2019-06-06 14:21:15 +02:00
|
|
|
/*******************************************************************************
|
|
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
|
|
*
|
|
|
|
* This program and the accompanying materials are made available under the
|
|
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
|
|
* License for the specific language governing permissions and limitations
|
|
|
|
* under the License.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
//
|
|
|
|
// @author raver119@gmail.com
|
|
|
|
//
|
|
|
|
|
|
|
|
|
|
|
|
#include "testlayers.h"
|
|
|
|
#include <ops/declarable/CustomOperations.h>
|
|
|
|
#include <helpers/helper_hash.h>
|
|
|
|
#include <NDArray.h>
|
|
|
|
#include <array/NDArrayList.h>
|
|
|
|
|
|
|
|
|
|
|
|
using namespace nd4j;
|
|
|
|
using namespace nd4j::graph;
|
|
|
|
|
|
|
|
class DeclarableOpsTests5 : public testing::Test {
|
|
|
|
public:
|
|
|
|
|
|
|
|
DeclarableOpsTests5() {
|
|
|
|
printf("\n");
|
|
|
|
fflush(stdout);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(DeclarableOpsTests5, Test_PermuteEquality_1) {
|
|
|
|
auto x = NDArrayFactory::create<double>('c', {1, 60});
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', {3, 5, 4}, {1.0, 6.0, 11.0, 16.0, 2.0, 7.0, 12.0, 17.0, 3.0, 8.0, 13.0, 18.0, 4.0, 9.0, 14.0, 19.0, 5.0, 10.0, 15.0, 20.0, 21.0, 26.0, 31.0, 36.0, 22.0, 27.0, 32.0, 37.0, 23.0, 28.0, 33.0, 38.0, 24.0, 29.0, 34.0, 39.0, 25.0, 30.0, 35.0, 40.0, 41.0, 46.0, 51.0, 56.0, 42.0, 47.0, 52.0, 57.0, 43.0, 48.0, 53.0, 58.0, 44.0, 49.0, 54.0, 59.0, 45.0, 50.0, 55.0, 60.0});
|
|
|
|
x.linspace(1);
|
|
|
|
x.reshapei('c', {3, 4, 5});
|
|
|
|
|
|
|
|
nd4j::ops::permute op;
|
|
|
|
auto result = op.execute({&x}, {}, {0, 2, 1});
|
|
|
|
ASSERT_EQ(Status::OK(), result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(DeclarableOpsTests5, Test_PermuteEquality_0) {
|
|
|
|
auto x = NDArrayFactory::create<double>('c', {1, 60});
|
|
|
|
x.linspace(1);
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', {3, 4, 5}, {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 36.0, 37.0, 38.0, 39.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0, 48.0, 49.0, 50.0, 51.0, 52.0, 53.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0, 60.0});
|
|
|
|
x.reshapei('c', {3, 4, 5});
|
|
|
|
|
|
|
|
// x.printShapeInfo("{0, 1, 2} shape");
|
|
|
|
// x.printBuffer("{0, 1, 2} data");
|
|
|
|
|
|
|
|
nd4j::ops::permute op;
|
|
|
|
auto result = op.execute({&x}, {}, {0, 1, 2});
|
|
|
|
ASSERT_EQ(Status::OK(), result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(DeclarableOpsTests5, Test_PermuteEquality_2) {
|
|
|
|
auto x = NDArrayFactory::create<double>('c', {1, 60});
|
|
|
|
x.linspace(1);
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', {4, 3, 5}, {1.0, 2.0, 3.0, 4.0, 5.0, 21.0, 22.0, 23.0, 24.0, 25.0, 41.0, 42.0, 43.0, 44.0, 45.0, 6.0, 7.0, 8.0, 9.0, 10.0, 26.0, 27.0, 28.0, 29.0, 30.0, 46.0, 47.0, 48.0, 49.0, 50.0, 11.0, 12.0, 13.0, 14.0, 15.0, 31.0, 32.0, 33.0, 34.0, 35.0, 51.0, 52.0, 53.0, 54.0, 55.0, 16.0, 17.0, 18.0, 19.0, 20.0, 36.0, 37.0, 38.0, 39.0, 40.0, 56.0, 57.0, 58.0, 59.0, 60.0});
|
|
|
|
x.reshapei('c', {3, 4, 5});
|
|
|
|
|
|
|
|
// x.printShapeInfo("{1, 0, 2} shape");
|
|
|
|
// x.printBuffer("{1, 0, 2} data");
|
|
|
|
|
|
|
|
nd4j::ops::permute op;
|
|
|
|
auto result = op.execute({&x}, {}, {1, 0, 2});
