fix * few more tests * few more tests * correct evalReduceShapeInfoEmpty * argmax/argmin + tests * one more empty edge case + one more test * argmax/argmin/realdiv_bp tweaks * empty reshape test + fix * Helper fixes * Small fixes * Gather test fix * Gather test fix * Small fixes * reduce scalar zero values * scalar mean workaround * Remove debug code * along dim mean workaround * one more test * - equalsTo() tweak for empty arrays - one more test * broadcast tweaks * [WIP] Fixing outstanding issues for NLP (#9) * Avoid using not-inited objects * Test fixed. * Redundant method avoided for models like FastText * KMeans++ implementation * KMeans++ implementation * Disable parallel execution * KMeans++ * Tests * Dev branch merge (#16) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Fix some issues on master (#17) * Fix DataVec test issue * Fix issue with dl4j SameDiff output layer * Dtype fix for lambda layers * #7912 BertIterator dtype fix (use float32 not global default) * [WIP] Next set of CUDA stuff (#7) New CUDA implementations and improvements * bad file * Dev branch master merge (#23) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Compatibility of deserialization (#18) Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> * SameDiff: add activation gradient checking support for debugging (#19) * SameDiff gradient checker: first pass on activation gradient checks * Fixes + tests for activation gradient checking * Javadoc * [WIP] Some nd4j data type corrections (#20) * Adjust data type * Set correct Data type. * Size of proper data type. * fix averaged cpu load (#22) * SameDiff ops, TF import and fixes (#24) * CheckNumerics tests + fixes + misc fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fake quant Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * FakeQuantWithMinMaxArgs Signed-off-by: AlexDBlack <blacka101@gmail.com> * CheckNumerics fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix libnd4j ALL_INTS and ALL_FLOATS declaration (uint and bfloat types) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Small fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Javadoc Signed-off-by: AlexDBlack <blacka101@gmail.com> * Exception tweak Signed-off-by: AlexDBlack <blacka101@gmail.com> * fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix for out of scope stack allocated var use Signed-off-by: AlexDBlack <blacka101@gmail.com> * Ignores Signed-off-by: AlexDBlack <blacka101@gmail.com> * Ignore for known failing test (already logged issue) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Merge upstream to fork (#25) * Add thousand-separator commas to TotalParams (#7915) * Add thousand-separator commas to TotalParams The number of parameters can be quite large, and it would help the reading of the summary printout to have the TotalParams column & values at the bottom have thousand-separator-commas in them. * Add thousand-separator commas to MultiLayerNetwork Corresponding change to MultiLayerNetwork Signed-off-by: Jxtps Jxtps <jxtps435@gmail.com> * Update contributing and issue/PR templates (#7934) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix link to AdaDelta paper (#7942) Fix link to AdaDelta paper hosted on matthewzeiler.com Signed-off-by: Jxtps * Fixes, and ignores for known/logged failing issues (#7943) Signed-off-by: AlexDBlack <blacka101@gmail.com> * SameDiff + DL4J/SameDiff: Multiple fixes (#28) * #7919 HDF5 attribute buffer length fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7909 Arbiter constructor exception ux improvements Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7925 RNN output layer length checks Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7939 Add listener for validating inputs are not incorrectly modified Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7939 Integrate NonInplaceValidationListener into tests * #7844 DL4J SameDiff fixes for variable minibatch size * DL4J SameDiff fixes - ensure gradient for input placeholder is available Signed-off-by: AlexDBlack <blacka101@gmail.com> * Tweaks to ExternalErrorsFunction - use placeholders, make more robust * Another fix * More fixes * More SameDiff/DL4J fixes * Scope out scalar array creation in BaseScalarOp * Remove debug code Signed-off-by: AlexDBlack <blacka101@gmail.com> * [WIP] Final dev branch merge (#29) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Compatibility of deserialization (#18) Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> * SameDiff: add activation gradient checking support for debugging (#19) * SameDiff gradient checker: first pass on activation gradient checks * Fixes + tests for activation gradient checking * Javadoc * [WIP] Some nd4j data type corrections (#20) * Adjust data type * Set correct Data type. * Size of proper data type. * fix averaged cpu load (#22) * [WIP] Multiple dataset iterators (#27) * Splitting dataset into arbitrary number * Fixes * Multiple split of iterator * Test * Test * Some fixes * signature change * one more tweak Signed-off-by: raver119 <raver119@gmail.com> * one more test for sequential use of DataSetIteratorSplitter Signed-off-by: raver119 <raver119@gmail.com> * Fixes * Fixes * one more test for Alexander Signed-off-by: raver119 <raver119@gmail.com> * Some fixes * Some fixes * one more test for Alexander Signed-off-by: raver119 <raver119@gmail.com> * minor test fix Signed-off-by: raver119 <raver119@gmail.com> * Some fixes * Some fixes * couple of assertions tweaked Signed-off-by: raver119 <raver119@gmail.com> * MDS splitter test :/ Signed-off-by: raver119 <raver119@gmail.com> * Minor refactoring * Multi dataset * Some fixes * More tests * Small number of test fixes/improvements (failures on CI) (#31) Signed-off-by: AlexDBlack <blacka101@gmail.com> * [WIP] More CUDA stuff (#26) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * LRN BP CUDA Signed-off-by: raver119 <raver119@gmail.com> * less memory Signed-off-by: raver119 <raver119@gmail.com> * Fixed bug with crop_and_resize op helper. * get rid of unnecessary index-calculation dunction Signed-off-by: Yurii <yurii@skymind.io> * Fixed sort with nth_element cuda-based helper. * Refactored nth_element. * Refactored nth_element op and tests. * Modified usage of dim array with sortTad routine. * Refactored main routine of helper for non_max_image_suppression op. * non_max_image_suppression op helper with cuda kernel implementation. Initial revision. * fix vol2col cuda kernel * meh Signed-off-by: raver119 <raver119@gmail.com> * topK concept Signed-off-by: raver119 <raver119@gmail.com> * unsorted topK with scanWitdh of 1 Signed-off-by: raver119 <raver119@gmail.com> * correct vol2col tests * sorted/unsorted topK Signed-off-by: raver119 <raver119@gmail.com> * implementation and fixing col2im/col2vol * Corrected usage flags with input/output with reverse op. * dup is const now Signed-off-by: raver119 <raver119@gmail.com> * percentile op Signed-off-by: raver119 <raver119@gmail.com> * group tests for mapool2d Signed-off-by: Yurii <yurii@skymind.io> * special test for george Signed-off-by: raver119 <raver119@gmail.com> * less threads for sortTad Signed-off-by: raver119 <raver119@gmail.com> * provide conv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * remove auther in sort tad kernel code Signed-off-by: Yurii <yurii@skymind.io> * provide depthwise_conv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * - max_pooling_with_argmax - null check for special use Signed-off-by: raver119 <raver119@gmail.com> * dts cuda Signed-off-by: raver119 <raver119@gmail.com> * provide sconv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * std cuda Signed-off-by: raver119 <raver119@gmail.com> * Refactored non_max_suppression op to conform TF implementation. * Improved suppression helper. * provide pooling3d for cuda Signed-off-by: Yurii <yurii@skymind.io> * minor lstm rearrangements Signed-off-by: raver119 <raver119@gmail.com> * more of minor lstm rearrangements Signed-off-by: raver119 <raver119@gmail.com> * (bi)dynamic_rnn Signed-off-by: raver119 <raver119@gmail.com> * templates init order Signed-off-by: raver119 <raver119@gmail.com> * Refactored non_max_suppression op. * Added cuda kernel for non_max_suppression. * CPU sort by key/value Signed-off-by: raver119 <raver119@gmail.com> * CPU sort TAD by key/value Signed-off-by: raver119 <raver119@gmail.com> * CPU sort TAD by key/value tests Signed-off-by: raver119 <raver119@gmail.com> * Eliminate compiler error with cuda implementation. * - repaired gradCheck in cuda - provide conv2d_bp for cuda Signed-off-by: Yurii <yurii@skymind.io> * missed signature Signed-off-by: raver119 <raver119@gmail.com> * provide depthwise_conv2d_bp for cuda Signed-off-by: Yurii <yurii@skymind.io> * Implementation of lup helper with cuda kernel. Initial commit. * further work on backprops for convolutions Signed-off-by: Yurii <yurii@skymind.io> * CUDA linear sort by key/val Signed-off-by: raver119 <raver119@gmail.com> * CUDA tad sort by key/val Signed-off-by: raver119 <raver119@gmail.com> * start providing of backprop for pooling2d/3d Signed-off-by: Yurii <yurii@skymind.io> * Added atomicAdd for bool datatype. * dynamic partition concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic partition concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic partition scalar CUDA Signed-off-by: raver119 <raver119@gmail.com> * important comment Signed-off-by: raver119 <raver119@gmail.com> * fix pooling2d/3d backprop helpers Signed-off-by: Yurii <yurii@skymind.io> * Added non-linear test with dynamic_partition. * Improved test for dynamic_partition. * dynamic_partition TAD concept Signed-off-by: raver119 <raver119@gmail.com> * - dynamic_partition TAD CUDA impl - dynamic_partition TAD CPU fix Signed-off-by: raver119 <raver119@gmail.com> * - rewrite cpu code for usampling2d/3d - write cuda code for usampling2d/3d Signed-off-by: Yurii <yurii@skymind.io> * dynamic_stitch CUDA vector case Signed-off-by: raver119 <raver119@gmail.com> * dynamic_stitch CUDA TAD case concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic_stitch CUDA TAD case impl Signed-off-by: raver119 <raver119@gmail.com> * Added tests for dynamic_stitch 3D-4D cases. * minor tests tweaks Signed-off-by: raver119 <raver119@gmail.com> * Fixed type check for dynamic stitch. * min/max bp Signed-off-by: raver119 <raver119@gmail.com> * rewrite code for upsampling2d/3d cpu Signed-off-by: Yurii <yurii@skymind.io> * reduce min/max/norm_max bp Signed-off-by: raver119 <raver119@gmail.com> * lup implementation. Additional enhancements. * provide code for upsamling2d/3d backprop Signed-off-by: Yurii <yurii@skymind.io> * weightedCrossEntropyWithLogits Signed-off-by: raver119 <raver119@gmail.com> * Fixed template math atomicMul for 64bit ints. * Refactored dynamic_partition_bp op. * inverseBroadcast fix Signed-off-by: raver119 <raver119@gmail.com> * DynamicPartitionBP test datatype fixed. * - nd4j_atomicMul Windows fix - cpu/NDArrayLambda.hpp excluded from CUDA Signed-off-by: raver119 <raver119@gmail.com>
2019-06-27 17:37:04 +02:00
ASSERT_TRUE(reshaped.isSameShape(z));
ASSERT_TRUE(reshaped.equalsTo(z));
2019-06-06 14:21:15 +02:00
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, ExpandDimsTest3) {
auto input = NDArrayFactory::create<float>('c', {3, 4});
input.linspace(1);
auto reshaped = input.reshape('c', {3, 1, 4});
sd::ops::expand_dims op;
auto result = op.evaluate({&input}, {}, {-2});
2019-06-06 14:21:15 +02:00
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
Merge master to upstream (#7945) * Shugeo strided slice zeros (#14) * Modified strided_slice op to properly work with empty-like shapes. * Fixed test for reduce_mean with empty-like input. * [WIP] Last merge (#15) * correct logsoftmax looss (#2) * Small SameDiff listener fix (#4) * Various fixes (#6) * #7839 Fix for asXMatrix and tests * #7866 EmbeddingSequenceLayer dtype fix + test * #7856 SameDiff save/load stream methods * #7859 RegressionEvaluation rank 4 fix + tests + axis configuration * EvaluationBinary 3d/4d * More evaluation 3d/4d tests * #7847 Evaluation empty checks * Small test ifx * #7848 Fix median edge case * Improve DL4J samediff layer tests * [WIP] FastText wrapper implemented (#8) * FastText implemented * Some fixes * Fix shapes for wordsNearest * Validation of input vectors * Fixes * Fixed test * Thread tagged * Some tweaks * setContextClassLoader for DeallocatorServiceThread * Numpy format tests (#1) * Various fixes (#11) * #7852 SameDiff gather fix * #7892 SameDiff placeholder to constant conversion * #7890 validate input rank for MLN/CG init methods * Fix broken permute shape calculation * Permute and gather fixes * Tests * #7850 LogSumExp fix + test * Handful of test fixes * Empty arrays with non-scalar shapes (#10) * minor rearrangements for lambdas * empty tensors with non-scalar shapes * numpy empty tensors with non-scalar shapes * few more empty tweaks * Small fixes * conv3d signature update * micro fix in batchnorm mkldnn * Import fixes * Fix * MKL-DNN update * Small fill fix * fill with empty input + test * Fixes * Small error improvement * Fix * one special test * couple of fixes for lstm * Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone * Fixes * FP16 * Unsigned * BFloat16 * Fill op - empty tweaks * - couple of fixes for empty arrays construction - stack updated * strided slice fix * one transform test * provide method for reducing shapeInfo in case of input array is empty * Fixed reduceAlongDimensions to use empty input properly. * couple of broadcast tests * couple of tests broadcast tests + tweak to make them pass * add check of non-empty to methods producing sub-arrays * Fixed reshapeC with zeros in shape. * complete empty check in reduce_... legacy ops * Concat and cumsum/prod * Tweak to empty shape inference on import * add empty check to the rest of reduce legacy ops * one more test * correct typo in evalReduceShapeInfoEmpty * Added tests for reduce_* ops to tests with zero shapes. * few more tests for empty reductions * Fixed strided_slice op with empty case and tests. * one more empty reduction test * Fixed strided_slice test. * add empty check to NDArray::reshapei * infOrMax * empty min/max with infinity tests * made unstack working correctly with empty arrays * few IndexReduce tests + tweaks for empty shapes * add test for empty concat * few tests fixed * Validation fix for reductions on empty shapes * Reverse fix * Reduction shape calc fixes * SameDiff.generateOutputVariable: don't use shape function to determine number of outputs * Range fix * - NDArray constructor updated for scalars/empty arrays - few tests fixed * More fixes * Empty creator fixes * concat fix * concat fix * TF import tests: allow 'both all NaN' and 'both all inf' to pass * Slice, zero fraction, and reshape fixes * transpose, gather * Zero fraction * scalar cast fix * Empty reduction axis support * few more tests fixed * Fixed input checks conforming with TF for concat op and tests. * few tests fixed * matmul scalar shape fix * Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats. * broadcast bool fix * few more tests * few more tests * correct evalReduceShapeInfoEmpty * argmax/argmin + tests * one more empty edge case + one more test * argmax/argmin/realdiv_bp tweaks * empty reshape test + fix * Helper fixes * Small fixes * Gather test fix * Gather test fix * Small fixes * reduce scalar zero values * scalar mean workaround * Remove debug code * along dim mean workaround * one more test * - equalsTo() tweak for empty arrays - one more test * broadcast tweaks * [WIP] Fixing outstanding issues for NLP (#9) * Avoid using not-inited objects * Test fixed. * Redundant method avoided for models like FastText * KMeans++ implementation * KMeans++ implementation * Disable parallel execution * KMeans++ * Tests * Dev branch merge (#16) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Fix some issues on master (#17) * Fix DataVec test issue * Fix issue with dl4j SameDiff output layer * Dtype fix for lambda layers * #7912 BertIterator dtype fix (use float32 not global default) * [WIP] Next set of CUDA stuff (#7) New CUDA implementations and improvements * bad file * Dev branch master merge (#23) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Compatibility of deserialization (#18) Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> * SameDiff: add activation gradient checking support for debugging (#19) * SameDiff gradient checker: first pass on activation gradient checks * Fixes + tests for activation gradient checking * Javadoc * [WIP] Some nd4j data type corrections (#20) * Adjust data type * Set correct Data type. * Size of proper data type. * fix averaged cpu load (#22) * SameDiff ops, TF import and fixes (#24) * CheckNumerics tests + fixes + misc fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fake quant Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * FakeQuantWithMinMaxArgs Signed-off-by: AlexDBlack <blacka101@gmail.com> * CheckNumerics fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix libnd4j ALL_INTS and ALL_FLOATS declaration (uint and bfloat types) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Small fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Javadoc Signed-off-by: AlexDBlack <blacka101@gmail.com> * Exception tweak Signed-off-by: AlexDBlack <blacka101@gmail.com> * fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix for out of scope stack allocated var use Signed-off-by: AlexDBlack <blacka101@gmail.com> * Ignores Signed-off-by: AlexDBlack <blacka101@gmail.com> * Ignore for known failing test (already logged issue) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Merge upstream to fork (#25) * Add thousand-separator commas to TotalParams (#7915) * Add thousand-separator commas to TotalParams The number of parameters can be quite large, and it would help the reading of the summary printout to have the TotalParams column & values at the bottom have thousand-separator-commas in them. * Add thousand-separator commas to MultiLayerNetwork Corresponding change to MultiLayerNetwork Signed-off-by: Jxtps Jxtps <jxtps435@gmail.com> * Update contributing and issue/PR templates (#7934) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix link to AdaDelta paper (#7942) Fix link to AdaDelta paper hosted on matthewzeiler.com Signed-off-by: Jxtps * Fixes, and ignores for known/logged failing issues (#7943) Signed-off-by: AlexDBlack <blacka101@gmail.com> * SameDiff + DL4J/SameDiff: Multiple fixes (#28) * #7919 HDF5 attribute buffer length fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7909 Arbiter constructor exception ux improvements Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7925 RNN output layer length checks Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7939 Add listener for validating inputs are not incorrectly modified Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7939 Integrate NonInplaceValidationListener into tests * #7844 DL4J SameDiff fixes for variable minibatch size * DL4J SameDiff fixes - ensure gradient for input placeholder is available Signed-off-by: AlexDBlack <blacka101@gmail.com> * Tweaks to ExternalErrorsFunction - use placeholders, make more robust * Another fix * More fixes * More SameDiff/DL4J fixes * Scope out scalar array creation in BaseScalarOp * Remove debug code Signed-off-by: AlexDBlack <blacka101@gmail.com> * [WIP] Final dev branch merge (#29) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Compatibility of deserialization (#18) Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> * SameDiff: add activation gradient checking support for debugging (#19) * SameDiff gradient checker: first pass on activation gradient checks * Fixes + tests for activation gradient checking * Javadoc * [WIP] Some nd4j data type corrections (#20) * Adjust data type * Set correct Data type. * Size of proper data type. * fix averaged cpu load (#22) * [WIP] Multiple dataset iterators (#27) * Splitting dataset into arbitrary number * Fixes * Multiple split of iterator * Test * Test * Some fixes * signature change * one more tweak Signed-off-by: raver119 <raver119@gmail.com> * one more test for sequential use of DataSetIteratorSplitter Signed-off-by: raver119 <raver119@gmail.com> * Fixes * Fixes * one more test for Alexander Signed-off-by: raver119 <raver119@gmail.com> * Some fixes * Some fixes * one more test for Alexander Signed-off-by: raver119 <raver119@gmail.com> * minor test fix Signed-off-by: raver119 <raver119@gmail.com> * Some fixes * Some fixes * couple of assertions tweaked Signed-off-by: raver119 <raver119@gmail.com> * MDS splitter test :/ Signed-off-by: raver119 <raver119@gmail.com> * Minor refactoring * Multi dataset * Some fixes * More tests * Small number of test fixes/improvements (failures on CI) (#31) Signed-off-by: AlexDBlack <blacka101@gmail.com> * [WIP] More CUDA stuff (#26) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * LRN BP CUDA Signed-off-by: raver119 <raver119@gmail.com> * less memory Signed-off-by: raver119 <raver119@gmail.com> * Fixed bug with crop_and_resize op helper. * get rid of unnecessary index-calculation dunction Signed-off-by: Yurii <yurii@skymind.io> * Fixed sort with nth_element cuda-based helper. * Refactored nth_element. * Refactored nth_element op and tests. * Modified usage of dim array with sortTad routine. * Refactored main routine of helper for non_max_image_suppression op. * non_max_image_suppression op helper with cuda kernel implementation. Initial revision. * fix vol2col cuda kernel * meh Signed-off-by: raver119 <raver119@gmail.com> * topK concept Signed-off-by: raver119 <raver119@gmail.com> * unsorted topK with scanWitdh of 1 Signed-off-by: raver119 <raver119@gmail.com> * correct vol2col tests * sorted/unsorted topK Signed-off-by: raver119 <raver119@gmail.com> * implementation and fixing col2im/col2vol * Corrected usage flags with input/output with reverse op. * dup is const now Signed-off-by: raver119 <raver119@gmail.com> * percentile op Signed-off-by: raver119 <raver119@gmail.com> * group tests for mapool2d Signed-off-by: Yurii <yurii@skymind.io> * special test for george Signed-off-by: raver119 <raver119@gmail.com> * less threads for sortTad Signed-off-by: raver119 <raver119@gmail.com> * provide conv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * remove auther in sort tad kernel code Signed-off-by: Yurii <yurii@skymind.io> * provide depthwise_conv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * - max_pooling_with_argmax - null check for special use Signed-off-by: raver119 <raver119@gmail.com> * dts cuda Signed-off-by: raver119 <raver119@gmail.com> * provide sconv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * std cuda Signed-off-by: raver119 <raver119@gmail.com> * Refactored non_max_suppression op to conform TF implementation. * Improved suppression helper. * provide pooling3d for cuda Signed-off-by: Yurii <yurii@skymind.io> * minor lstm rearrangements Signed-off-by: raver119 <raver119@gmail.com> * more of minor lstm rearrangements Signed-off-by: raver119 <raver119@gmail.com> * (bi)dynamic_rnn Signed-off-by: raver119 <raver119@gmail.com> * templates init order Signed-off-by: raver119 <raver119@gmail.com> * Refactored non_max_suppression op. * Added cuda kernel for non_max_suppression. * CPU sort by key/value Signed-off-by: raver119 <raver119@gmail.com> * CPU sort TAD by key/value Signed-off-by: raver119 <raver119@gmail.com> * CPU sort TAD by key/value tests Signed-off-by: raver119 <raver119@gmail.com> * Eliminate compiler error with cuda implementation. * - repaired gradCheck in cuda - provide conv2d_bp for cuda Signed-off-by: Yurii <yurii@skymind.io> * missed signature Signed-off-by: raver119 <raver119@gmail.com> * provide depthwise_conv2d_bp for cuda Signed-off-by: Yurii <yurii@skymind.io> * Implementation of lup helper with cuda kernel. Initial commit. * further work on backprops for convolutions Signed-off-by: Yurii <yurii@skymind.io> * CUDA linear sort by key/val Signed-off-by: raver119 <raver119@gmail.com> * CUDA tad sort by key/val Signed-off-by: raver119 <raver119@gmail.com> * start providing of backprop for pooling2d/3d Signed-off-by: Yurii <yurii@skymind.io> * Added atomicAdd for bool datatype. * dynamic partition concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic partition concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic partition scalar CUDA Signed-off-by: raver119 <raver119@gmail.com> * important comment Signed-off-by: raver119 <raver119@gmail.com> * fix pooling2d/3d backprop helpers Signed-off-by: Yurii <yurii@skymind.io> * Added non-linear test with dynamic_partition. * Improved test for dynamic_partition. * dynamic_partition TAD concept Signed-off-by: raver119 <raver119@gmail.com> * - dynamic_partition TAD CUDA impl - dynamic_partition TAD CPU fix Signed-off-by: raver119 <raver119@gmail.com> * - rewrite cpu code for usampling2d/3d - write cuda code for usampling2d/3d Signed-off-by: Yurii <yurii@skymind.io> * dynamic_stitch CUDA vector case Signed-off-by: raver119 <raver119@gmail.com> * dynamic_stitch CUDA TAD case concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic_stitch CUDA TAD case impl Signed-off-by: raver119 <raver119@gmail.com> * Added tests for dynamic_stitch 3D-4D cases. * minor tests tweaks Signed-off-by: raver119 <raver119@gmail.com> * Fixed type check for dynamic stitch. * min/max bp Signed-off-by: raver119 <raver119@gmail.com> * rewrite code for upsampling2d/3d cpu Signed-off-by: Yurii <yurii@skymind.io> * reduce min/max/norm_max bp Signed-off-by: raver119 <raver119@gmail.com> * lup implementation. Additional enhancements. * provide code for upsamling2d/3d backprop Signed-off-by: Yurii <yurii@skymind.io> * weightedCrossEntropyWithLogits Signed-off-by: raver119 <raver119@gmail.com> * Fixed template math atomicMul for 64bit ints. * Refactored dynamic_partition_bp op. * inverseBroadcast fix Signed-off-by: raver119 <raver119@gmail.com> * DynamicPartitionBP test datatype fixed. * - nd4j_atomicMul Windows fix - cpu/NDArrayLambda.hpp excluded from CUDA Signed-off-by: raver119 <raver119@gmail.com>
2019-06-27 17:37:04 +02:00
ASSERT_TRUE(reshaped.isSameShape(z));
ASSERT_TRUE(reshaped.equalsTo(z));
2019-06-06 14:21:15 +02:00
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, ExpandDimsTest4) {
auto input = NDArrayFactory::create<float>('c', {3, 4});
input.linspace(1);
auto reshaped = input.reshape('c', {1, 3, 4});
sd::ops::expand_dims op;
auto result = op.evaluate({&input}, {}, {-3});
2019-06-06 14:21:15 +02:00
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
Merge master to upstream (#7945) * Shugeo strided slice zeros (#14) * Modified strided_slice op to properly work with empty-like shapes. * Fixed test for reduce_mean with empty-like input. * [WIP] Last merge (#15) * correct logsoftmax looss (#2) * Small SameDiff listener fix (#4) * Various fixes (#6) * #7839 Fix for asXMatrix and tests * #7866 EmbeddingSequenceLayer dtype fix + test * #7856 SameDiff save/load stream methods * #7859 RegressionEvaluation rank 4 fix + tests + axis configuration * EvaluationBinary 3d/4d * More evaluation 3d/4d tests * #7847 Evaluation empty checks * Small test ifx * #7848 Fix median edge case * Improve DL4J samediff layer tests * [WIP] FastText wrapper implemented (#8) * FastText implemented * Some fixes * Fix shapes for wordsNearest * Validation of input vectors * Fixes * Fixed test * Thread tagged * Some tweaks * setContextClassLoader for DeallocatorServiceThread * Numpy format tests (#1) * Various fixes (#11) * #7852 SameDiff gather fix * #7892 SameDiff placeholder to constant conversion * #7890 validate input rank for MLN/CG init methods * Fix broken permute shape calculation * Permute and gather fixes * Tests * #7850 LogSumExp fix + test * Handful of test fixes * Empty arrays with non-scalar shapes (#10) * minor rearrangements for lambdas * empty tensors with non-scalar shapes * numpy empty tensors with non-scalar shapes * few more empty tweaks * Small fixes * conv3d signature update * micro fix in batchnorm mkldnn * Import fixes * Fix * MKL-DNN update * Small fill fix * fill with empty input + test * Fixes * Small error improvement * Fix * one special test * couple of fixes for lstm * Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone * Fixes * FP16 * Unsigned * BFloat16 * Fill op - empty tweaks * - couple of fixes for empty arrays construction - stack updated * strided slice fix * one transform test * provide method for reducing shapeInfo in case of input array is empty * Fixed reduceAlongDimensions to use empty input properly. * couple of broadcast tests * couple of tests broadcast tests + tweak to make them pass * add check of non-empty to methods producing sub-arrays * Fixed reshapeC with zeros in shape. * complete empty check in reduce_... legacy ops * Concat and cumsum/prod * Tweak to empty shape inference on import * add empty check to the rest of reduce legacy ops * one more test * correct typo in evalReduceShapeInfoEmpty * Added tests for reduce_* ops to tests with zero shapes. * few more tests for empty reductions * Fixed strided_slice op with empty case and tests. * one more empty reduction test * Fixed strided_slice test. * add empty check to NDArray::reshapei * infOrMax * empty min/max with infinity tests * made unstack working correctly with empty arrays * few IndexReduce tests + tweaks for empty shapes * add test for empty concat * few tests fixed * Validation fix for reductions on empty shapes * Reverse fix * Reduction shape calc fixes * SameDiff.generateOutputVariable: don't use shape function to determine number of outputs * Range fix * - NDArray constructor updated for scalars/empty arrays - few tests fixed * More fixes * Empty creator fixes * concat fix * concat fix * TF import tests: allow 'both all NaN' and 'both all inf' to pass * Slice, zero fraction, and reshape fixes * transpose, gather * Zero fraction * scalar cast fix * Empty reduction axis support * few more tests fixed * Fixed input checks conforming with TF for concat op and tests. * few tests fixed * matmul scalar shape fix * Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats. * broadcast bool fix * few more tests * few more tests * correct evalReduceShapeInfoEmpty * argmax/argmin + tests * one more empty edge case + one more test * argmax/argmin/realdiv_bp tweaks * empty reshape test + fix * Helper fixes * Small fixes * Gather test fix * Gather test fix * Small fixes * reduce scalar zero values * scalar mean workaround * Remove debug code * along dim mean workaround * one more test * - equalsTo() tweak for empty arrays - one more test * broadcast tweaks * [WIP] Fixing outstanding issues for NLP (#9) * Avoid using not-inited objects * Test fixed. * Redundant method avoided for models like FastText * KMeans++ implementation * KMeans++ implementation * Disable parallel execution * KMeans++ * Tests * Dev branch merge (#16) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Fix some issues on master (#17) * Fix DataVec test issue * Fix issue with dl4j SameDiff output layer * Dtype fix for lambda layers * #7912 BertIterator dtype fix (use float32 not global default) * [WIP] Next set of CUDA stuff (#7) New CUDA implementations and improvements * bad file * Dev branch master merge (#23) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Compatibility of deserialization (#18) Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> * SameDiff: add activation gradient checking support for debugging (#19) * SameDiff gradient checker: first pass on activation gradient checks * Fixes + tests for activation gradient checking * Javadoc * [WIP] Some nd4j data type corrections (#20) * Adjust data type * Set correct Data type. * Size of proper data type. * fix averaged cpu load (#22) * SameDiff ops, TF import and fixes (#24) * CheckNumerics tests + fixes + misc fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fake quant Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * FakeQuantWithMinMaxArgs Signed-off-by: AlexDBlack <blacka101@gmail.com> * CheckNumerics fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix libnd4j ALL_INTS and ALL_FLOATS declaration (uint and bfloat types) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Small fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Javadoc Signed-off-by: AlexDBlack <blacka101@gmail.com> * Exception tweak Signed-off-by: AlexDBlack <blacka101@gmail.com> * fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix for out of scope stack allocated var use Signed-off-by: AlexDBlack <blacka101@gmail.com> * Ignores Signed-off-by: AlexDBlack <blacka101@gmail.com> * Ignore for known failing test (already logged issue) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Merge upstream to fork (#25) * Add thousand-separator commas to TotalParams (#7915) * Add thousand-separator commas to TotalParams The number of parameters can be quite large, and it would help the reading of the summary printout to have the TotalParams column & values at the bottom have thousand-separator-commas in them. * Add thousand-separator commas to MultiLayerNetwork Corresponding change to MultiLayerNetwork Signed-off-by: Jxtps Jxtps <jxtps435@gmail.com> * Update contributing and issue/PR templates (#7934) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix link to AdaDelta paper (#7942) Fix link to AdaDelta paper hosted on matthewzeiler.com Signed-off-by: Jxtps * Fixes, and ignores for known/logged failing issues (#7943) Signed-off-by: AlexDBlack <blacka101@gmail.com> * SameDiff + DL4J/SameDiff: Multiple fixes (#28) * #7919 HDF5 attribute buffer length fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7909 Arbiter constructor exception ux improvements Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7925 RNN output layer length checks Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7939 Add listener for validating inputs are not incorrectly modified Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7939 Integrate NonInplaceValidationListener into tests * #7844 DL4J SameDiff fixes for variable minibatch size * DL4J SameDiff fixes - ensure gradient for input placeholder is available Signed-off-by: AlexDBlack <blacka101@gmail.com> * Tweaks to ExternalErrorsFunction - use placeholders, make more robust * Another fix * More fixes * More SameDiff/DL4J fixes * Scope out scalar array creation in BaseScalarOp * Remove debug code Signed-off-by: AlexDBlack <blacka101@gmail.com> * [WIP] Final dev branch merge (#29) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Compatibility of deserialization (#18) Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> * SameDiff: add activation gradient checking support for debugging (#19) * SameDiff gradient checker: first pass on activation gradient checks * Fixes + tests for activation gradient checking * Javadoc * [WIP] Some nd4j data type corrections (#20) * Adjust data type * Set correct Data type. * Size of proper data