|
|
|
|
ASSERT_EQ(Status::OK(), result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(DeclarableOpsTests5, Test_PermuteEquality_3) {
|
|
|
|
auto x = NDArrayFactory::create<double>('c', {1, 60});
|
|
|
|
x.linspace(1);
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', {4, 5, 3}, {1.0, 21.0, 41.0, 2.0, 22.0, 42.0, 3.0, 23.0, 43.0, 4.0, 24.0, 44.0, 5.0, 25.0, 45.0, 6.0, 26.0, 46.0, 7.0, 27.0, 47.0, 8.0, 28.0, 48.0, 9.0, 29.0, 49.0, 10.0, 30.0, 50.0, 11.0, 31.0, 51.0, 12.0, 32.0, 52.0, 13.0, 33.0, 53.0, 14.0, 34.0, 54.0, 15.0, 35.0, 55.0, 16.0, 36.0, 56.0, 17.0, 37.0, 57.0, 18.0, 38.0, 58.0, 19.0, 39.0, 59.0, 20.0, 40.0, 60.0});
|
|
|
|
x.reshapei('c', {3, 4, 5});
|
|
|
|
|
|
|
|
// x.printShapeInfo("{1, 2, 0} shape");
|
|
|
|
// x.printBuffer("{1, 2, 0} data");
|
|
|
|
|
|
|
|
nd4j::ops::permute op;
|
|
|
|
auto result = op.execute({&x}, {}, {1, 2, 0});
|
|
|
|
ASSERT_EQ(Status::OK(), result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(DeclarableOpsTests5, Test_PermuteEquality_4) {
|
|
|
|
auto x = NDArrayFactory::create<double>('c', {1, 60});
|
|
|
|
x.linspace(1);
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', {5, 3, 4}, {1.0, 6.0, 11.0, 16.0, 21.0, 26.0, 31.0, 36.0, 41.0, 46.0, 51.0, 56.0, 2.0, 7.0, 12.0, 17.0, 22.0, 27.0, 32.0, 37.0, 42.0, 47.0, 52.0, 57.0, 3.0, 8.0, 13.0, 18.0, 23.0, 28.0, 33.0, 38.0, 43.0, 48.0, 53.0, 58.0, 4.0, 9.0, 14.0, 19.0, 24.0, 29.0, 34.0, 39.0, 44.0, 49.0, 54.0, 59.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0, 45.0, 50.0, 55.0, 60.0});
|
|
|
|
x.reshapei('c', {3, 4, 5});
|
|
|
|
|
|
|
|
// x.printShapeInfo("{2, 0, 1} shape");
|
|
|
|
// x.printBuffer("{2, 0, 1} data");
|
|
|
|
|
|
|
|
nd4j::ops::permute op;
|
|
|
|
auto result = op.execute({&x}, {}, {2, 0, 1});
|
|
|
|
ASSERT_EQ(Status::OK(), result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(DeclarableOpsTests5, Test_PermuteEquality_5) {
|
|
|
|
auto x = NDArrayFactory::create<double>('c', {1, 60});
|
|
|
|
x.linspace(1);
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', {5, 4, 3}, {1.0, 21.0, 41.0, 6.0, 26.0, 46.0, 11.0, 31.0, 51.0, 16.0, 36.0, 56.0, 2.0, 22.0, 42.0, 7.0, 27.0, 47.0, 12.0, 32.0, 52.0, 17.0, 37.0, 57.0, 3.0, 23.0, 43.0, 8.0, 28.0, 48.0, 13.0, 33.0, 53.0, 18.0, 38.0, 58.0, 4.0, 24.0, 44.0, 9.0, 29.0, 49.0, 14.0, 34.0, 54.0, 19.0, 39.0, 59.0, 5.0, 25.0, 45.0, 10.0, 30.0, 50.0, 15.0, 35.0, 55.0, 20.0, 40.0, 60.0});
|
|
|
|
x.reshapei('c', {3, 4, 5});
|
|
|
|
|
|
|
|
// x.printShapeInfo("{2, 1, 0} shape");
|
|
|
|
// x.printBuffer("{2, 1, 0} data");
|
|
|
|
|
|
|
|
nd4j::ops::permute op;
|
|
|
|
auto result = op.execute({&x}, {}, {2, 1, 0});
|
|
|
|
ASSERT_EQ(Status::OK(), result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(DeclarableOpsTests5, Test_TTS_bp_1) {
|
|
|
|
auto x = NDArrayFactory::create<double>('c', {2, 1, 3});
|
|
|
|
auto eps = NDArrayFactory::create<double>('c', {2, 4, 3});
|
|
|
|
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', {2, 1, 3}, {22.f, 26.f, 30.f, 70.f, 74.f, 78.f});
|
|
|
|
|
|
|
|
eps.linspace(1.f);
|
|
|
|
|
|
|
|
nd4j::ops::tile_to_shape_bp op;
|
|
|
|
auto result = op.execute({&x, &eps}, {}, {2, 4, 3});
|
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
2019-07-12 10:51:51 +02:00
|
|
|
// z->printShapeInfo("RES shape");
|
|
|
|
// x.printShapeInfo("EXP shape");
|
|
|
|
// z->printIndexedBuffer("RES output");
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(x.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(DeclarableOpsTests5, Test_Rdiv_bp_1) {
|
|
|
|
auto x = NDArrayFactory::create<double>('c', {3, 1}, {1, 2, 3});
|
|
|
|
auto y = NDArrayFactory::create<double>('c', {1, 4}, {1, 2, 3, 4});
|
|
|
|
auto eps = NDArrayFactory::create<double>('c', {3, 4}, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12});
|
|
|
|
|
|
|
|
|
|
|
|
nd4j::ops::reversedivide op_ff;
|
|
|
|
auto result_ff = op_ff.execute({&x, &y}, {}, {});
|
|
|
|
ASSERT_EQ(Status::OK(), result_ff->status());
|
|
|
|
|
|
|
|
auto z_ff = result_ff->at(0);
|
|
|
|
ASSERT_TRUE(eps.isSameShape(z_ff));
|
|
|
|
|
|
|
|
nd4j::ops::reversedivide_bp op_bp;
|
|
|
|
auto result_bp = op_bp.execute({&x, &y, &eps}, {}, {});
|
|
|
|
ASSERT_EQ(Status::OK(), result_bp->status());
|
|
|
|
|
|
|
|
auto z_bp = result_bp->at(0);
|
|
|
|
ASSERT_TRUE(x.isSameShape(z_bp));
|
|
|
|
|
|
|
|
delete result_ff;
|
|
|
|
delete result_bp;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(DeclarableOpsTests5, Test_Boolean_diff_1) {
|
|
|
|
auto x = NDArrayFactory::create<double>('c', {1, 1}, {1.0f});
|
|
|
|
auto y = NDArrayFactory::create<double>(2.0f);
|
|
|
|
|
|
|
|
nd4j::ops::less op;
|
|
|
|
auto result = op.execute({&x, &y}, {}, {}, {}, false, nd4j::DataType::BOOL);
|
|
|
|
ASSERT_EQ(Status::OK(), result->status());
|
|
|
|
ASSERT_EQ(result->at(0)->t<bool>(0), true);
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
2019-08-15 12:54:47 +02:00
|
|
|
TEST_F(DeclarableOpsTests5, Test_SetSeed_1) {
|
|
|
|
auto x = NDArrayFactory::create<int>('c', {1, 1}, {120});
|
|
|
|
auto y = NDArrayFactory::create<int>(5);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-15 12:54:47 +02:00
|
|
|
nd4j::ops::set_seed op;
|
|
|
|
auto result = op.execute({&x, &y}, {}, {120, 5}, {}, false, nd4j::DataType::INT32);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-15 12:54:47 +02:00
|
|
|
ASSERT_EQ(Status::OK(), result->status());
|
|
|
|
// result->at(0)->printIndexedBuffer("RES SEED");
|
|
|
|
nd4j::ops::get_seed getOp;
|
|
|
|
auto getRes = getOp.execute({}, {}, {});
|
|
|
|
ASSERT_EQ(Status::OK(), getRes->status());
|
|
|
|
// getRes->at(0)->printIndexedBuffer("Output RES GET SEED");
|
|
|
|
// ASSERT_EQ(result->at(0)->t<bool>(0), true);
|
|
|
|
delete result;
|
|
|
|
delete getRes;
|
|
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, scatterMul_test1) {
|
|
|
|
auto matrix = NDArrayFactory::create<float>('c', {2, 2}, {1, 2, 3, 4});
|
|
|
|
NDArray idc('c', {1}, {0LL}, nd4j::DataType::INT64);
|
|
|
|
auto updates = NDArrayFactory::create<float>('c', {1, 2}, {10, 1});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {2, 2}, {10, 2, 3, 4});
|
|
|
|
|
|
|
|
nd4j::ops::scatter_mul op;
|
|
|
|
auto result = op.execute({&matrix, &idc, &updates}, {}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, scatterDiv_test1) {
|
|
|
|
auto matrix = NDArrayFactory::create<float>('c', {2, 2}, {1, 2, 3, 4});
|
|
|
|
NDArray idc('c', {1}, {0LL}, nd4j::DataType::INT64);
|
|
|
|
auto updates = NDArrayFactory::create<float>('c', {1, 2}, {10, 1});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {2, 2}, {0.10, 2, 3, 4});
|
|
|
|
|
|
|
|
nd4j::ops::scatter_div op;
|
|
|
|