type. * fix averaged cpu load (#22) * [WIP] Multiple dataset iterators (#27) * Splitting dataset into arbitrary number * Fixes * Multiple split of iterator * Test * Test * Some fixes * signature change * one more tweak Signed-off-by: raver119 <raver119@gmail.com> * one more test for sequential use of DataSetIteratorSplitter Signed-off-by: raver119 <raver119@gmail.com> * Fixes * Fixes * one more test for Alexander Signed-off-by: raver119 <raver119@gmail.com> * Some fixes * Some fixes * one more test for Alexander Signed-off-by: raver119 <raver119@gmail.com> * minor test fix Signed-off-by: raver119 <raver119@gmail.com> * Some fixes * Some fixes * couple of assertions tweaked Signed-off-by: raver119 <raver119@gmail.com> * MDS splitter test :/ Signed-off-by: raver119 <raver119@gmail.com> * Minor refactoring * Multi dataset * Some fixes * More tests * Small number of test fixes/improvements (failures on CI) (#31) Signed-off-by: AlexDBlack <blacka101@gmail.com> * [WIP] More CUDA stuff (#26) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * LRN BP CUDA Signed-off-by: raver119 <raver119@gmail.com> * less memory Signed-off-by: raver119 <raver119@gmail.com> * Fixed bug with crop_and_resize op helper. * get rid of unnecessary index-calculation dunction Signed-off-by: Yurii <yurii@skymind.io> * Fixed sort with nth_element cuda-based helper. * Refactored nth_element. * Refactored nth_element op and tests. * Modified usage of dim array with sortTad routine. * Refactored main routine of helper for non_max_image_suppression op. * non_max_image_suppression op helper with cuda kernel implementation. Initial revision. * fix vol2col cuda kernel * meh Signed-off-by: raver119 <raver119@gmail.com> * topK concept Signed-off-by: raver119 <raver119@gmail.com> * unsorted topK with scanWitdh of 1 Signed-off-by: raver119 <raver119@gmail.com> * correct vol2col tests * sorted/unsorted topK Signed-off-by: raver119 <raver119@gmail.com> * implementation and fixing col2im/col2vol * Corrected usage flags with input/output with reverse op. * dup is const now Signed-off-by: raver119 <raver119@gmail.com> * percentile op Signed-off-by: raver119 <raver119@gmail.com> * group tests for mapool2d Signed-off-by: Yurii <yurii@skymind.io> * special test for george Signed-off-by: raver119 <raver119@gmail.com> * less threads for sortTad Signed-off-by: raver119 <raver119@gmail.com> * provide conv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * remove auther in sort tad kernel code Signed-off-by: Yurii <yurii@skymind.io> * provide depthwise_conv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * - max_pooling_with_argmax - null check for special use Signed-off-by: raver119 <raver119@gmail.com> * dts cuda Signed-off-by: raver119 <raver119@gmail.com> * provide sconv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * std cuda Signed-off-by: raver119 <raver119@gmail.com> * Refactored non_max_suppression op to conform TF implementation. * Improved suppression helper. * provide pooling3d for cuda Signed-off-by: Yurii <yurii@skymind.io> * minor lstm rearrangements Signed-off-by: raver119 <raver119@gmail.com> * more of minor lstm rearrangements Signed-off-by: raver119 <raver119@gmail.com> * (bi)dynamic_rnn Signed-off-by: raver119 <raver119@gmail.com> * templates init order Signed-off-by: raver119 <raver119@gmail.com> * Refactored non_max_suppression op. * Added cuda kernel for non_max_suppression. * CPU sort by key/value Signed-off-by: raver119 <raver119@gmail.com> * CPU sort TAD by key/value Signed-off-by: raver119 <raver119@gmail.com> * CPU sort TAD by key/value tests Signed-off-by: raver119 <raver119@gmail.com> * Eliminate compiler error with cuda implementation. * - repaired gradCheck in cuda - provide conv2d_bp for cuda Signed-off-by: Yurii <yurii@skymind.io> * missed signature Signed-off-by: raver119 <raver119@gmail.com> * provide depthwise_conv2d_bp for cuda Signed-off-by: Yurii <yurii@skymind.io> * Implementation of lup helper with cuda kernel. Initial commit. * further work on backprops for convolutions Signed-off-by: Yurii <yurii@skymind.io> * CUDA linear sort by key/val Signed-off-by: raver119 <raver119@gmail.com> * CUDA tad sort by key/val Signed-off-by: raver119 <raver119@gmail.com> * start providing of backprop for pooling2d/3d Signed-off-by: Yurii <yurii@skymind.io> * Added atomicAdd for bool datatype. * dynamic partition concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic partition concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic partition scalar CUDA Signed-off-by: raver119 <raver119@gmail.com> * important comment Signed-off-by: raver119 <raver119@gmail.com> * fix pooling2d/3d backprop helpers Signed-off-by: Yurii <yurii@skymind.io> * Added non-linear test with dynamic_partition. * Improved test for dynamic_partition. * dynamic_partition TAD concept Signed-off-by: raver119 <raver119@gmail.com> * - dynamic_partition TAD CUDA impl - dynamic_partition TAD CPU fix Signed-off-by: raver119 <raver119@gmail.com> * - rewrite cpu code for usampling2d/3d - write cuda code for usampling2d/3d Signed-off-by: Yurii <yurii@skymind.io> * dynamic_stitch CUDA vector case Signed-off-by: raver119 <raver119@gmail.com> * dynamic_stitch CUDA TAD case concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic_stitch CUDA TAD case impl Signed-off-by: raver119 <raver119@gmail.com> * Added tests for dynamic_stitch 3D-4D cases. * minor tests tweaks Signed-off-by: raver119 <raver119@gmail.com> * Fixed type check for dynamic stitch. * min/max bp Signed-off-by: raver119 <raver119@gmail.com> * rewrite code for upsampling2d/3d cpu Signed-off-by: Yurii <yurii@skymind.io> * reduce min/max/norm_max bp Signed-off-by: raver119 <raver119@gmail.com> * lup implementation. Additional enhancements. * provide code for upsamling2d/3d backprop Signed-off-by: Yurii <yurii@skymind.io> * weightedCrossEntropyWithLogits Signed-off-by: raver119 <raver119@gmail.com> * Fixed template math atomicMul for 64bit ints. * Refactored dynamic_partition_bp op. * inverseBroadcast fix Signed-off-by: raver119 <raver119@gmail.com> * DynamicPartitionBP test datatype fixed. * - nd4j_atomicMul Windows fix - cpu/NDArrayLambda.hpp excluded from CUDA Signed-off-by: raver119 <raver119@gmail.com>
2019-06-27 17:37:04 +02:00
ASSERT_TRUE(reshaped.isSameShape(z));
ASSERT_TRUE(reshaped.equalsTo(z));
2019-06-06 14:21:15 +02:00
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, Test_Shape_1) {
auto x = NDArrayFactory::create<float>('c', {3, 4, 5, 6});
auto exp = NDArrayFactory::create<Nd4jLong>('c', {4}, {3, 4, 5, 6});
sd::ops::shape_of op;
auto result = op.evaluate({&x}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, Test_Equals_1) {
auto x = NDArrayFactory::create<float>('c', {1, 5}, {1, 2, 3, 4, 5});
auto y = NDArrayFactory::create<float>('c', {1, 5}, {1, 0, 3, 0, 5});
auto exp = NDArrayFactory::create<bool>('c', {1, 5}, {1, 0, 1, 0, 1});
sd::ops::equals op;
auto result = op.evaluate({&x, &y});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, Test_NotEquals_1) {
auto x = NDArrayFactory::create<float>('c', {1, 5}, {1, 2, 3, 4, 5});
auto y = NDArrayFactory::create<float>('c', {1, 5}, {1, 0, 3, 0, 5});
auto exp = NDArrayFactory::create<bool>('c', {1, 5}, {0, 1, 0, 1, 0});
sd::ops::not_equals op;
auto result = op.evaluate({&x, &y});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, Test_Less_1) {
auto x = NDArrayFactory::create<float>('c', {1, 5}, {1, 2, 3, 4, 5});
auto y = NDArrayFactory::create<float>('c', {1, 5}, {5, 4, 3, 2, 1});
auto exp = NDArrayFactory::create<bool>('c', {1, 5}, {1, 1, 0, 0, 0});
sd::ops::less op;
auto result = op.evaluate({&x, &y});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, Test_LessEquals_1) {
auto x = NDArrayFactory::create<float>('c', {1, 5}, {1, 2, 3, 4, 5});
auto y = NDArrayFactory::create<float>('c', {1, 5}, {5, 4, 3, 2, 1});
auto exp = NDArrayFactory::create<bool>('c', {1, 5}, {1, 1, 1, 0, 0});
sd::ops::less_equal op;
auto result = op.evaluate({&x, &y});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, Test_GreaterEquals_1) {
auto x = NDArrayFactory::create<float>('c', {1, 5}, {1, 2, 3, 4, 5});
auto y = NDArrayFactory::create<float>('c', {1, 5}, {5, 4, 3, 2, 1});
auto exp = NDArrayFactory::create<bool>('c', {1, 5}, {0, 0, 1, 1, 1});
sd::ops::greater_equal op;
auto result = op.evaluate({&x, &y});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, Test_GreaterEquals_2) {
auto x = NDArrayFactory::create<double>('c', {1, 5}, {1, 2, 3, 4, 5});
auto y = NDArrayFactory::create<double>('c', {1, 5}, {5, 4, 3, 2, 1});
auto exp = NDArrayFactory::create<bool>('c', {1, 5}, {0, 0, 1, 1, 1});
sd::ops::greater_equal op;
auto result = op.evaluate({&x, &y}, {}, {}, {}, {}, false);
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, Test_Greater_1) {
auto x = NDArrayFactory::create<float>('c', {1, 5}, {1, 2, 3, 4, 5});
auto y = NDArrayFactory::create<float>('c', {1, 5}, {5, 4, 3, 2, 1});
auto exp = NDArrayFactory::create<bool>('c', {1, 5}, {0, 0, 0, 1, 1});
sd::ops::greater op;
auto result = op.evaluate({&x, &y});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, Test_Where_1) {
auto mask = NDArrayFactory::create<bool>('c', {3, 3}, {1, 1, 1, 0, 0, 0, 1, 1, 1});
auto x = NDArrayFactory::create<float>('c', {3, 3}, {1, 2, 3, 4, 5, 6, 7, 8, 9});
auto y = NDArrayFactory::create<float>('c', {3, 3}, {9, 8, 7, 6, 5, 4, 3, 2, 1});
auto exp = NDArrayFactory::create<float>('c', {3, 3}, {1, 2, 3, 6, 5, 4, 7, 8, 9});
sd::ops::Where op;
auto result = op.evaluate({&mask, &x, &y}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
// z->printIndexedBuffer("result");
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, Test_Where_2) {
auto mask = NDArrayFactory::create<bool>('c', {1, 3}, {1, 0, 0});
auto x = NDArrayFactory::create<float>('c', {3, 3}, {1, 2, 3, 4, 5, 6, 7, 8, 9});
auto y = NDArrayFactory::create<float>('c', {3, 3}, {9, 8, 7, 6, 5, 4, 3, 2, 1});
auto exp = NDArrayFactory::create<float>('c', {3, 3}, {1, 2, 3, 6, 5, 4, 3, 2, 1});
sd::ops::Where op;
auto result = op.evaluate({&mask, &x, &y}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, Test_Where_3) {
auto mask = NDArrayFactory::create<bool>('c', {2, 2, 3}, {0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1});
auto exp = NDArrayFactory::create<Nd4jLong>('c', {5, 3}, {0, 0, 1, 0, 0, 2, 0, 1, 1, 1, 0, 0, 1, 1, 2});
sd::ops::Where op;
auto result = op.evaluate({&mask}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
// z->printShapeInfo("z");
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, Test_Select_1) {
auto mask = NDArrayFactory::create<bool>('c', {1, 3}, {1, 0, 0});
auto x = NDArrayFactory::create<float>('c', {3, 3}, {1, 2, 3, 4, 5, 6, 7, 8, 9});
auto y = NDArrayFactory::create<float>('c', {3, 3}, {9, 8, 7, 6, 5, 4, 3, 2, 1});
auto exp = NDArrayFactory::create<float>('c', {3, 3}, {1, 2, 3, 6, 5, 4, 3, 2, 1});
sd::ops::select op;
auto result = op.evaluate({&mask, &x, &y}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, Test_Select_2) {
auto mask = NDArrayFactory::create<bool>('c', {2, 2}, {1, 0, 1, 0});
auto x = NDArrayFactory::create<float>('c', {2, 2}, {1, 2, 3, 4 });
auto y = NDArrayFactory::create<float>('c', {2, 2}, {9, 8, 7, 6});
auto exp = NDArrayFactory::create<float>('c', {2, 2}, {1, 8, 3, 6});
sd::ops::select op;
auto result = op.evaluate({&mask, &x, &y}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, Test_Select_3) {
bool value = false;
auto mask = NDArrayFactory::create<bool>('c', {1, 1}, {value});
2019-06-06 14:21:15 +02:00
auto x = NDArrayFactory::create<float>('c', {1, 1}, {1});
auto y = NDArrayFactory::create<float>('c', {1, 1}, {2});
auto exp = NDArrayFactory::create<float>('c', {1, 1}, {2});
sd::ops::select op;
auto result = op.evaluate({&mask, &x, &y}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, Test_Reshape_TF_1) {
auto x = NDArrayFactory::create<int>('c', {2, 2}, {1, 2, 3, 4});
auto shape = NDArrayFactory::create<int>('c', {1, 3}, {1, 2, 2});
auto exp = NDArrayFactory::create<int>('c', {1, 2, 2}, {1, 2, 3, 4});
sd::ops::reshape op;
2019-06-06 14:21:15 +02:00
auto result = op.evaluate({&x, &shape}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, Test_Bias_Add_1) {
auto x = NDArrayFactory::create<float>('c', {10, 5});
x.assign(0.0);
auto bias = NDArrayFactory::create<float>('c', {5}, {1, 2, 3, 4, 5});
sd::ops::biasadd op;
2019-06-06 14:21:15 +02:00
auto result = op.evaluate({&x, &bias}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
auto tads = z->allTensorsAlongDimension({1});
Shyrma temp (#131) * - specifying template instantiation for certain types in float16 and bloat16 Signed-off-by: Yurii <iuriish@yahoo.com> * - polishing bfloat16 and float16 member functions template specialization Signed-off-by: Yurii <iuriish@yahoo.com> * - rewrite and overload array +-*/ scalar and scalar +-*/ arr in NDAray class Signed-off-by: Yurii <iuriish@yahoo.com> * - make corrections which have to do with and rvalue lvalue conversions Signed-off-by: Yurii <iuriish@yahoo.com> * - provide move semantic in NDArray operators array +-/* array Signed-off-by: Yurii <iuriish@yahoo.com> * float16/bfloat16 tweaks Signed-off-by: raver119 <raver119@gmail.com> * one more tweak Signed-off-by: raver119 <raver119@gmail.com> * - make float16 and bfloat16 to compile successfully on cuda Signed-off-by: Yurii <iuriish@yahoo.com> * - do not use resources of view-like arrays when move semantics is applied Signed-off-by: Yurii <iuriish@yahoo.com> * - get rid of pointers in signatures NDArray methods 1 Signed-off-by: Yurii <iuriish@yahoo.com> * - correction of signature of NDArray::dup method Signed-off-by: Yurii <iuriish@yahoo.com> * - correction of signature of NDArray::reduceAlongDimension method Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyIndexReduce and applyTrueBroadcast methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyReduce3 and varianceAlongDimension methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::tensorsAlongDimension and diagonal methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::allTensorsAlongDimension Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::reduceAlongDimension 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyTransform 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyPairwiseTransform 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyBroadcast 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyTrueBroadcast 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyScalar and applyScalarArr Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::lambda methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::reduce3 methods 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of following NDArray methods: add/sub/mul/div row/column and fillAsTriangular Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::tileToShape methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::isShapeSameStrict method Signed-off-by: Yurii <iuriish@yahoo.com> * minor corrections in tests Signed-off-by: Yurii <iuriish@yahoo.com> * - replace reduce op in batchnorm mkldnn Signed-off-by: Yurii <iuriish@yahoo.com> * - add explicit templates instantiations for operator+(NDArray&&. const scalar) Signed-off-by: Yurii <iuriish@yahoo.com> * - corrections of casts in float16/bfloat16 Signed-off-by: Yurii <iuriish@yahoo.com> * - provide move semantics in following NDArray methods: transform, applyTrueBroadcast, transpose, reshape, permute Signed-off-by: Yurii <iuriish@yahoo.com> * - get rid of input array A duplicate in svd cuda op Signed-off-by: Yurii <iuriish@yahoo.com> * - avoid available bug in svd cuda API Signed-off-by: Yurii <iuriish@yahoo.com> * - add temporary global memory buffer in svd cuda when calcUV = false and m != n Signed-off-by: Yurii <iuriish@yahoo.com> * - remove test with blfoat16 type for betainC Signed-off-by: Yurii <iuriish@yahoo.com> * - resolve conflicts after master has been merged in Signed-off-by: Yurii <iuriish@yahoo.com> * - changed type of affected input array in fused_batch_norm Signed-off-by: Yurii <iuriish@yahoo.com> * - add several explicit type castings Signed-off-by: Yurii <iuriish@yahoo.com> * - add ND4J_EXPORT to operators Signed-off-by: Yurii <iuriish@yahoo.com> * - add explicit template types in instantiations of template arithm operators of NDArray class Signed-off-by: Yurii <iuriish@yahoo.com> * - one more test fix Signed-off-by: Yurii <iuriish@yahoo.com> Co-authored-by: raver119 <raver119@gmail.com>
2019-12-20 20:35:39 +01:00
for (int e = 0; e < tads.size(); e++) {
ASSERT_TRUE(bias.equalsTo(tads.at(e)));
2019-06-06 14:21:15 +02:00
}
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, Test_Scatter_Add_1) {
auto matrix = NDArrayFactory::create<float>('c', {2, 2}, {1, 2, 3, 4});
NDArray idc('c', {1}, std::vector<double>({0}), sd::DataType::INT64);
2019-06-06 14:21:15 +02:00
auto updates = NDArrayFactory::create<float>('c', {1, 2}, {1, 1});
auto exp = NDArrayFactory::create<float>('c', {2, 2}, {2, 3, 3, 4});
sd::ops::scatter_add op;
auto result = op.evaluate({&matrix, &idc, &updates}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, Test_Scatter_Add_2) {