auto result = op.execute({&matrix, &idc, &updates}, {}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
// z->printIndexedBuffer("Scatter Div");
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, scatterSub_test1) {
|
|
|
|
auto matrix = NDArrayFactory::create<float>('c', {2, 2}, {1, 2, 3, 4});
|
|
|
|
NDArray idc('c', {1}, {0LL}, nd4j::DataType::INT64);
|
|
|
|
auto updates = NDArrayFactory::create<float>('c', {1, 2}, {10, 1});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {2, 2}, {-9, 1, 3, 4});
|
|
|
|
|
|
|
|
nd4j::ops::scatter_sub op;
|
|
|
|
auto result = op.execute({&matrix, &idc, &updates}, {}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
// z->printIndexedBuffer("Scatter Sub");
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, hardsigmoid_test1) {
|
|
|
|
auto matrix = NDArrayFactory::create<float>('c', {2, 2}, {1, 2, 3, 4});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {2, 2}, {0.7, 0.9, 1, 1});
|
|
|
|
|
|
|
|
nd4j::ops::hardsigmoid op;
|
|
|
|
auto result = op.execute({&matrix}, {}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
z->printIndexedBuffer("Hadrdsigmoid 2x2");
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, hardsigmoid_test2) {
|
|
|
|
auto matrix = NDArrayFactory::create<float>('c', {2, 2}, {1, 2, 3, 4});
|
|
|
|
auto eps = NDArrayFactory::create<float>('c', {2, 2}, {1, 2, 3, 4});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {2, 2}, {0.2, 0.4, 0, 0});
|
|
|
|
|
|
|
|
nd4j::ops::hardsigmoid_bp op;
|
|
|
|
auto result = op.execute({&matrix, &eps}, {}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
z->printIndexedBuffer("Hadrdsigmoid 2x2");
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, hardtanh_test1) {
|
|
|
|
auto matrix = NDArrayFactory::create<float>('c', {3, 3}, {-4, -3, -2, -1, 0, 1, 2, 3, 4});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {3, 3}, {-1, -1, -1, -1, 0, 1, 1, 1, 1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-15 12:54:47 +02:00
|
|
|
nd4j::ops::hardtanh op;
|
|
|
|
auto result = op.execute({&matrix}, {}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-15 12:54:47 +02:00
|
|
|
auto z = result->at(0);
|
|
|
|
// z->printIndexedBuffer("Hardtanh 2x2");
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-15 12:54:47 +02:00
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, hardtanh_test2) {
|
|
|
|
auto matrix = NDArrayFactory::create<float>('c', {3, 3}, {-4, -3, -2, -1, 0, 1, 2, 3, 4});
|
|
|
|
auto eps = NDArrayFactory::create<float>('c', {3, 3}, {1, 2, 3, 4, 5, 6, 7, 8, 9});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {3, 3}, {0, 0, 0, 4, 5, 6, 0, 0, 0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-15 12:54:47 +02:00
|
|
|
nd4j::ops::hardtanh_bp op;
|
|
|
|
auto result = op.execute({&matrix, &eps}, {}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-15 12:54:47 +02:00
|
|
|
auto z = result->at(0);
|
|
|
|
// z->printIndexedBuffer("Hardtanh_bp 2x2");
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-15 12:54:47 +02:00
|
|
|
delete result;
|
|
|
|
}
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-15 12:54:47 +02:00
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, histogram_test1) {
|
|
|
|
auto matrix = NDArrayFactory::create<double>('c', {3, 3}, {-4, -3, -2, -1, 0, 1, 2, 3, 4});
|
|
|
|
auto exp = NDArrayFactory::create<Nd4jLong>('c', {3}, {3, 3, 3});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-15 12:54:47 +02:00