[WIP] More of CUDA operations (#69) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * - gruCell_bp further Signed-off-by: Yurii <yurii@skymind.io> * - further work on gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * Inverse matrix cublas implementation. Partial working revision. * Separation of segment ops helpers. Max separation. * Separated segment_min ops. * Separation of segment_mean/sum/prod/sqrtN ops heleprs. * Fixed diagonal processing with LUP decomposition. * Modified inversion approach using current state of LU decomposition. * Implementation of matrix_inverse op with cuda kernels. Working revision. * Implemented sequence_mask cuda helper. Eliminated waste printf with matrix_inverse implementation. Added proper tests. * - further work on gruCell_bp (ff/cuda) Signed-off-by: Yurii <yurii@skymind.io> * comment one test for gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * - provide cuda static_rnn Signed-off-by: Yurii <yurii@skymind.io> * Refactored random_shuffle op to use new random generator. * Refactored random_shuffle op helper. * Fixed debug tests with random ops tests. * Implement random_shuffle op cuda kernel helper and tests. * - provide cuda scatter_update Signed-off-by: Yurii <yurii@skymind.io> * Implementation of random_shuffle for linear case with cuda kernels and tests. * Implemented random_shuffle with cuda kernels. Final revision. * - finally gruCell_bp is completed Signed-off-by: Yurii <yurii@skymind.io> * Dropout op cuda helper implementation. * Implemented dropout_bp cuda helper. * Implemented alpha_dropout_bp with cuda kernel helpers. * Refactored helper. * Implementation of suppresion helper with cuda kernels. * - provide cpu code fot hsvToRgb, rgbToHsv, adjustHue Signed-off-by: Yurii <yurii@skymind.io> * Using sort by value method. * Implementation of image.non_max_suppression op cuda-based helper. * - correcting and testing adjust_hue, adjust_saturation cpu/cuda code Signed-off-by: Yurii <yurii@skymind.io> * Added cuda device prefixes to declarations. * Implementation of hashcode op with cuda helper. Initital revision. * rnn cu impl removed Signed-off-by: raver119 <raver119@gmail.com>
2019-07-20 07:58:44 +02:00
2019-06-06 14:21:15 +02:00
auto vec = NDArrayFactory::create<float>('c', {4}, {1, 2, 3, 4});
NDArray idc('c', {1, 4}, {0., 1, 2, 3}, sd::DataType::INT64);
2019-06-06 14:21:15 +02:00
auto updates = NDArrayFactory::create<float>('c', {1, 4}, {1, 1, 1, 1});
auto exp = NDArrayFactory::create<float>('c', {1, 4}, {2, 3, 4, 5});
sd::ops::scatter_add op;
auto result = op.evaluate({&vec, &idc, &updates}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, Test_Scatter_Add_3) {
auto matrix = NDArrayFactory::create<float>('c', {2, 2, 2}, {1, 2, 3, 4, 5, 6, 7, 8});
NDArray idc('c', {1}, std::vector<double>({0}), sd::DataType::INT64);
2019-06-06 14:21:15 +02:00
auto updates = NDArrayFactory::create<float>('c', {1, 2, 2}, {1, 1, 1, 1});
auto exp = NDArrayFactory::create<float>('c', {2, 2, 2}, {2, 3, 4, 5, 5, 6, 7, 8});
sd::ops::scatter_add op;
auto result = op.evaluate({&matrix, &idc, &updates}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, Test_Scatter_Add_4) {
auto matrix = NDArrayFactory::create<float>('c', {2, 2, 2}, {1, 2, 3, 4, 5, 6, 7, 8});
NDArray idc('c', {1, 2}, std::vector<double>{0, 0}, sd::DataType::INT64);
2019-06-06 14:21:15 +02:00
auto updates = NDArrayFactory::create<float>('c', {1, 2, 2, 2}, {1, 1, 1, 1, 1, 1, 1, 1});
auto exp = NDArrayFactory::create<float>('c', {2, 2, 2}, {3, 4, 5, 6, 5, 6, 7, 8});
sd::ops::scatter_add op;
auto result = op.evaluate({&matrix, &idc, &updates}, {}, {}, {true, true});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, Test_Scatter_Add_5) {
auto matrix = NDArrayFactory::create<float>('c', {2, 2, 3}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1});
NDArray idc('c', {2, 2}, {1., 1, 0, 0}, sd::DataType::INT64);
2019-06-06 14:21:15 +02:00
auto updates = NDArrayFactory::create<float>('c', {2, 2, 2, 3}, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12});
auto exp = NDArrayFactory::create<float>('c', {2, 2, 3}, {9., 11., 13.,15., 17., 19., 9., 11., 13.,15., 17., 19.});
sd::ops::scatter_add op;
auto result = op.evaluate({&matrix, &idc, &updates}, {}, {}, {true});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
// z->printBuffer();
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, Test_Scatter_Add_6) {
auto matrix = NDArrayFactory::create<float>('c', {2, 2, 2}, {1, 1, 1, 1, 1, 1, 1, 1});
NDArray idc('c', {2, 2}, {1, 1, 0, 0}, sd::DataType::INT64);
2019-06-06 14:21:15 +02:00
auto updates = NDArrayFactory::create<float>('c', {2, 2, 2, 2}, {1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8});
auto exp = NDArrayFactory::create<float>('c', {2, 2, 2}, {7, 9, 11, 13, 7, 9, 11, 13});
sd::ops::scatter_add op;
auto result = op.evaluate({&matrix, &idc, &updates}, {}, {}, {true, true});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, Test_Scatter_Add_7) {
auto matrix = NDArrayFactory::create<float>('c', {10, 3}, {1.f,2.f,3.f,4.f,5.f,6.f,7.f,8.f,9.f,10.f,11.f,12.f,13.f,14.f,15.f,16.f,17.f,18.f,19.f,20.f,21.f,22.f,23.f,24.f,25.f,26.f,27.f,28.f,29.f,30.f});
NDArray idc('c', {}, std::vector<double>{5}, sd::DataType::INT64);
2019-06-06 14:21:15 +02:00
auto updates = NDArrayFactory::create<float>('c', {3}, {10.f, 20.f, 30.f});
auto exp = NDArrayFactory::create<float>('c', {10, 3}, {1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f, 9.f, 10.f,11.f,12.f, 13.f,14.f,15.f, 26.f,37.f,48.f, 19.f,20.f,21.f, 22.f,23.f,24.f, 25.f,26.f,27.f, 28.f,29.f,30.f});
sd::ops::scatter_add op;
auto result = op.evaluate({&matrix, &idc, &updates}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
////////////////////////////////////////////////////////////////////
TEST_F(ParityOpsTests, Test_Scatter_Add_8) {
NDArray input('c', {8}, {1,1,1,1,1,1,1,1}, sd::DataType::FLOAT32);
NDArray indices('c', {4}, {1, 1, 1, 1}, sd::DataType::INT32);
NDArray updates('c', {4}, {1,2,3,4}, sd::DataType::FLOAT32);
NDArray expected('c', {8}, {1.f, 11.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f}, sd::DataType::FLOAT32);
2019-06-06 14:21:15 +02:00
NDArray z('c', {8}, sd::DataType::FLOAT32);
2019-06-06 14:21:15 +02:00
sd::ops::scatter_add op;
2019-06-06 14:21:15 +02:00
Nd4jStatus status = op.execute({&input, &indices, &updates}, {&z}, {}, {}, {true});
// z.printBuffer();
ASSERT_EQ(ND4J_STATUS_OK, status);
Shyrma temp (#131) * - specifying template instantiation for certain types in float16 and bloat16 Signed-off-by: Yurii <iuriish@yahoo.com> * - polishing bfloat16 and float16 member functions template specialization Signed-off-by: Yurii <iuriish@yahoo.com> * - rewrite and overload array +-*/ scalar and scalar +-*/ arr in NDAray class Signed-off-by: Yurii <iuriish@yahoo.com> * - make corrections which have to do with and rvalue lvalue conversions Signed-off-by: Yurii <iuriish@yahoo.com> * - provide move semantic in NDArray operators array +-/* array Signed-off-by: Yurii <iuriish@yahoo.com> * float16/bfloat16 tweaks Signed-off-by: raver119 <raver119@gmail.com> * one more tweak Signed-off-by: raver119 <raver119@gmail.com> * - make float16 and bfloat16 to compile successfully on cuda Signed-off-by: Yurii <iuriish@yahoo.com> * - do not use resources of view-like arrays when move semantics is applied Signed-off-by: Yurii <iuriish@yahoo.com> * - get rid of pointers in signatures NDArray methods 1 Signed-off-by: Yurii <iuriish@yahoo.com> * - correction of signature of NDArray::dup method Signed-off-by: Yurii <iuriish@yahoo.com> * - correction of signature of NDArray::reduceAlongDimension method Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyIndexReduce and applyTrueBroadcast methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyReduce3 and varianceAlongDimension methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::tensorsAlongDimension and diagonal methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::allTensorsAlongDimension Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::reduceAlongDimension 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyTransform 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyPairwiseTransform 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyBroadcast 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyTrueBroadcast 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyScalar and applyScalarArr Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::lambda methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::reduce3 methods 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of following NDArray methods: add/sub/mul/div row/column and fillAsTriangular Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::tileToShape methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::isShapeSameStrict method Signed-off-by: Yurii <iuriish@yahoo.com> * minor corrections in tests Signed-off-by: Yurii <iuriish@yahoo.com> * - replace reduce op in batchnorm mkldnn Signed-off-by: Yurii <iuriish@yahoo.com> * - add explicit templates instantiations for operator+(NDArray&&. const scalar) Signed-off-by: Yurii <iuriish@yahoo.com> * - corrections of casts in float16/bfloat16 Signed-off-by: Yurii <iuriish@yahoo.com> * - provide move semantics in following NDArray methods: transform, applyTrueBroadcast, transpose, reshape, permute Signed-off-by: Yurii <iuriish@yahoo.com> * - get rid of input array A duplicate in svd cuda op Signed-off-by: Yurii <iuriish@yahoo.com> * - avoid available bug in svd cuda API Signed-off-by: Yurii <iuriish@yahoo.com> * - add temporary global memory buffer in svd cuda when calcUV = false and m != n Signed-off-by: Yurii <iuriish@yahoo.com> * - remove test with blfoat16 type for betainC Signed-off-by: Yurii <iuriish@yahoo.com> * - resolve conflicts after master has been merged in Signed-off-by: Yurii <iuriish@yahoo.com> * - changed type of affected input array in fused_batch_norm Signed-off-by: Yurii <iuriish@yahoo.com> * - add several explicit type castings Signed-off-by: Yurii <iuriish@yahoo.com> * - add ND4J_EXPORT to operators Signed-off-by: Yurii <iuriish@yahoo.com> * - add explicit template types in instantiations of template arithm operators of NDArray class Signed-off-by: Yurii <iuriish@yahoo.com> * - one more test fix Signed-off-by: Yurii <iuriish@yahoo.com> Co-authored-by: raver119 <raver119@gmail.com>
2019-12-20 20:35:39 +01:00
ASSERT_TRUE(expected.isSameShapeStrict(z));
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(expected.equalsTo(z));
}
////////////////////////////////////////////////////////////////////
TEST_F(ParityOpsTests, Test_Scatter_Add_9) {
auto matrix = NDArrayFactory::create<float>('c', {2, 2, 3}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1});
NDArray idc('c', {2, 2}, {1, 10, 0, 0}, sd::DataType::INT64);
auto updates = NDArrayFactory::create<float>('c', {2, 2, 2, 3}, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12});
auto output = NDArrayFactory::create<float>('c', {2, 2, 3});
sd::ops::scatter_add op;
ASSERT_ANY_THROW(op.execute({&matrix, &idc, &updates}, {&output}, {}, {}, {true, true}));
}
2019-06-06 14:21:15 +02:00
////////////////////////////////////////////////////////////////////
TEST_F(ParityOpsTests, scatterMax_test1) {
auto matrix = NDArrayFactory::create<float>('c', {2, 2}, {1, 2, 3, 4});
NDArray idc('c', {1}, std::vector<double>{0.}, sd::DataType::INT64);
2019-06-06 14:21:15 +02:00
auto updates = NDArrayFactory::create<float>('c', {1, 2}, {10, 1});
auto exp = NDArrayFactory::create<float>('c', {2, 2}, {10, 2, 3, 4});
sd::ops::scatter_max op;
auto result = op.evaluate({&matrix, &idc, &updates}, {}, {}, {true});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, scatterMax_test2) {
auto vec = NDArrayFactory::create<float>('c', {4}, {1, 2, 3, 4});
NDArray idc('c', {1, 4}, {0, 1, 2, 3}, sd::DataType::INT64);
2019-06-06 14:21:15 +02:00
auto updates = NDArrayFactory::create<float>('c', {1, 4}, {10, 1, 30, 1});
auto exp = NDArrayFactory::create<float>('c', {1, 4}, {10, 2, 30, 4});
sd::ops::scatter_max op;
auto result = op.evaluate({&vec, &idc, &updates}, {}, {}, {true});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, scatterMax_test3) {
auto matrix = NDArrayFactory::create<float>('c', {2, 2, 2}, {1, 2, 3, 4, 5, 6, 7, 8});
NDArray idc('c', {1}, std::vector<double>({0}), sd::DataType::INT64);
2019-06-06 14:21:15 +02:00
auto updates = NDArrayFactory::create<float>('c', {1, 2, 2}, {10, 1, 30, 1});
auto exp = NDArrayFactory::create<float>('c', {2, 2, 2}, {10, 2, 30, 4, 5, 6, 7, 8});
sd::ops::scatter_max op;
auto result = op.evaluate({&matrix, &idc, &updates}, {}, {}, {true});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, scatterMax_test4) {
auto matrix = NDArrayFactory::create<float>('c', {2, 2, 2}, {1, 2, 3, 4, 5, 6, 7, 8});
NDArray idc('c', {1,2}, std::vector<double>{0.,0}, sd::DataType::INT32);
2019-06-06 14:21:15 +02:00
auto updates = NDArrayFactory::create<float>('c', {1, 2, 2, 2}, {1,10,1,10, 1,1,10,1.});
auto exp = NDArrayFactory::create<float>('c', {2, 2, 2}, {1, 10, 10, 10, 5, 6, 7, 8});
sd::ops::scatter_max op;
auto result = op.evaluate({&matrix, &idc, &updates}, {}, {true}, {true});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, scatterMax_test5) {
auto matrix = NDArrayFactory::create<float>('c', {2, 2, 3}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1});
NDArray idc('c', {2, 2}, {1, 1, 0, 0}, sd::DataType::INT32);
2019-06-06 14:21:15 +02:00
auto updates = NDArrayFactory::create<float>('c', {2, 2, 2, 3}, {2,10,1,10, 2,10,1,10, 2,10,1,10, 10,2,10,1, 10,2,10,1, 10,2,10,1.});
auto exp = NDArrayFactory::create<float>('c', {2, 2, 3}, {10, 2, 10, 2, 10, 2, 2, 10, 2, 10, 2, 10});
sd::ops::scatter_max op;
auto result = op.evaluate({&matrix, &idc, &updates}, {}, {}, {true});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, scatterMax_test6) {
auto matrix = NDArrayFactory::create<float>('c', {2, 2, 2}, {1, 1, 1, 1, 1, 1, 1, 1});
NDArray idc('c', {2, 2}, {1, 1, 0, 0}, sd::DataType::INT32);
2019-06-06 14:21:15 +02:00
auto updates = NDArrayFactory::create<float>('c', {2, 2, 2, 2}, {0,2,0,2, 0,2,0,2, 2,0,2,0., 2,0,2,0});
auto exp = NDArrayFactory::create<float>('c', {2, 2, 2}, {2, 1, 2, 1, 1, 2, 1, 2});
sd::ops::scatter_max op;
auto result = op.evaluate({&matrix, &idc, &updates}, {}, {}, {true});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, scatterMin_test1) {
auto matrix = NDArrayFactory::create<float>('c', {2, 2}, {1, 2, 3, 4});
NDArray idc('c', {1}, std::vector<double>({0}), sd::DataType::INT32);
2019-06-06 14:21:15 +02:00
auto updates = NDArrayFactory::create<float>('c', {1, 2}, {-1, 1});
auto exp = NDArrayFactory::create<float>('c', {2, 2}, {-1, 1, 3, 4});
sd::ops::scatter_min op;
auto result = op.evaluate({&matrix, &idc, &updates}, {}, {}, {true});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, scatterMin_test2) {
auto vec = NDArrayFactory::create<float>('c', {4}, {1, 2, 3, 4});
NDArray idc('c', {1, 4}, {0, 1, 2, 3}, sd::DataType::INT32);
2019-06-06 14:21:15 +02:00
auto updates = NDArrayFactory::create<float>('c', {1, 4}, {10, 1, 30, 1});
auto exp = NDArrayFactory::create<float>('c', {1, 4}, {1, 1, 3, 1});
sd::ops::scatter_min op;
auto result = op.evaluate({&vec, &idc, &updates}, {}, {}, {true});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, scatterMin_test3) {
auto matrix = NDArrayFactory::create<float>('c', {2, 2, 2}, {1, 2, 3, 4, 5, 6, 7, 8});
NDArray idc('c', {1}, std::vector<double>({0}), sd::DataType::INT32);
2019-06-06 14:21:15 +02:00
auto updates = NDArrayFactory::create<float>('c', {1, 2, 2}, {10, 1, 30, 2});
auto exp = NDArrayFactory::create<float>('c', {2, 2, 2}, {1, 1, 3, 2, 5, 6, 7, 8});
sd::ops::scatter_min op;
auto result = op.evaluate({&matrix, &idc, &updates}, {}, {}, {true});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
TEST_F(ParityOpsTests, scatterMin_test4) {
auto matrix = NDArrayFactory::create<float>('c', {2, 2, 2}, {1, 2, 3, 4, 5, 6, 7, 8});
NDArray idc('c', {1,2}, std::vector<double>{0.,0}, sd::DataType::INT32);
2019-06-06 14:21:15 +02:00
auto updates = NDArrayFactory::create<float>('c', {1, 2, 2, 2}, {1,10,1,10, 1,1,10,1.});
auto exp = NDArrayFactory::create<float>('c', {2, 2, 2}, {1, 1, 1, 1, 5, 6, 7, 8});
sd::ops::scatter_min op;
auto result = op.evaluate({&matrix, &idc, &updates}, {}, {}, {true});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
// z->printBuffer();
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
////////////////////////////////////////////////////////////////////////
TEST_F(ParityOpsTests, scatterMin_test5) {
auto matrix = NDArrayFactory::create<float>('c', {2, 2, 2}, {1, 2, 3, 4, 5, 6, 7, 8});
NDArray idc('c', {1,2}, {10,10}, sd::DataType::INT32);
auto updates = NDArrayFactory::create<float>('c', {1, 2, 2, 2}, {1,10,1,10, 1,1,10,1.});
auto output = NDArrayFactory::create<float>('c', {2, 2, 2});
sd::ops::scatter_min op;
ASSERT_ANY_THROW(op.execute({&matrix, &idc, &updates}, {&output}, {}, {}, {true, true}));
}
2019-06-06 14:21:15 +02:00
////////////////////////////////////////////////////////////////////////
TEST_F(ParityOpsTests, scatterND_test1) {
NDArray indices('c', {2, 1}, {1., 0.}, sd::DataType::INT32);
2019-06-06 14:21:15 +02:00
auto updates = NDArrayFactory::create<float>('c', {2, 4}, {10.f, 20.f, 30.f, 40.f, 50.f, 60.f, 70.f, 80.f});
auto shape = NDArrayFactory::create<int>('c', {2}, {3, 4});
auto exp = NDArrayFactory::create<float>('c', {3, 4}, {50.f, 60.f, 70.f, 80.f, 10.f, 20.f, 30.f, 40.f, 0.f, 0.f, 0.f, 0.f});
sd::ops::scatter_nd op;
auto result = op.evaluate({&indices, &updates, &shape}, {}, {false, true});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
// z->printBuffer();
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
////////////////////////////////////////////////////////////////////////
TEST_F(ParityOpsTests, scatterND_test2) {
NDArray indices('c', {3, 1}, {4., 2., 0.}, sd::DataType::INT32);
2019-06-06 14:21:15 +02:00
auto updates = NDArrayFactory::create<float>('c', {3, 4});
auto shape = NDArrayFactory::create<int>('c', {2}, {5, 4});
auto exp = NDArrayFactory::create<float>('c', {5, 4}, {9.f,10.f,11.f,12.f, 0.f, 0.f, 0.f, 0.f, 5.f, 6.f, 7.f, 8.f, 0.f, 0.f, 0.f, 0.f, 1.f, 2.f, 3.f, 4.f});
updates.linspace(1.f);
sd::ops::scatter_nd op;
auto result = op.evaluate({&indices, &updates, &shape}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
////////////////////////////////////////////////////////////////////////
TEST_F(ParityOpsTests, scatterND_test3) {
NDArray indices('c', {2, 3, 1}, {0., 2., 7., 3., 6., 9.}, sd::DataType::INT32);
2019-06-06 14:21:15 +02:00
auto updates = NDArrayFactory::create<float>('c', {2,3, 3,4});
auto shape = NDArrayFactory::create<int>('c', {3}, {10, 3, 4});
auto exp = NDArrayFactory::create<float>('c', {10, 3, 4}, {1.f, 2.f, 3.f, 4., 5.f, 6.f, 7.f, 8., 9.f, 10.f, 11.f, 12., 0.f, 0.f, 0.f, 0., 0.f, 0.f, 0.f, 0., 0.f, 0.f, 0.f, 0.,
13.f, 14.f, 15.f, 16.,17.f, 18.f, 19.f, 20.,21.f, 22.f, 23.f, 24.,37.f, 38.f, 39.f, 40.,41.f, 42.f, 43.f, 44.,45.f, 46.f, 47.f, 48.,
0.f, 0.f, 0.f, 0., 0.f, 0.f, 0.f, 0., 0.f, 0.f, 0.f, 0., 0.f, 0.f, 0.f, 0., 0.f, 0.f, 0.f, 0., 0.f, 0.f, 0.f, 0.,
49.f, 50.f, 51.f, 52.,53.f, 54.f, 55.f, 56.,57.f, 58.f, 59.f, 60.,25.f, 26.f, 27.f, 28.,29.f, 30.f, 31.f, 32.,33.f, 34.f, 35.f, 36.,
0.f, 0.f, 0.f, 0., 0.f, 0.f, 0.f, 0., 0.f, 0.f, 0.f, 0.,61.f, 62.f, 63.f, 64.,65.f, 66.f, 67.f, 68.,69.f, 70.f, 71.f, 72.,});
updates.linspace(1.f);
sd::ops::scatter_nd op;
auto result = op.evaluate({&indices, &updates, &shape}, {}, {false, true});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
////////////////////////////////////////////////////////////////////////
TEST_F(ParityOpsTests, scatterND_test4) {
NDArray indices('c', {4, 1}, {4., 3., 1., 7.}, sd::DataType::INT32);
2019-06-06 14:21:15 +02:00
auto updates = NDArrayFactory::create<float>('c', {4}, {9.f, 10.f, 11.f, 12.f});
auto shape = NDArrayFactory::create<int>('c', {1}, {8});
auto exp = NDArrayFactory::create<float>('c', {8}, {0.f, 11.f, 0.f, 10.f, 9.f, 0.f, 0.f, 12.f});
sd::ops::scatter_nd op;
auto result = op.evaluate({&indices, &updates, &shape}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
////////////////////////////////////////////////////////////////////////
TEST_F(ParityOpsTests, scatterND_test5) {
NDArray indices('c', {4, 1}, {1, 1, 1, 1}, sd::DataType::INT32);
2019-06-06 14:21:15 +02:00
auto updates = NDArrayFactory::create<float>('c', {4}, {1.f, 2.f, 3.f, 4.f});
auto shape = NDArrayFactory::create<int>('c', {1}, {8});
auto exp = NDArrayFactory::create<float>('c', {8}, {0.f, 10.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f});
sd::ops::scatter_nd op;
auto result = op.evaluate({&indices, &updates, &shape}, {}, {}, {true});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
// z->printBuffer();
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
////////////////////////////////////////////////////////////////////////
TEST_F(ParityOpsTests, scatterND_test6) {
NDArray indices('c', {3, 2}, {0,1,1,0,3,2}, sd::DataType::INT32);
NDArray updates('c', {3, 2, 3}, sd::DataType::FLOAT32);
NDArray shape('c', {4}, {5,4,2,3}, sd::DataType::INT32);
2019-06-06 14:21:15 +02:00
NDArray exp('c', {5,4,2,3}, {0., 0., 0.,0., 0., 0.,1., 2., 3.,4., 5., 6.,0., 0., 0.,0., 0., 0., 0., 0., 0.,0., 0., 0.,
7., 8., 9., 10., 11., 12., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 13., 14., 15., 16., 17., 18., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.}, sd::DataType::FLOAT32);
2019-06-06 14:21:15 +02:00
updates.linspace(1);
sd::ops::scatter_nd op;
auto result = op.evaluate({&indices, &updates, &shape}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
// z->printBuffer();
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
////////////////////////////////////////////////////////////////////////
TEST_F(ParityOpsTests, scatterND_test7) {
NDArray indices('c', {4,3,2}, {0,1,1,0,3,2,1,0,0,1,1,0,3,2,1,0,0,1,1,0,3,2,1,0}, sd::DataType::INT32);
NDArray updates('c', {4,3,2,3}, sd::DataType::FLOAT32);
NDArray shape('c', {4}, {5,4,2,3}, sd::DataType::INT32);
2019-06-06 14:21:15 +02:00
NDArray exp('c', {5,4,2,3}, {0., 0., 0., 0., 0., 0., 75., 78., 81., 84., 87., 90., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
222., 228., 234., 240., 246., 252., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 111., 114., 117., 120., 123., 126., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.}, sd::DataType::FLOAT32);
2019-06-06 14:21:15 +02:00
updates.linspace(1);
sd::ops::scatter_nd op;
auto result = op.evaluate({&indices, &updates, &shape}, {}, {}, {true, true});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
// z->printBuffer();
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
////////////////////////////////////////////////////////////////////////
TEST_F(ParityOpsTests, scatterND_test8) {
NDArray indices('c', {3, 2}, {0,0, 1,1, 2,2}, sd::DataType::INT32);
2019-06-06 14:21:15 +02:00
auto updates = NDArrayFactory::create<float>('c', {3}, {1.f, 2.f, 3.f});
auto shape = NDArrayFactory::create<int>('c', {2}, {6,4});
auto exp = NDArrayFactory::create<float>('c', {6,4}, {1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0});
sd::ops::scatter_nd op;
auto result = op.evaluate({&indices, &updates, &shape}, {}, {true});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
// z->printBuffer();
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
////////////////////////////////////////////////////////////////////////
TEST_F(ParityOpsTests, scatterND_test9) {
NDArray indices('c', {2, 3, 1}, {0., 20., 7., 30., 6., 90.}, sd::DataType::INT32);
auto updates = NDArrayFactory::create<float>('c', {2,3, 3,4});
auto shape = NDArrayFactory::create<int>('c', {3}, {10, 3, 4});
auto output = NDArrayFactory::create<float>('c', {10, 3, 4});
sd::ops::scatter_nd op;
ASSERT_ANY_THROW(auto result = op.execute({&indices, &updates, &shape}, {&output}, {}, {}, {false, true}));
}
2019-06-06 14:21:15 +02:00
////////////////////////////////////////////////////////////////////////
TEST_F(ParityOpsTests, scatterND_add_test1) {
auto input = NDArrayFactory::create<float>('c', {8}, {1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f});
NDArray indices('c', {4, 1}, {4., 3., 1., 7.}, sd::DataType::INT32);
2019-06-06 14:21:15 +02:00
auto updates = NDArrayFactory::create<float>('c', {4}, {9.f, 10.f, 11.f, 12.f});
auto exp = NDArrayFactory::create<float>('c', {8}, {1.f, 13.f, 3.f, 14.f, 14.f, 6.f, 7.f, 20.f});
sd::ops::scatter_nd_add op;
auto result = op.evaluate({&input, &indices, &updates}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
////////////////////////////////////////////////////////////////////////
TEST_F(ParityOpsTests, scatterND_add_test2) {
auto input = NDArrayFactory::create<float>('c', {6, 4});
NDArray indices('c', {3, 3, 2}, {0.f,0.f, 1.f,1.f, 2.f,2.f, 3.f,3.f, 4.f,0.f, 5.f,1.f, 0.f,2.f, 1.f,3.f, 2.f,0.f}, sd::DataType::INT32);
2019-06-06 14:21:15 +02:00
auto updates = NDArrayFactory::create<float>('c', {3,3});
auto exp = NDArrayFactory::create<float>('c', {6,4}, {1.f,0.f,7.f,0.f, 0.f,2.f,0.f,8.f, 9.f,0.f,3.f,0.f, 0.f,0.f,0.f,4.f, 5.f,0.f,0.f,0.f, 0.f,6.f,0.f,0.f});
input = 0.f;
updates.linspace(1.f);
sd::ops::scatter_nd_add op;
auto result = op.evaluate({&input, &indices, &updates}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
// z->printIndexedBuffer();
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
////////////////////////////////////////////////////////////////////////
TEST_F(ParityOpsTests, scatterND_add_test3) {
auto input = NDArrayFactory::create<float>('c', {6, 4});
NDArray indices('c', {2, 3, 1}, {5.f, 1.f, 2.f, 3.f, 4.f, 0.f}, sd::DataType::INT32);
2019-06-06 14:21:15 +02:00
auto updates = NDArrayFactory::create<float>('c', {2,3,4});
auto exp = NDArrayFactory::create<float>('c', {6,4}, {21.f, 22.f, 23.f, 24.f, 5.f, 6.f, 7.f, 8.f, 9.f, 10.f, 11.f, 12.f,13.f, 14.f, 15.f, 16.f,17.f, 18.f, 19.f, 20.f, 1.f, 2.f, 3.f, 4.f});
input = 0.f;
updates.linspace(1.f);
sd::ops::scatter_nd_add op;
auto result = op.evaluate({&input, &indices, &updates}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
//////////////////////////////////////////////////////////////////////
TEST_F(ParityOpsTests, scatterND_add_test4) {
auto input = NDArrayFactory::create<float>('c', {6, 4, 5});
NDArray indices('c', {3, 3, 2}, {0.f,0.f, 1.f,1.f, 2.f,2.f, 3.f,3.f, 4.f,0.f, 5.f,1.f, 0.f,2.f, 1.f,3.f, 2.f,0.f}, sd::DataType::INT32);
2019-06-06 14:21:15 +02:00
auto updates = NDArrayFactory::create<float>('c', {3,3,5});
auto exp = NDArrayFactory::create<float>('c', {6,4,5}, {1.f, 2.f, 3.f, 4.f, 5.f, 0.f, 0.f, 0.f, 0.f, 0.f,31.f, 32.f, 33.f, 34.f, 35.f, 0.f, 0.f, 0.f, 0.f, 0.f,
0.f, 0.f, 0.f, 0.f, 0.f, 6.f, 7.f, 8.f, 9.f, 10.f, 0.f, 0.f, 0.f, 0.f, 0.f,36.f, 37.f, 38.f, 39.f, 40.f,
41.f, 42.f, 43.f, 44.f, 45.f, 0.f, 0.f, 0.f, 0.f, 0.f,11.f, 12.f, 13.f, 14.f, 15.f, 0.f, 0.f, 0.f, 0.f, 0.f,
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,16.f, 17.f, 18.f, 19.f, 20.f,
21.f, 22.f, 23.f, 24.f, 25.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
0.f, 0.f, 0.f, 0.f, 0.f,26.f, 27.f, 28.f, 29.f, 30.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f});
input = 0.f;
updates.linspace(1.f);
sd::ops::scatter_nd_add op;
auto result = op.evaluate({&input, &indices, &updates}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
//////////////////////////////////////////////////////////////////////
TEST_F(ParityOpsTests, scatterND_add_test5) {
auto input = NDArrayFactory::create<float>('c', {6,5,4,3,2});
NDArray indices('c', {2,2,3}, {0.f,0.f,0.f, 1.f,1.f,1.f, 2.f,2.f,2.f, 3.f,3.f,3.f}, sd::DataType::INT32);
2019-06-06 14:21:15 +02:00
auto updates = NDArrayFactory::create<float>('c', {2,2,3,2});
auto exp = NDArrayFactory::create<float>('c', {6,5,4,3,2}, { 1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 7.f, 8.f, 9.f, 10.f,11.f, 12.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,13.f, 14.f,15.f, 16.f,17.f, 18.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,19.f, 20.f,21.f, 22.f,23.f, 24.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f});
input = 0.f;
updates.linspace(1.f);
sd::ops::scatter_nd_add op;
auto result = op.evaluate({&input, &indices, &updates}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
////////////////////////////////////////////////////////////////////////
TEST_F(ParityOpsTests, scatterND_add_test6) {
auto input = NDArrayFactory::create<float>('c', {6, 4});
NDArray indices('c', {2, 3, 1}, {50.f, 1.f, 2.f, 3.f, 40.f, 0.f}, sd::DataType::INT32);
auto updates = NDArrayFactory::create<float>('c', {2,3,4});
auto output = NDArrayFactory::create<float>('c', {6,4});
sd::ops::scatter_nd_add op;
ASSERT_ANY_THROW(op.execute({&input, &indices, &updates}, {&output}, {}, {}, {false, true}));
}
2019-06-06 14:21:15 +02:00
////////////////////////////////////////////////////////////////////////
TEST_F(ParityOpsTests, scatterND_sub_test1) {
auto input = NDArrayFactory::create<float>('c', {8}, {1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f});
NDArray indices('c', {4, 1}, {4.f, 3.f, 1.f, 7.f}, sd::DataType::INT32);
2019-06-06 14:21:15 +02:00
auto updates = NDArrayFactory::create<float>('c', {4}, {9.f, 10.f, 11.f, 12.f});
auto exp = NDArrayFactory::create<float>('c', {8}, {1.f, -9.f, 3.f, -6.f, -4.f, 6.f, 7.f, -4.f});
sd::ops::scatter_nd_sub op;
auto result = op.evaluate({&input, &indices, &updates}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
////////////////////////////////////////////////////////////////////////
TEST_F(ParityOpsTests, scatterND_sub_test2) {
auto input = NDArrayFactory::create<float>('c', {6, 4});
NDArray indices('c', {3, 3, 2}, {0.f,0.f, 1.f,1.f, 2.f,2.f, 3.f,3.f, 4.f,0.f, 5.f,1.f, 0.f,2.f, 1.f,3.f, 2.f,0.f}, sd::DataType::INT32);
2019-06-06 14:21:15 +02:00
auto updates = NDArrayFactory::create<float>('c', {3,3});
auto exp = NDArrayFactory::create<float>('c', {6,4}, {-1.f,0.f,-7.f,0.f, 0.f,-2.f,0.f,-8.f, -9.f,0.f,-3.f,0.f, 0.f,0.f,0.f,-4.f, -5.f,0.f,0.f,0.f, 0.f,-6.f,0.f,0.f});
input = 0.f;
updates.linspace(1.f);
sd::ops::scatter_nd_sub op;
auto result = op.evaluate({&input, &indices, &updates}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
//exp.printIndexedBuffer("e");
//z->printIndexedBuffer("z");
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
////////////////////////////////////////////////////////////////////////
TEST_F(ParityOpsTests, scatterND_sub_test3) {
auto input = NDArrayFactory::create<float>('c', {6, 4});
NDArray indices('c', {2, 3, 1}, {5.f, 1.f, 2.f, 3.f,4.f, 0.f}, sd::DataType::INT32);
2019-06-06 14:21:15 +02:00
auto updates = NDArrayFactory::create<float>('c', {2,3,4});
auto exp = NDArrayFactory::create<float>('c', {6,4}, {-21.f,-22.f,-23.f,-24., -5.f, -6.f, -7.f, -8., -9.f,-10.f,-11.f,-12., -13.f,-14.f,-15.f,-16., -17.f,-18.f,-19.f,-20., -1.f, -2.f, -3.f, -4.f});
input = 0.f;
updates.linspace(1.f);
sd::ops::scatter_nd_sub op;
auto result = op.evaluate({&input, &indices, &updates}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
//////////////////////////////////////////////////////////////////////
TEST_F(ParityOpsTests, scatterND_sub_test4) {
auto input = NDArrayFactory::create<float>('c', {6, 4, 5});
NDArray indices('c', {3, 3, 2}, {0.f,0.f, 1.f,1.f, 2.f,2.f, 3.f,3.f, 4.f,0.f, 5.f,1.f, 0.f,2.f, 1.f,3.f, 2.f,0.f}, sd::DataType::INT32);
2019-06-06 14:21:15 +02:00
auto updates = NDArrayFactory::create<float>('c', {3,3,5});
auto exp = NDArrayFactory::create<float>('c', {6,4,5}, {-1.f, -2.f, -3.f, -4.f, -5.f, 0.f, 0.f, 0.f, 0.f, 0.f,-31.f, -32.f, -33.f, -34.f, -35.f, 0.f, 0.f, 0.f, 0.f, 0.f,
0.f, 0.f, 0.f, 0.f, 0.f, -6.f, -7.f, -8.f, -9.f, -10.f, 0.f, 0.f, 0.f, 0.f, 0.f,-36.f, -37.f, -38.f, -39.f, -40.f,
-41.f, -42.f, -43.f, -44.f, -45.f, 0.f, 0.f, 0.f, 0.f, 0.f,-11.f, -12.f, -13.f, -14.f, -15.f, 0.f, 0.f, 0.f, 0.f, 0.f,
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,-16.f, -17.f, -18.f, -19.f, -20.f,
-21.f, -22.f, -23.f, -24.f, -25.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
0.f, 0.f, 0.f, 0.f, 0.f,-26.f, -27.f, -28.f, -29.f, -30.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f});
input = 0.f;
updates.linspace(1.f);
sd::ops::scatter_nd_sub op;
auto result = op.evaluate({&input, &indices, &updates}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
//////////////////////////////////////////////////////////////////////
TEST_F(ParityOpsTests, scatterND_sub_test5) {
auto input = NDArrayFactory::create<float>('c', {6,5,4,3,2});
NDArray indices('c', {2,2,3}, {0.f,0.f,0.f, 1.f,1.f,1.f, 2.f,2.f,2.f, 3.f,3.f,3.f}, sd::DataType::INT32);
2019-06-06 14:21:15 +02:00
auto updates = NDArrayFactory::create<float>('c', {2,2,3,2});
auto exp = NDArrayFactory::create<float>('c', {6,5,4,3,2}, { -1.f, -2.f, -3.f, -4.f, -5.f, -6.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, -7.f, -8.f, -9.f, -10.f,-11.f, -12.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,-13.f, -14.f,-15.f, -16.f,-17.f, -18.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,-19.f, -20.f,-21.f, -22.f,-23.f,-24.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f});
input = 0.f;
updates.linspace(1.f);
sd::ops::scatter_nd_sub op;
auto result = op.evaluate({&input, &indices, &updates}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
////////////////////////////////////////////////////////////////////////
TEST_F(ParityOpsTests, scatterND_update_test1) {
auto input = NDArrayFactory::create<float>('c', {8}, {1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f});
NDArray indices('c', {4, 1}, {4.f, 3.f, 1.f, 7.f}, sd::DataType::INT32);
2019-06-06 14:21:15 +02:00
auto updates = NDArrayFactory::create<float>('c', {4}, {9.f, 10.f, 11.f, 12.f});
auto exp = NDArrayFactory::create<float>('c', {8}, {1.f, 11.f, 3.f, 10.f, 9.f, 6.f, 7.f, 12.f});
sd::ops::scatter_nd_update op;
auto result = op.evaluate({&input, &indices, &updates}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
////////////////////////////////////////////////////////////////////////
TEST_F(ParityOpsTests, scatterND_update_test2) {
auto input = NDArrayFactory::create<float>('c', {6, 4});
NDArray indices('c', {3, 3, 2}, {0.f,0.f, 1.f,1.f, 2.f,2.f, 3.f,3.f, 4.f,0.f, 5.f,1.f, 0.f,2.f, 1.f,3.f, 2.f,0.f}, sd::DataType::INT32);
2019-06-06 14:21:15 +02:00
auto updates = NDArrayFactory::create<float>('c', {3,3});
auto exp = NDArrayFactory::create<float>('c', {6,4}, {1.f,-1.f,7.f,-1.f, -1.f,2.f,-1.f,8.f, 9.f,-1.f,3.f,-1.f, -1.f,-1.f,-1.f,4.f, 5.f,-1.f,-1.f,-1.f, -1.f,6.f,-1.f,-1.f});
input = -1.f;
updates.linspace(1.f);
sd::ops::scatter_nd_update op;
auto result = op.evaluate({&input, &indices, &updates}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
// z->printIndexedBuffer();
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
////////////////////////////////////////////////////////////////////////
TEST_F(ParityOpsTests, scatterND_update_test3) {
auto input = NDArrayFactory::create<float>('c', {6, 4});
NDArray indices('c', {2, 3, 1}, {5.f, 1.f, 2.f, 3.f, 4.f, 0.f}, sd::DataType::INT32);
2019-06-06 14:21:15 +02:00
auto updates = NDArrayFactory::create<float>('c', {2,3,4});
auto exp = NDArrayFactory::create<float>('c', {6,4}, {21.f, 22.f, 23.f, 24.f, 5.f, 6.f, 7.f, 8.f, 9.f, 10.f, 11.f, 12.f,13.f, 14.f, 15.f, 16.f,17.f, 18.f, 19.f, 20.f, 1.f, 2.f, 3.f, 4.f,});
input = -1.f;
updates.linspace(1.f);
sd::ops::scatter_nd_update op;