|
|
|
nd4j::ops::histogram op;
|
|
|
|
auto result = op.execute({&matrix}, {}, {3}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-15 12:54:47 +02:00
|
|
|
auto z = result->at(0);
|
|
|
|
// z->printIndexedBuffer("Histogram3");
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
2019-08-02 19:01:03 +02:00
|
|
|
|
2019-08-15 12:54:47 +02:00
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, histogram_test2) {
|
|
|
|
auto matrix = NDArrayFactory::create<double>('c', {3}, {1, 2, 1});
|
|
|
|
auto exp = NDArrayFactory::create<Nd4jLong>('c', {4}, {2, 0, 0, 1});
|
2019-08-02 19:01:03 +02:00
|
|
|
|
2019-08-15 12:54:47 +02:00
|
|
|
nd4j::ops::histogram op;
|
|
|
|
auto result = op.execute({&matrix}, {}, {4}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
2019-08-02 19:01:03 +02:00
|
|
|
|
2019-08-15 12:54:47 +02:00
|
|
|
auto z = result->at(0);
|
|
|
|
z->printIndexedBuffer("Histogram4");
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
2019-08-02 19:01:03 +02:00
|
|
|
|
2019-08-15 12:54:47 +02:00
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, Identity_test1) {
|
|
|
|
auto matrix = NDArrayFactory::create<float>('c', {3, 3}, {-4, -3, -2, -1, 0, 1, 2, 3, 4});
|
|
|
|
// auto exp = NDArrayFactory::create<Nd4jLong>('c', {3, 3}, {3, 3, 3});
|
|
|
|
|
|
|
|
nd4j::ops::identity op;
|
|
|
|
auto result = op.execute({&matrix}, {}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
// z->printIndexedBuffer("Histogram3");
|
|
|
|
ASSERT_TRUE(matrix.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, Identity_test2) {
|
|
|
|
auto matrix = NDArrayFactory::create<float>('c', {3, 3}, {-4, -3, -2, -1, 0, 1, 2, 3, 4});
|
|
|
|
auto eps = NDArrayFactory::create<float>('c', {3, 3}, {1,2,3,4,5,6,7,8,9});
|
|
|
|
// auto exp = NDArrayFactory::create<float>('c', {3,3});
|
|
|
|
nd4j::ops::identity_bp op;
|
|
|
|
auto result = op.execute({&matrix, &eps}, {}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
z->printIndexedBuffer("Identity_BP");
|
|
|
|
ASSERT_TRUE(z->equalsTo(eps));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, Log1p_test1) {
|
|
|
|
auto matrix = NDArrayFactory::create<float>('c', {3, 3}, {4, 3, 2, 1, 0, 1, 2, 3, 4});
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {3,3}, {5,4,3,2,1,2,3,4,5});
|
|
|
|
// auto eps = NDArrayFactory::create<float>('c', {3, 3}, {1,2,3,4,5,6,7,8,9});
|
|
|
|
// auto exp = NDArrayFactory::create<float>('c', {3,3});
|
|
|
|
nd4j::ops::Log1p op;
|
|
|
|
y.applyTransform(nd4j::transform::Log, nullptr, nullptr);
|
|
|
|
auto result = op.execute({&matrix}, {}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
z->printIndexedBuffer("Log1p");
|
|
|
|
ASSERT_TRUE(z->equalsTo(y));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
2019-08-02 19:01:03 +02:00
|
|
|
|
|
|
|
TEST_F(DeclarableOpsTests5, Test_SpaceToBatch_1) {
|
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto x = NDArrayFactory::create<double>('c', {1, 2, 2, 3}, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12});
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', {4, 1, 1, 3}, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12});
|
2019-08-02 19:01:03 +02:00
|
|
|
auto paddings = NDArrayFactory::create<int>('c', {2, 2}, {0, 0, 0, 0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