auto result = op.evaluate({&input, &indices, &updates}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
// z->printBuffer();
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
//////////////////////////////////////////////////////////////////////
TEST_F(ParityOpsTests, scatterND_update_test4) {
auto input = NDArrayFactory::create<float>('c', {6, 4, 5});
NDArray indices('c', {3, 3, 2}, {0.f,0.f, 1.f,1.f, 2.f,2.f, 3.f,3.f, 4.f,0.f, 5.f,1.f, 0.f,2.f, 1.f,3.f, 2.f,0.f}, sd::DataType::INT32);
2019-06-06 14:21:15 +02:00
auto updates = NDArrayFactory::create<float>('c', {3,3,5});
auto exp = NDArrayFactory::create<float>('c', {6,4,5}, {1.f, 2.f, 3.f, 4.f, 5.f, -1.f, -1.f, -1.f, -1.f, -1.f,31.f, 32.f, 33.f, 34.f, 35.f, -1.f, -1.f, -1.f, -1.f, -1.f,
-1.f, -1.f, -1.f, -1.f, -1.f, 6.f, 7.f, 8.f, 9.f, 10.f, -1.f, -1.f, -1.f, -1.f, -1.f,36.f, 37.f, 38.f, 39.f, 40.f,
41.f, 42.f, 43.f, 44.f, 45.f, -1.f, -1.f, -1.f, -1.f, -1.f,11.f, 12.f, 13.f, 14.f, 15.f, -1.f, -1.f, -1.f, -1.f, -1.f,
-1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f,16.f, 17.f, 18.f, 19.f, 20.f,
21.f, 22.f, 23.f, 24.f, 25.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f,
-1.f, -1.f, -1.f, -1.f, -1.f,26.f, 27.f, 28.f, 29.f, 30.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f});
input = -1.f;
updates.linspace(1.f);
sd::ops::scatter_nd_update op;
auto result = op.evaluate({&input, &indices, &updates}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
//////////////////////////////////////////////////////////////////////
TEST_F(ParityOpsTests, scatterND_update_test5) {
auto input = NDArrayFactory::create<float>('c', {6,5,4,3,2});
NDArray indices('c', {2,2,3}, {0.f,0.f,0.f, 1.f,1.f,1.f, 2.f,2.f,2.f, 3.f,3.f,3.f}, sd::DataType::INT32);
2019-06-06 14:21:15 +02:00
auto updates = NDArrayFactory::create<float>('c', {2,2,3,2});
auto exp = NDArrayFactory::create<float>('c', {6,5,4,3,2}, { 1.f, 2.f, 3.f, 4.f, 5.f, 6.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f,
-1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f,
-1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f,
-1.f, -1.f, -1.f, -1.f, -1.f, -1.f, 7.f, 8.f, 9.f, 10.f,11.f, 12.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f,
-1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f,
-1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f,
-1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f,13.f, 14.f,15.f, 16.f,17.f, 18.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f,
-1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f,
-1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f,
-1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f,19.f, 20.f,21.f, 22.f,23.f, 24.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f,
-1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f,
-1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f,
-1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f,
-1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f,
-1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f});
input = -1.f;
updates.linspace(1.f);
sd::ops::scatter_nd_update op;
auto result = op.evaluate({&input, &indices, &updates}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, result.status());
2019-06-06 14:21:15 +02:00
auto z = result.at(0);
2019-06-06 14:21:15 +02:00
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
2019-06-06 14:21:15 +02:00
}
////////////////////////////////////////////////////////////////////////
TEST_F(ParityOpsTests, scatterND_update_test6) {
auto input = NDArrayFactory::create<float>('c', {6, 4});
NDArray indices('c', {3, 3, 2}, {0.f,0.f, 10.f,1.f, 20.f,2.f, 30.f,3.f, 40.f,0.f, 50.f,1.f, 0.f,2.f, 1.f,3.f, 2.f,0.f}, sd::DataType::INT32);
auto updates = NDArrayFactory::create<float>('c', {3,3});
auto output = NDArrayFactory::create<float>('c', {6,4});
sd::ops::scatter_nd_update op;
ASSERT_ANY_THROW(op.execute({&input, &indices, &updates}, {&output}, {}, {}, {true, true}));
}
[WIP] More of CUDA operations (#69) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * - gruCell_bp further Signed-off-by: Yurii <yurii@skymind.io> * - further work on gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * Inverse matrix cublas implementation. Partial working revision. * Separation of segment ops helpers. Max separation. * Separated segment_min ops. * Separation of segment_mean/sum/prod/sqrtN ops heleprs. * Fixed diagonal processing with LUP decomposition. * Modified inversion approach using current state of LU decomposition. * Implementation of matrix_inverse op with cuda kernels. Working revision. * Implemented sequence_mask cuda helper. Eliminated waste printf with matrix_inverse implementation. Added proper tests. * - further work on gruCell_bp (ff/cuda) Signed-off-by: Yurii <yurii@skymind.io> * comment one test for gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * - provide cuda static_rnn Signed-off-by: Yurii <yurii@skymind.io> * Refactored random_shuffle op to use new random generator. * Refactored random_shuffle op helper. * Fixed debug tests with random ops tests. * Implement random_shuffle op cuda kernel helper and tests. * - provide cuda scatter_update Signed-off-by: Yurii <yurii@skymind.io> * Implementation of random_shuffle for linear case with cuda kernels and tests. * Implemented random_shuffle with cuda kernels. Final revision. * - finally gruCell_bp is completed Signed-off-by: Yurii <yurii@skymind.io> * Dropout op cuda helper implementation. * Implemented dropout_bp cuda helper. * Implemented alpha_dropout_bp with cuda kernel helpers. * Refactored helper. * Implementation of suppresion helper with cuda kernels. * - provide cpu code fot hsvToRgb, rgbToHsv, adjustHue Signed-off-by: Yurii <yurii@skymind.io> * Using sort by value method. * Implementation of image.non_max_suppression op cuda-based helper. * - correcting and testing adjust_hue, adjust_saturation cpu/cuda code Signed-off-by: Yurii <yurii@skymind.io> * Added cuda device prefixes to declarations. * Implementation of hashcode op with cuda helper. Initital revision. * rnn cu impl removed Signed-off-by: raver119 <raver119@gmail.com>
2019-07-20 07:58:44 +02:00
//////////////////////////////////////////////////////////////////////
2019-06-06 14:21:15 +02:00
TEST_F(ParityOpsTests, scatter_update_1) {
NDArray x('c', {2,2}, {1,2,3,4}, sd::DataType::INT32);
NDArray updates('c', {2,2}, {10,20,30,40}, sd::DataType::INT32);
[WIP] More of CUDA operations (#69) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * - gruCell_bp further Signed-off-by: Yurii <yurii@skymind.io> * - further work on gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * Inverse matrix cublas implementation. Partial working revision. * Separation of segment ops helpers. Max separation. * Separated segment_min ops. * Separation of segment_mean/sum/prod/sqrtN ops heleprs. * Fixed diagonal processing with LUP decomposition. * Modified inversion approach using current state of LU decomposition. * Implementation of matrix_inverse op with cuda kernels. Working revision. * Implemented sequence_mask cuda helper. Eliminated waste printf with matrix_inverse implementation. Added proper tests. * - further work on gruCell_bp (ff/cuda) Signed-off-by: Yurii <yurii@skymind.io> * comment one test for gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * - provide cuda static_rnn Signed-off-by: Yurii <yurii@skymind.io> * Refactored random_shuffle op to use new random generator. * Refactored random_shuffle op helper. * Fixed debug tests with random ops tests. * Implement random_shuffle op cuda kernel helper and tests. * - provide cuda scatter_update Signed-off-by: Yurii <yurii@skymind.io> * Implementation of random_shuffle for linear case with cuda kernels and tests. * Implemented random_shuffle with cuda kernels. Final revision. * - finally gruCell_bp is completed Signed-off-by: Yurii <yurii@skymind.io> * Dropout op cuda helper implementation. * Implemented dropout_bp cuda helper. * Implemented alpha_dropout_bp with cuda kernel helpers. * Refactored helper. * Implementation of suppresion helper with cuda kernels. * - provide cpu code fot hsvToRgb, rgbToHsv, adjustHue Signed-off-by: Yurii <yurii@skymind.io> * Using sort by value method. * Implementation of image.non_max_suppression op cuda-based helper. * - correcting and testing adjust_hue, adjust_saturation cpu/cuda code Signed-off-by: Yurii <yurii@skymind.io> * Added cuda device prefixes to declarations. * Implementation of hashcode op with cuda helper. Initital revision. * rnn cu impl removed Signed-off-by: raver119 <raver119@gmail.com>
2019-07-20 07:58:44 +02:00
NDArray exp('c', {2,2}, {30,40,10,20}, sd::DataType::INT32);
[WIP] More of CUDA operations (#69) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * - gruCell_bp further Signed-off-by: Yurii <yurii@skymind.io> * - further work on gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * Inverse matrix cublas implementation. Partial working revision. * Separation of segment ops helpers. Max separation. * Separated segment_min ops. * Separation of segment_mean/sum/prod/sqrtN ops heleprs. * Fixed diagonal processing with LUP decomposition. * Modified inversion approach using current state of LU decomposition. * Implementation of matrix_inverse op with cuda kernels. Working revision. * Implemented sequence_mask cuda helper. Eliminated waste printf with matrix_inverse implementation. Added proper tests. * - further work on gruCell_bp (ff/cuda) Signed-off-by: Yurii <yurii@skymind.io> * comment one test for gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * - provide cuda static_rnn Signed-off-by: Yurii <yurii@skymind.io> * Refactored random_shuffle op to use new random generator. * Refactored random_shuffle op helper. * Fixed debug tests with random ops tests. * Implement random_shuffle op cuda kernel helper and tests. * - provide cuda scatter_update Signed-off-by: Yurii <yurii@skymind.io> * Implementation of random_shuffle for linear case with cuda kernels and tests. * Implemented random_shuffle with cuda kernels. Final revision. * - finally gruCell_bp is completed Signed-off-by: Yurii <yurii@skymind.io> * Dropout op cuda helper implementation. * Implemented dropout_bp cuda helper. * Implemented alpha_dropout_bp with cuda kernel helpers. * Refactored helper. * Implementation of suppresion helper with cuda kernels. * - provide cpu code fot hsvToRgb, rgbToHsv, adjustHue Signed-off-by: Yurii <yurii@skymind.io> * Using sort by value method. * Implementation of image.non_max_suppression op cuda-based helper. * - correcting and testing adjust_hue, adjust_saturation cpu/cuda code Signed-off-by: Yurii <yurii@skymind.io> * Added cuda device prefixes to declarations. * Implementation of hashcode op with cuda helper. Initital revision. * rnn cu impl removed Signed-off-by: raver119 <raver119@gmail.com>
2019-07-20 07:58:44 +02:00
sd::ops::scatter_update op;
auto results = op.evaluate({&x, &updates}, {}, {6, 1,1, 2,1,0});
[WIP] More of CUDA operations (#69) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * - gruCell_bp further Signed-off-by: Yurii <yurii@skymind.io> * - further work on gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * Inverse matrix cublas implementation. Partial working revision. * Separation of segment ops helpers. Max separation. * Separated segment_min ops. * Separation of segment_mean/sum/prod/sqrtN ops heleprs. * Fixed diagonal processing with LUP decomposition. * Modified inversion approach using current state of LU decomposition. * Implementation of matrix_inverse op with cuda kernels. Working revision. * Implemented sequence_mask cuda helper. Eliminated waste printf with matrix_inverse implementation. Added proper tests. * - further work on gruCell_bp (ff/cuda) Signed-off-by: Yurii <yurii@skymind.io> * comment one test for gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * - provide cuda static_rnn Signed-off-by: Yurii <yurii@skymind.io> * Refactored random_shuffle op to use new random generator. * Refactored random_shuffle op helper. * Fixed debug tests with random ops tests. * Implement random_shuffle op cuda kernel helper and tests. * - provide cuda scatter_update Signed-off-by: Yurii <yurii@skymind.io> * Implementation of random_shuffle for linear case with cuda kernels and tests. * Implemented random_shuffle with cuda kernels. Final revision. * - finally gruCell_bp is completed Signed-off-by: Yurii <yurii@skymind.io> * Dropout op cuda helper implementation. * Implemented dropout_bp cuda helper. * Implemented alpha_dropout_bp with cuda kernel helpers. * Refactored helper. * Implementation of suppresion helper with cuda kernels. * - provide cpu code fot hsvToRgb, rgbToHsv, adjustHue Signed-off-by: Yurii <yurii@skymind.io> * Using sort by value method. * Implementation of image.non_max_suppression op cuda-based helper. * - correcting and testing adjust_hue, adjust_saturation cpu/cuda code Signed-off-by: Yurii <yurii@skymind.io> * Added cuda device prefixes to declarations. * Implementation of hashcode op with cuda helper. Initital revision. * rnn cu impl removed Signed-off-by: raver119 <raver119@gmail.com>
2019-07-20 07:58:44 +02:00
ASSERT_EQ(ND4J_STATUS_OK, results.status());
[WIP] More of CUDA operations (#69) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * - gruCell_bp further Signed-off-by: Yurii <yurii@skymind.io> * - further work on gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * Inverse matrix cublas implementation. Partial working revision. * Separation of segment ops helpers. Max separation. * Separated segment_min ops. * Separation of segment_mean/sum/prod/sqrtN ops heleprs. * Fixed diagonal processing with LUP decomposition. * Modified inversion approach using current state of LU decomposition. * Implementation of matrix_inverse op with cuda kernels. Working revision. * Implemented sequence_mask cuda helper. Eliminated waste printf with matrix_inverse implementation. Added proper tests. * - further work on gruCell_bp (ff/cuda) Signed-off-by: Yurii <yurii@skymind.io> * comment one test for gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * - provide cuda static_rnn Signed-off-by: Yurii <yurii@skymind.io> * Refactored random_shuffle op to use new random generator. * Refactored random_shuffle op helper. * Fixed debug tests with random ops tests. * Implement random_shuffle op cuda kernel helper and tests. * - provide cuda scatter_update Signed-off-by: Yurii <yurii@skymind.io> * Implementation of random_shuffle for linear case with cuda kernels and tests. * Implemented random_shuffle with cuda kernels. Final revision. * - finally gruCell_bp is completed Signed-off-by: Yurii <yurii@skymind.io> * Dropout op cuda helper implementation. * Implemented dropout_bp cuda helper. * Implemented alpha_dropout_bp with cuda kernel helpers. * Refactored helper. * Implementation of suppresion helper with cuda kernels. * - provide cpu code fot hsvToRgb, rgbToHsv, adjustHue Signed-off-by: Yurii <yurii@skymind.io> * Using sort by value method. * Implementation of image.non_max_suppression op cuda-based helper. * - correcting and testing adjust_hue, adjust_saturation cpu/cuda code Signed-off-by: Yurii <yurii@skymind.io> * Added cuda device prefixes to declarations. * Implementation of hashcode op with cuda helper. Initital revision. * rnn cu impl removed Signed-off-by: raver119 <raver119@gmail.com>
2019-07-20 07:58:44 +02:00
// x.printBuffer();
2019-06-06 14:21:15 +02:00
[WIP] More of CUDA operations (#69) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * - gruCell_bp further Signed-off-by: Yurii <yurii@skymind.io> * - further work on gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * Inverse matrix cublas implementation. Partial working revision. * Separation of segment ops helpers. Max separation. * Separated segment_min ops. * Separation of segment_mean/sum/prod/sqrtN ops heleprs. * Fixed diagonal processing with LUP decomposition. * Modified inversion approach using current state of LU decomposition. * Implementation of matrix_inverse op with cuda kernels. Working revision. * Implemented sequence_mask cuda helper. Eliminated waste printf with matrix_inverse implementation. Added proper tests. * - further work on gruCell_bp (ff/cuda) Signed-off-by: Yurii <yurii@skymind.io> * comment one test for gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * - provide cuda static_rnn Signed-off-by: Yurii <yurii@skymind.io> * Refactored random_shuffle op to use new random generator. * Refactored random_shuffle op helper. * Fixed debug tests with random ops tests. * Implement random_shuffle op cuda kernel helper and tests. * - provide cuda scatter_update Signed-off-by: Yurii <yurii@skymind.io> * Implementation of random_shuffle for linear case with cuda kernels and tests. * Implemented random_shuffle with cuda kernels. Final revision. * - finally gruCell_bp is completed Signed-off-by: Yurii <yurii@skymind.io> * Dropout op cuda helper implementation. * Implemented dropout_bp cuda helper. * Implemented alpha_dropout_bp with cuda kernel helpers. * Refactored helper. * Implementation of suppresion helper with cuda kernels. * - provide cpu code fot hsvToRgb, rgbToHsv, adjustHue Signed-off-by: Yurii <yurii@skymind.io> * Using sort by value method. * Implementation of image.non_max_suppression op cuda-based helper. * - correcting and testing adjust_hue, adjust_saturation cpu/cuda code Signed-off-by: Yurii <yurii@skymind.io> * Added cuda device prefixes to declarations. * Implementation of hashcode op with cuda helper. Initital revision. * rnn cu impl removed Signed-off-by: raver119 <raver119@gmail.com>
2019-07-20 07:58:44 +02:00
ASSERT_TRUE(exp.isSameShape(x));
ASSERT_TRUE(exp.equalsTo(x));
2019-06-06 14:21:15 +02:00
[WIP] More of CUDA operations (#69) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * - gruCell_bp further Signed-off-by: Yurii <yurii@skymind.io> * - further work on gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * Inverse matrix cublas implementation. Partial working revision. * Separation of segment ops helpers. Max separation. * Separated segment_min ops. * Separation of segment_mean/sum/prod/sqrtN ops heleprs. * Fixed diagonal processing with LUP decomposition. * Modified inversion approach using current state of LU decomposition. * Implementation of matrix_inverse op with cuda kernels. Working revision. * Implemented sequence_mask cuda helper. Eliminated waste printf with matrix_inverse implementation. Added proper tests. * - further work on gruCell_bp (ff/cuda) Signed-off-by: Yurii <yurii@skymind.io> * comment one test for gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * - provide cuda static_rnn Signed-off-by: Yurii <yurii@skymind.io> * Refactored random_shuffle op to use new random generator. * Refactored random_shuffle op helper. * Fixed debug tests with random ops tests. * Implement random_shuffle op cuda kernel helper and tests. * - provide cuda scatter_update Signed-off-by: Yurii <yurii@skymind.io> * Implementation of random_shuffle for linear case with cuda kernels and tests. * Implemented random_shuffle with cuda kernels. Final revision. * - finally gruCell_bp is completed Signed-off-by: Yurii <yurii@skymind.io> * Dropout op cuda helper implementation. * Implemented dropout_bp cuda helper. * Implemented alpha_dropout_bp with cuda kernel helpers. * Refactored helper. * Implementation of suppresion helper with cuda kernels. * - provide cpu code fot hsvToRgb, rgbToHsv, adjustHue Signed-off-by: Yurii <yurii@skymind.io> * Using sort by value method. * Implementation of image.non_max_suppression op cuda-based helper. * - correcting and testing adjust_hue, adjust_saturation cpu/cuda code Signed-off-by: Yurii <yurii@skymind.io> * Added cuda device prefixes to declarations. * Implementation of hashcode op with cuda helper. Initital revision. * rnn cu impl removed Signed-off-by: raver119 <raver119@gmail.com>
2019-07-20 07:58:44 +02:00
}
2019-06-06 14:21:15 +02:00
[WIP] More of CUDA operations (#69) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * - gruCell_bp further Signed-off-by: Yurii <yurii@skymind.io> * - further work on gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * Inverse matrix cublas implementation. Partial working revision. * Separation of segment ops helpers. Max separation. * Separated segment_min ops. * Separation of segment_mean/sum/prod/sqrtN ops heleprs. * Fixed diagonal processing with LUP decomposition. * Modified inversion approach using current state of LU decomposition. * Implementation of matrix_inverse op with cuda kernels. Working revision. * Implemented sequence_mask cuda helper. Eliminated waste printf with matrix_inverse implementation. Added proper tests. * - further work on gruCell_bp (ff/cuda) Signed-off-by: Yurii <yurii@skymind.io> * comment one test for gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * - provide cuda static_rnn Signed-off-by: Yurii <yurii@skymind.io> * Refactored random_shuffle op to use new random generator. * Refactored random_shuffle op helper. * Fixed debug tests with random ops tests. * Implement random_shuffle op cuda kernel helper and tests. * - provide cuda scatter_update Signed-off-by: Yurii <yurii@skymind.io> * Implementation of random_shuffle for linear case with cuda kernels and tests. * Implemented random_shuffle with cuda kernels. Final revision. * - finally gruCell_bp is completed Signed-off-by: Yurii <yurii@skymind.io> * Dropout op cuda helper implementation. * Implemented dropout_bp cuda helper. * Implemented alpha_dropout_bp with cuda kernel helpers. * Refactored helper. * Implementation of suppresion helper with cuda kernels. * - provide cpu code fot hsvToRgb, rgbToHsv, adjustHue Signed-off-by: Yurii <yurii@skymind.io> * Using sort by value method. * Implementation of image.non_max_suppression op cuda-based helper. * - correcting and testing adjust_hue, adjust_saturation cpu/cuda code Signed-off-by: Yurii <yurii@skymind.io> * Added cuda device prefixes to declarations. * Implementation of hashcode op with cuda helper. Initital revision. * rnn cu impl removed Signed-off-by: raver119 <raver119@gmail.com>
2019-07-20 07:58:44 +02:00
//////////////////////////////////////////////////////////////////////
TEST_F(ParityOpsTests, scatter_update_2) {
NDArray x('c', {2,2}, {1,2,3,4}, sd::DataType::INT32);
NDArray updates('c', {2,2}, {10,20,30,40}, sd::DataType::INT32);
[WIP] More of CUDA operations (#69) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * - gruCell_bp further Signed-off-by: Yurii <yurii@skymind.io> * - further work on gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * Inverse matrix cublas implementation. Partial working revision. * Separation of segment ops helpers. Max separation. * Separated segment_min ops. * Separation of segment_mean/sum/prod/sqrtN ops heleprs. * Fixed diagonal processing with LUP decomposition. * Modified inversion approach using current state of LU decomposition. * Implementation of matrix_inverse op with cuda kernels. Working revision. * Implemented sequence_mask cuda helper. Eliminated waste printf with matrix_inverse implementation. Added proper tests. * - further work on gruCell_bp (ff/cuda) Signed-off-by: Yurii <yurii@skymind.io> * comment one test for gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * - provide cuda static_rnn Signed-off-by: Yurii <yurii@skymind.io> * Refactored random_shuffle op to use new random generator. * Refactored random_shuffle op helper. * Fixed debug tests with random ops tests. * Implement random_shuffle op cuda kernel helper and tests. * - provide cuda scatter_update Signed-off-by: Yurii <yurii@skymind.io> * Implementation of random_shuffle for linear case with cuda kernels and tests. * Implemented random_shuffle with cuda kernels. Final revision. * - finally gruCell_bp is completed Signed-off-by: Yurii <yurii@skymind.io> * Dropout op cuda helper implementation. * Implemented dropout_bp cuda helper. * Implemented alpha_dropout_bp with cuda kernel helpers. * Refactored helper. * Implementation of suppresion helper with cuda kernels. * - provide cpu code fot hsvToRgb, rgbToHsv, adjustHue Signed-off-by: Yurii <yurii@skymind.io> * Using sort by value method. * Implementation of image.non_max_suppression op cuda-based helper. * - correcting and testing adjust_hue, adjust_saturation cpu/cuda code Signed-off-by: Yurii <yurii@skymind.io> * Added cuda device prefixes to declarations. * Implementation of hashcode op with cuda helper. Initital revision. * rnn cu impl removed Signed-off-by: raver119 <raver119@gmail.com>
2019-07-20 07:58:44 +02:00
NDArray exp('c', {2,2}, {20,10,40,30}, sd::DataType::INT32);
2019-06-06 14:21:15 +02:00
sd::ops::scatter_update op;
auto results = op.evaluate({&x, &updates}, {}, {6, 1,0, 2,1,0});
2019-06-06 14:21:15 +02:00
ASSERT_EQ(ND4J_STATUS_OK, results.status());
2019-06-06 14:21:15 +02:00
[WIP] More of CUDA operations (#69) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * - gruCell_bp further Signed-off-by: Yurii <yurii@skymind.io> * - further work on gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * Inverse matrix cublas implementation. Partial working revision. * Separation of segment ops helpers. Max separation. * Separated segment_min ops. * Separation of segment_mean/sum/prod/sqrtN ops heleprs. * Fixed diagonal processing with LUP decomposition. * Modified inversion approach using current state of LU decomposition. * Implementation of matrix_inverse op with cuda kernels. Working revision. * Implemented sequence_mask cuda helper. Eliminated waste printf with matrix_inverse implementation. Added proper tests. * - further work on gruCell_bp (ff/cuda) Signed-off-by: Yurii <yurii@skymind.io> * comment one test for gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * - provide cuda static_rnn Signed-off-by: Yurii <yurii@skymind.io> * Refactored random_shuffle op to use new random generator. * Refactored random_shuffle op helper. * Fixed debug tests with random ops tests. * Implement random_shuffle op cuda kernel helper and tests. * - provide cuda scatter_update Signed-off-by: Yurii <yurii@skymind.io> * Implementation of random_shuffle for linear case with cuda kernels and tests. * Implemented random_shuffle with cuda kernels. Final revision. * - finally gruCell_bp is completed Signed-off-by: Yurii <yurii@skymind.io> * Dropout op cuda helper implementation. * Implemented dropout_bp cuda helper. * Implemented alpha_dropout_bp with cuda kernel helpers. * Refactored helper. * Implementation of suppresion helper with cuda kernels. * - provide cpu code fot hsvToRgb, rgbToHsv, adjustHue Signed-off-by: Yurii <yurii@skymind.io> * Using sort by value method. * Implementation of image.non_max_suppression op cuda-based helper. * - correcting and testing adjust_hue, adjust_saturation cpu/cuda code Signed-off-by: Yurii <yurii@skymind.io> * Added cuda device prefixes to declarations. * Implementation of hashcode op with cuda helper. Initital revision. * rnn cu impl removed Signed-off-by: raver119 <raver119@gmail.com>
2019-07-20 07:58:44 +02:00
ASSERT_TRUE(exp.isSameShape(x));
ASSERT_TRUE(exp.equalsTo(x));
2019-06-06 14:21:15 +02:00
2019-06-06 14:21:15 +02:00
}
[WIP] More of CUDA operations (#69) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * - gruCell_bp further Signed-off-by: Yurii <yurii@skymind.io> * - further work on gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * Inverse matrix cublas implementation. Partial working revision. * Separation of segment ops helpers. Max separation. * Separated segment_min ops. * Separation of segment_mean/sum/prod/sqrtN ops heleprs. * Fixed diagonal processing with LUP decomposition. * Modified inversion approach using current state of LU decomposition. * Implementation of matrix_inverse op with cuda kernels. Working revision. * Implemented sequence_mask cuda helper. Eliminated waste printf with matrix_inverse implementation. Added proper tests. * - further work on gruCell_bp (ff/cuda) Signed-off-by: Yurii <yurii@skymind.io> * comment one test for gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * - provide cuda static_rnn Signed-off-by: Yurii <yurii@skymind.io> * Refactored random_shuffle op to use new random generator. * Refactored random_shuffle op helper. * Fixed debug tests with random ops tests. * Implement random_shuffle op cuda kernel helper and tests. * - provide cuda scatter_update Signed-off-by: Yurii <yurii@skymind.io> * Implementation of random_shuffle for linear case with cuda kernels and tests. * Implemented random_shuffle with cuda kernels. Final revision. * - finally gruCell_bp is completed Signed-off-by: Yurii <yurii@skymind.io> * Dropout op cuda helper implementation. * Implemented dropout_bp cuda helper. * Implemented alpha_dropout_bp with cuda kernel helpers. * Refactored helper. * Implementation of suppresion helper with cuda kernels. * - provide cpu code fot hsvToRgb, rgbToHsv, adjustHue Signed-off-by: Yurii <yurii@skymind.io> * Using sort by value method. * Implementation of image.non_max_suppression op cuda-based helper. * - correcting and testing adjust_hue, adjust_saturation cpu/cuda code Signed-off-by: Yurii <yurii@skymind.io> * Added cuda device prefixes to declarations. * Implementation of hashcode op with cuda helper. Initital revision. * rnn cu impl removed Signed-off-by: raver119 <raver119@gmail.com>
2019-07-20 07:58:44 +02:00
//////////////////////////////////////////////////////////////////////
TEST_F(ParityOpsTests, scatter_update_3) {
NDArray x('c', {2,2,2}, {1,2,3,4,5,6,7,8}, sd::DataType::INT32);
NDArray updates('c', {2,2,2}, {10,20,30,40,50,60,70,80}, sd::DataType::INT32);
[WIP] More of CUDA operations (#69) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * - gruCell_bp further Signed-off-by: Yurii <yurii@skymind.io> * - further work on gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * Inverse matrix cublas implementation. Partial working revision. * Separation of segment ops helpers. Max separation. * Separated segment_min ops. * Separation of segment_mean/sum/prod/sqrtN ops heleprs. * Fixed diagonal processing with LUP decomposition. * Modified inversion approach using current state of LU decomposition. * Implementation of matrix_inverse op with cuda kernels. Working revision. * Implemented sequence_mask cuda helper. Eliminated waste printf with matrix_inverse implementation. Added proper tests. * - further work on gruCell_bp (ff/cuda) Signed-off-by: Yurii <yurii@skymind.io> * comment one test for gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * - provide cuda static_rnn Signed-off-by: Yurii <yurii@skymind.io> * Refactored random_shuffle op to use new random generator. * Refactored random_shuffle op helper. * Fixed debug tests with random ops tests. * Implement random_shuffle op cuda kernel helper and tests. * - provide cuda scatter_update Signed-off-by: Yurii <yurii@skymind.io> * Implementation of random_shuffle for linear case with cuda kernels and tests. * Implemented random_shuffle with cuda kernels. Final revision. * - finally gruCell_bp is completed Signed-off-by: Yurii <yurii@skymind.io> * Dropout op cuda helper implementation. * Implemented dropout_bp cuda helper. * Implemented alpha_dropout_bp with cuda kernel helpers. * Refactored helper. * Implementation of suppresion helper with cuda kernels. * - provide cpu code fot hsvToRgb, rgbToHsv, adjustHue Signed-off-by: Yurii <yurii@skymind.io> * Using sort by value method. * Implementation of image.non_max_suppression op cuda-based helper. * - correcting and testing adjust_hue, adjust_saturation cpu/cuda code Signed-off-by: Yurii <yurii@skymind.io> * Added cuda device prefixes to declarations. * Implementation of hashcode op with cuda helper. Initital revision. * rnn cu impl removed Signed-off-by: raver119 <raver119@gmail.com>
2019-07-20 07:58:44 +02:00
NDArray exp('c', {2,2,2}, {50,60,70,80,10,20,30,40}, sd::DataType::INT32);
[WIP] More of CUDA operations (#69) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * - gruCell_bp further Signed-off-by: Yurii <yurii@skymind.io> * - further work on gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * Inverse matrix cublas implementation. Partial working revision. * Separation of segment ops helpers. Max separation. * Separated segment_min ops. * Separation of segment_mean/sum/prod/sqrtN ops heleprs. * Fixed diagonal processing with LUP decomposition. * Modified inversion approach using current state of LU decomposition. * Implementation of matrix_inverse op with cuda kernels. Working revision. * Implemented sequence_mask cuda helper. Eliminated waste printf with matrix_inverse implementation. Added proper tests. * - further work on gruCell_bp (ff/cuda) Signed-off-by: Yurii <yurii@skymind.io> * comment one test for gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * - provide cuda static_rnn Signed-off-by: Yurii <yurii@skymind.io> * Refactored random_shuffle op to use new random generator. * Refactored random_shuffle op helper. * Fixed debug tests with random ops tests. * Implement random_shuffle op cuda kernel helper and tests. * - provide cuda scatter_update Signed-off-by: Yurii <yurii@skymind.io> * Implementation of random_shuffle for linear case with cuda kernels and tests. * Implemented random_shuffle with cuda kernels. Final revision. * - finally gruCell_bp is completed Signed-off-by: Yurii <yurii@skymind.io> * Dropout op cuda helper implementation. * Implemented dropout_bp cuda helper. * Implemented alpha_dropout_bp with cuda kernel helpers. * Refactored helper. * Implementation of suppresion helper with cuda kernels. * - provide cpu code fot hsvToRgb, rgbToHsv, adjustHue Signed-off-by: Yurii <yurii@skymind.io> * Using sort by value method. * Implementation of image.non_max_suppression op cuda-based helper. * - correcting and testing adjust_hue, adjust_saturation cpu/cuda code Signed-off-by: Yurii <yurii@skymind.io> * Added cuda device prefixes to declarations. * Implementation of hashcode op with cuda helper. Initital revision. * rnn cu impl removed Signed-off-by: raver119 <raver119@gmail.com>
2019-07-20 07:58:44 +02:00
sd::ops::scatter_update op;
auto results = op.evaluate({&x, &updates}, {}, {6, 2,1,2, 2,1,0});