nd4j::ops::space_to_batch op;
|
2019-08-02 19:01:03 +02:00
|
|
|
auto result = op.execute({&x, &paddings}, {}, {2});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
2019-08-02 19:01:03 +02:00
|
|
|
// z->printIndexedBuffer();
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
2019-08-02 19:01:03 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
TEST_F(DeclarableOpsTests5, Test_SpaceToBatch_2) {
|
|
|
|
auto x = NDArrayFactory::create<double>('c', {1, 2, 2, 1}, {1, 2, 3, 4});
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', {4, 1, 1, 1}, {1, 2, 3, 4});
|
2019-08-02 19:01:03 +02:00
|
|
|
auto paddings = NDArrayFactory::create<int>('c', {2, 2}, {0, 0, 0, 0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
nd4j::ops::space_to_batch op;
|
2019-08-02 19:01:03 +02:00
|
|
|
auto result = op.execute({&x, &paddings}, {}, {2});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(DeclarableOpsTests5, Test_SpaceToBatch_3) {
|
|
|
|
|
|
|
|
auto x = NDArrayFactory::create<double>('c', {2, 2, 4, 1}, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16});
|
2019-08-02 19:01:03 +02:00
|
|
|
auto paddings = NDArrayFactory::create<int>('c', {2, 2}, {0, 0, 2, 0});
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', {8, 1, 3, 1}, {0, 1, 3, 0, 9, 11,0, 2, 4, 0, 10, 12,0, 5, 7, 0, 13, 15,0, 6, 8, 0, 14, 16});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
nd4j::ops::space_to_batch op;
|
2019-08-02 19:01:03 +02:00
|
|
|
auto result = op.execute({&x, &paddings}, {}, {2});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
2019-08-02 19:01:03 +02:00
|
|
|
// z->printIndexedBuffer();
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
2019-08-02 19:01:03 +02:00
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, Test_SpaceToBatch_4) {
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-02 19:01:03 +02:00
|
|
|
const int blockSize = 2;
|
|
|
|
NDArray x('c', {3, 3*blockSize - 1 - 2, 4*blockSize - 2 - 3, 2}, {147, 148, 219, 220, 149, 150, 11, 12, 83, 84, 13, 14, 155, 156, 227, 228, 157, 158, 171, 172, 243, 244, 173, 174, 35, 36, 107, 108, 37, 38, 179, 180, 251, 252, 181, 182, 195, 196, 267, 268, 197, 198, 59, 60, 131, 132, 61, 62, 203, 204, 275, 276, 205, 206}, nd4j::DataType::FLOAT32);
|
|
|
|
NDArray paddings = NDArrayFactory::create<int>('c', {2, 2}, {1, 2, 2, 3});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-02 19:01:03 +02:00
|
|
|
NDArray exp('c', {3*blockSize*blockSize, 3, 4, 2}, {0,0, 0,0, 0,0, 0,0, 0,0, 11,12, 13,14, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0,
|
|
|
|
0,0, 0,0, 0,0, 35,36, 37,38, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 59,60, 61,62, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0,
|
|
|
|
0,0, 0,0, 0,0, 0,0, 83,84, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 107, 108, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0,
|
|
|
|
0,0, 0,0, 0,0, 0,0, 0,0, 131, 132, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 147, 148, 149, 150, 0,0, 0,0, 155, 156, 157, 158,
|
|
|
|
0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 171, 172, 173, 174, 0,0, 0,0, 179, 180, 181, 182, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 195, 196,
|
|
|
|
197, 198, 0,0, 0,0, 203, 204, 205, 206, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 219, 220, 0,0, 0,0, 0,0, 227, 228, 0,0, 0,0, 0,0,
|
|
|
|