[WIP] More of CUDA operations (#69) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * - gruCell_bp further Signed-off-by: Yurii <yurii@skymind.io> * - further work on gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * Inverse matrix cublas implementation. Partial working revision. * Separation of segment ops helpers. Max separation. * Separated segment_min ops. * Separation of segment_mean/sum/prod/sqrtN ops heleprs. * Fixed diagonal processing with LUP decomposition. * Modified inversion approach using current state of LU decomposition. * Implementation of matrix_inverse op with cuda kernels. Working revision. * Implemented sequence_mask cuda helper. Eliminated waste printf with matrix_inverse implementation. Added proper tests. * - further work on gruCell_bp (ff/cuda) Signed-off-by: Yurii <yurii@skymind.io> * comment one test for gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * - provide cuda static_rnn Signed-off-by: Yurii <yurii@skymind.io> * Refactored random_shuffle op to use new random generator. * Refactored random_shuffle op helper. * Fixed debug tests with random ops tests. * Implement random_shuffle op cuda kernel helper and tests. * - provide cuda scatter_update Signed-off-by: Yurii <yurii@skymind.io> * Implementation of random_shuffle for linear case with cuda kernels and tests. * Implemented random_shuffle with cuda kernels. Final revision. * - finally gruCell_bp is completed Signed-off-by: Yurii <yurii@skymind.io> * Dropout op cuda helper implementation. * Implemented dropout_bp cuda helper. * Implemented alpha_dropout_bp with cuda kernel helpers. * Refactored helper. * Implementation of suppresion helper with cuda kernels. * - provide cpu code fot hsvToRgb, rgbToHsv, adjustHue Signed-off-by: Yurii <yurii@skymind.io> * Using sort by value method. * Implementation of image.non_max_suppression op cuda-based helper. * - correcting and testing adjust_hue, adjust_saturation cpu/cuda code Signed-off-by: Yurii <yurii@skymind.io> * Added cuda device prefixes to declarations. * Implementation of hashcode op with cuda helper. Initital revision. * rnn cu impl removed Signed-off-by: raver119 <raver119@gmail.com>
2019-07-20 07:58:44 +02:00
ASSERT_EQ(ND4J_STATUS_OK, results.status());
[WIP] More of CUDA operations (#69) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * - gruCell_bp further Signed-off-by: Yurii <yurii@skymind.io> * - further work on gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * Inverse matrix cublas implementation. Partial working revision. * Separation of segment ops helpers. Max separation. * Separated segment_min ops. * Separation of segment_mean/sum/prod/sqrtN ops heleprs. * Fixed diagonal processing with LUP decomposition. * Modified inversion approach using current state of LU decomposition. * Implementation of matrix_inverse op with cuda kernels. Working revision. * Implemented sequence_mask cuda helper. Eliminated waste printf with matrix_inverse implementation. Added proper tests. * - further work on gruCell_bp (ff/cuda) Signed-off-by: Yurii <yurii@skymind.io> * comment one test for gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * - provide cuda static_rnn Signed-off-by: Yurii <yurii@skymind.io> * Refactored random_shuffle op to use new random generator. * Refactored random_shuffle op helper. * Fixed debug tests with random ops tests. * Implement random_shuffle op cuda kernel helper and tests. * - provide cuda scatter_update Signed-off-by: Yurii <yurii@skymind.io> * Implementation of random_shuffle for linear case with cuda kernels and tests. * Implemented random_shuffle with cuda kernels. Final revision. * - finally gruCell_bp is completed Signed-off-by: Yurii <yurii@skymind.io> * Dropout op cuda helper implementation. * Implemented dropout_bp cuda helper. * Implemented alpha_dropout_bp with cuda kernel helpers. * Refactored helper. * Implementation of suppresion helper with cuda kernels. * - provide cpu code fot hsvToRgb, rgbToHsv, adjustHue Signed-off-by: Yurii <yurii@skymind.io> * Using sort by value method. * Implementation of image.non_max_suppression op cuda-based helper. * - correcting and testing adjust_hue, adjust_saturation cpu/cuda code Signed-off-by: Yurii <yurii@skymind.io> * Added cuda device prefixes to declarations. * Implementation of hashcode op with cuda helper. Initital revision. * rnn cu impl removed Signed-off-by: raver119 <raver119@gmail.com>
2019-07-20 07:58:44 +02:00
ASSERT_TRUE(exp.isSameShape(x));
ASSERT_TRUE(exp.equalsTo(x));
[WIP] More of CUDA operations (#69) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * - gruCell_bp further Signed-off-by: Yurii <yurii@skymind.io> * - further work on gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * Inverse matrix cublas implementation. Partial working revision. * Separation of segment ops helpers. Max separation. * Separated segment_min ops. * Separation of segment_mean/sum/prod/sqrtN ops heleprs. * Fixed diagonal processing with LUP decomposition. * Modified inversion approach using current state of LU decomposition. * Implementation of matrix_inverse op with cuda kernels. Working revision. * Implemented sequence_mask cuda helper. Eliminated waste printf with matrix_inverse implementation. Added proper tests. * - further work on gruCell_bp (ff/cuda) Signed-off-by: Yurii <yurii@skymind.io> * comment one test for gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * - provide cuda static_rnn Signed-off-by: Yurii <yurii@skymind.io> * Refactored random_shuffle op to use new random generator. * Refactored random_shuffle op helper. * Fixed debug tests with random ops tests. * Implement random_shuffle op cuda kernel helper and tests. * - provide cuda scatter_update Signed-off-by: Yurii <yurii@skymind.io> * Implementation of random_shuffle for linear case with cuda kernels and tests. * Implemented random_shuffle with cuda kernels. Final revision. * - finally gruCell_bp is completed Signed-off-by: Yurii <yurii@skymind.io> * Dropout op cuda helper implementation. * Implemented dropout_bp cuda helper. * Implemented alpha_dropout_bp with cuda kernel helpers. * Refactored helper. * Implementation of suppresion helper with cuda kernels. * - provide cpu code fot hsvToRgb, rgbToHsv, adjustHue Signed-off-by: Yurii <yurii@skymind.io> * Using sort by value method. * Implementation of image.non_max_suppression op cuda-based helper. * - correcting and testing adjust_hue, adjust_saturation cpu/cuda code Signed-off-by: Yurii <yurii@skymind.io> * Added cuda device prefixes to declarations. * Implementation of hashcode op with cuda helper. Initital revision. * rnn cu impl removed Signed-off-by: raver119 <raver119@gmail.com>
2019-07-20 07:58:44 +02:00
}
//////////////////////////////////////////////////////////////////////
TEST_F(ParityOpsTests, scatter_update_4) {
NDArray x('c', {2,2,2}, {1,2,3,4,5,6,7,8}, sd::DataType::INT32);
NDArray updates('c', {2,2,2}, {10,20,30,40,50,60,70,80}, sd::DataType::INT32);
[WIP] More of CUDA operations (#69) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * - gruCell_bp further Signed-off-by: Yurii <yurii@skymind.io> * - further work on gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * Inverse matrix cublas implementation. Partial working revision. * Separation of segment ops helpers. Max separation. * Separated segment_min ops. * Separation of segment_mean/sum/prod/sqrtN ops heleprs. * Fixed diagonal processing with LUP decomposition. * Modified inversion approach using current state of LU decomposition. * Implementation of matrix_inverse op with cuda kernels. Working revision. * Implemented sequence_mask cuda helper. Eliminated waste printf with matrix_inverse implementation. Added proper tests. * - further work on gruCell_bp (ff/cuda) Signed-off-by: Yurii <yurii@skymind.io> * comment one test for gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * - provide cuda static_rnn Signed-off-by: Yurii <yurii@skymind.io> * Refactored random_shuffle op to use new random generator. * Refactored random_shuffle op helper. * Fixed debug tests with random ops tests. * Implement random_shuffle op cuda kernel helper and tests. * - provide cuda scatter_update Signed-off-by: Yurii <yurii@skymind.io> * Implementation of random_shuffle for linear case with cuda kernels and tests. * Implemented random_shuffle with cuda kernels. Final revision. * - finally gruCell_bp is completed Signed-off-by: Yurii <yurii@skymind.io> * Dropout op cuda helper implementation. * Implemented dropout_bp cuda helper. * Implemented alpha_dropout_bp with cuda kernel helpers. * Refactored helper. * Implementation of suppresion helper with cuda kernels. * - provide cpu code fot hsvToRgb, rgbToHsv, adjustHue Signed-off-by: Yurii <yurii@skymind.io> * Using sort by value method. * Implementation of image.non_max_suppression op cuda-based helper. * - correcting and testing adjust_hue, adjust_saturation cpu/cuda code Signed-off-by: Yurii <yurii@skymind.io> * Added cuda device prefixes to declarations. * Implementation of hashcode op with cuda helper. Initital revision. * rnn cu impl removed Signed-off-by: raver119 <raver119@gmail.com>
2019-07-20 07:58:44 +02:00
NDArray exp('c', {2,2,2}, {20,2,3,10,60,6,7,50}, sd::DataType::INT32);
[WIP] More of CUDA operations (#69) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * - gruCell_bp further Signed-off-by: Yurii <yurii@skymind.io> * - further work on gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * Inverse matrix cublas implementation. Partial working revision. * Separation of segment ops helpers. Max separation. * Separated segment_min ops. * Separation of segment_mean/sum/prod/sqrtN ops heleprs. * Fixed diagonal processing with LUP decomposition. * Modified inversion approach using current state of LU decomposition. * Implementation of matrix_inverse op with cuda kernels. Working revision. * Implemented sequence_mask cuda helper. Eliminated waste printf with matrix_inverse implementation. Added proper tests. * - further work on gruCell_bp (ff/cuda) Signed-off-by: Yurii <yurii@skymind.io> * comment one test for gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * - provide cuda static_rnn Signed-off-by: Yurii <yurii@skymind.io> * Refactored random_shuffle op to use new random generator. * Refactored random_shuffle op helper. * Fixed debug tests with random ops tests. * Implement random_shuffle op cuda kernel helper and tests. * - provide cuda scatter_update Signed-off-by: Yurii <yurii@skymind.io> * Implementation of random_shuffle for linear case with cuda kernels and tests. * Implemented random_shuffle with cuda kernels. Final revision. * - finally gruCell_bp is completed Signed-off-by: Yurii <yurii@skymind.io> * Dropout op cuda helper implementation. * Implemented dropout_bp cuda helper. * Implemented alpha_dropout_bp with cuda kernel helpers. * Refactored helper. * Implementation of suppresion helper with cuda kernels. * - provide cpu code fot hsvToRgb, rgbToHsv, adjustHue Signed-off-by: Yurii <yurii@skymind.io> * Using sort by value method. * Implementation of image.non_max_suppression op cuda-based helper. * - correcting and testing adjust_hue, adjust_saturation cpu/cuda code Signed-off-by: Yurii <yurii@skymind.io> * Added cuda device prefixes to declarations. * Implementation of hashcode op with cuda helper. Initital revision. * rnn cu impl removed Signed-off-by: raver119 <raver119@gmail.com>
2019-07-20 07:58:44 +02:00
sd::ops::scatter_update op;
auto results = op.evaluate({&x, &updates}, {}, {6, 1,0, 2,3,0});
[WIP] More of CUDA operations (#69) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * - gruCell_bp further Signed-off-by: Yurii <yurii@skymind.io> * - further work on gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * Inverse matrix cublas implementation. Partial working revision. * Separation of segment ops helpers. Max separation. * Separated segment_min ops. * Separation of segment_mean/sum/prod/sqrtN ops heleprs. * Fixed diagonal processing with LUP decomposition. * Modified inversion approach using current state of LU decomposition. * Implementation of matrix_inverse op with cuda kernels. Working revision. * Implemented sequence_mask cuda helper. Eliminated waste printf with matrix_inverse implementation. Added proper tests. * - further work on gruCell_bp (ff/cuda) Signed-off-by: Yurii <yurii@skymind.io> * comment one test for gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * - provide cuda static_rnn Signed-off-by: Yurii <yurii@skymind.io> * Refactored random_shuffle op to use new random generator. * Refactored random_shuffle op helper. * Fixed debug tests with random ops tests. * Implement random_shuffle op cuda kernel helper and tests. * - provide cuda scatter_update Signed-off-by: Yurii <yurii@skymind.io> * Implementation of random_shuffle for linear case with cuda kernels and tests. * Implemented random_shuffle with cuda kernels. Final revision. * - finally gruCell_bp is completed Signed-off-by: Yurii <yurii@skymind.io> * Dropout op cuda helper implementation. * Implemented dropout_bp cuda helper. * Implemented alpha_dropout_bp with cuda kernel helpers. * Refactored helper. * Implementation of suppresion helper with cuda kernels. * - provide cpu code fot hsvToRgb, rgbToHsv, adjustHue Signed-off-by: Yurii <yurii@skymind.io> * Using sort by value method. * Implementation of image.non_max_suppression op cuda-based helper. * - correcting and testing adjust_hue, adjust_saturation cpu/cuda code Signed-off-by: Yurii <yurii@skymind.io> * Added cuda device prefixes to declarations. * Implementation of hashcode op with cuda helper. Initital revision. * rnn cu impl removed Signed-off-by: raver119 <raver119@gmail.com>
2019-07-20 07:58:44 +02:00
ASSERT_EQ(ND4J_STATUS_OK, results.status());
[WIP] More of CUDA operations (#69) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * - gruCell_bp further Signed-off-by: Yurii <yurii@skymind.io> * - further work on gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * Inverse matrix cublas implementation. Partial working revision. * Separation of segment ops helpers. Max separation. * Separated segment_min ops. * Separation of segment_mean/sum/prod/sqrtN ops heleprs. * Fixed diagonal processing with LUP decomposition. * Modified inversion approach using current state of LU decomposition. * Implementation of matrix_inverse op with cuda kernels. Working revision. * Implemented sequence_mask cuda helper. Eliminated waste printf with matrix_inverse implementation. Added proper tests. * - further work on gruCell_bp (ff/cuda) Signed-off-by: Yurii <yurii@skymind.io> * comment one test for gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * - provide cuda static_rnn Signed-off-by: Yurii <yurii@skymind.io> * Refactored random_shuffle op to use new random generator. * Refactored random_shuffle op helper. * Fixed debug tests with random ops tests. * Implement random_shuffle op cuda kernel helper and tests. * - provide cuda scatter_update Signed-off-by: Yurii <yurii@skymind.io> * Implementation of random_shuffle for linear case with cuda kernels and tests. * Implemented random_shuffle with cuda kernels. Final revision. * - finally gruCell_bp is completed Signed-off-by: Yurii <yurii@skymind.io> * Dropout op cuda helper implementation. * Implemented dropout_bp cuda helper. * Implemented alpha_dropout_bp with cuda kernel helpers. * Refactored helper. * Implementation of suppresion helper with cuda kernels. * - provide cpu code fot hsvToRgb, rgbToHsv, adjustHue Signed-off-by: Yurii <yurii@skymind.io> * Using sort by value method. * Implementation of image.non_max_suppression op cuda-based helper. * - correcting and testing adjust_hue, adjust_saturation cpu/cuda code Signed-off-by: Yurii <yurii@skymind.io> * Added cuda device prefixes to declarations. * Implementation of hashcode op with cuda helper. Initital revision. * rnn cu impl removed Signed-off-by: raver119 <raver119@gmail.com>
2019-07-20 07:58:44 +02:00
ASSERT_TRUE(exp.isSameShape(x));
ASSERT_TRUE(exp.equalsTo(x));
[WIP] More of CUDA operations (#69) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * - gruCell_bp further Signed-off-by: Yurii <yurii@skymind.io> * - further work on gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * Inverse matrix cublas implementation. Partial working revision. * Separation of segment ops helpers. Max separation. * Separated segment_min ops. * Separation of segment_mean/sum/prod/sqrtN ops heleprs. * Fixed diagonal processing with LUP decomposition. * Modified inversion approach using current state of LU decomposition. * Implementation of matrix_inverse op with cuda kernels. Working revision. * Implemented sequence_mask cuda helper. Eliminated waste printf with matrix_inverse implementation. Added proper tests. * - further work on gruCell_bp (ff/cuda) Signed-off-by: Yurii <yurii@skymind.io> * comment one test for gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * - provide cuda static_rnn Signed-off-by: Yurii <yurii@skymind.io> * Refactored random_shuffle op to use new random generator. * Refactored random_shuffle op helper. * Fixed debug tests with random ops tests. * Implement random_shuffle op cuda kernel helper and tests. * - provide cuda scatter_update Signed-off-by: Yurii <yurii@skymind.io> * Implementation of random_shuffle for linear case with cuda kernels and tests. * Implemented random_shuffle with cuda kernels. Final revision. * - finally gruCell_bp is completed Signed-off-by: Yurii <yurii@skymind.io> * Dropout op cuda helper implementation. * Implemented dropout_bp cuda helper. * Implemented alpha_dropout_bp with cuda kernel helpers. * Refactored helper. * Implementation of suppresion helper with cuda kernels. * - provide cpu code fot hsvToRgb, rgbToHsv, adjustHue Signed-off-by: Yurii <yurii@skymind.io> * Using sort by value method. * Implementation of image.non_max_suppression op cuda-based helper. * - correcting and testing adjust_hue, adjust_saturation cpu/cuda code Signed-off-by: Yurii <yurii@skymind.io> * Added cuda device prefixes to declarations. * Implementation of hashcode op with cuda helper. Initital revision. * rnn cu impl removed Signed-off-by: raver119 <raver119@gmail.com>
2019-07-20 07:58:44 +02:00
}