0,0, 0,0, 0,0, 0,0, 243, 244, 0,0, 0,0, 0,0, 251, 252, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 267, 268, 0,0, 0,0, 0,0, 275,
|
|
|
|
276, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0}, nd4j::DataType::FLOAT32);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-02 19:01:03 +02:00
|
|
|
nd4j::ops::space_to_batch op;
|
|
|
|
auto result = op.execute({&x, &paddings}, {}, {blockSize});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
2019-08-02 19:01:03 +02:00
|
|
|
// z->printIndexedBuffer();
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
2019-08-02 19:01:03 +02:00
|
|
|
TEST_F(DeclarableOpsTests5, Test_BatchToSpace_1) {
|
2019-06-06 14:21:15 +02:00
|
|
|
auto x = NDArrayFactory::create<double>('c', {4, 1, 1, 3}, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12});
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', {1, 2, 2, 3}, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12});
|
2019-08-02 19:01:03 +02:00
|
|
|
auto crops = NDArrayFactory::create<int>('c', {2, 2}, {0, 0, 0, 0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
nd4j::ops::batch_to_space op;
|
2019-08-02 19:01:03 +02:00
|
|
|
auto result = op.execute({&x, &crops}, {}, {2});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
2019-08-02 19:01:03 +02:00
|
|
|
// z->printIndexedBuffer();
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(DeclarableOpsTests5, Test_BatchToSpace_2) {
|
|
|
|
auto x = NDArrayFactory::create<double>('c', {4, 1, 1, 1}, {1, 2, 3, 4});
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', {1, 2, 2, 1}, {1, 2, 3, 4});
|
2019-08-02 19:01:03 +02:00
|
|
|
auto crops = NDArrayFactory::create<int>('c', {2, 2}, {0, 0, 0, 0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
nd4j::ops::batch_to_space op;
|
2019-08-02 19:01:03 +02:00
|
|
|
auto result = op.execute({&x, &crops}, {}, {2});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(DeclarableOpsTests5, Test_BatchToSpace_3) {
|
2019-08-02 19:01:03 +02:00
|
|
|
auto x = NDArrayFactory::create<double>('c', {8, 1, 3, 1}, {0, 1, 3, 0, 9, 11,
|
|
|
|
0, 2, 4, 0, 10, 12,
|
|
|
|
0, 5, 7, 0, 13, 15,
|
|
|
|
0, 6, 8, 0, 14, 16});
|
2019-06-06 14:21:15 +02:00
|
|
|
auto exp = NDArrayFactory::create<double>('c', {2, 2, 4, 1}, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16});
|
2019-08-02 19:01:03 +02:00
|
|
|
auto crops = NDArrayFactory::create<int>('c', {2, 2}, {0, 0, 2, 0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
nd4j::ops::batch_to_space op;
|
2019-08-02 19:01:03 +02:00
|
|
|
auto result = op.execute({&x, &crops}, {}, {2});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
2019-08-02 19:01:03 +02:00
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, Test_BatchToSpace_4) {
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-02 19:01:03 +02:00
|
|
|
const int blockSize = 2;
|
|
|
|
NDArray x('c', {3*blockSize*blockSize, 3, 4, 2}, nd4j::DataType::FLOAT32);
|
|
|
|
x.linspace(1, 1);
|
|
|
|
NDArray crops = NDArrayFactory::create<int>('c', {2, 2}, {1, 2, 2, 3});
|
|
|
|
|
|
|
|
NDArray exp('c', {3, 3*blockSize - 1 - 2, 4*blockSize - 2 - 3, 2}, {147, 148, 219, 220, 149, 150, 11, 12, 83, 84, 13, 14, 155, 156, 227, 228, 157, 158, 171, 172, 243, 244, 173, 174, 35, 36, 107, 108, 37, 38, 179, 180, 251, 252, 181, 182, 195, 196, 267, 268, 197, 198, 59, 60, 131, 132, 61, 62, 203, 204, 275, 276, 205, 206}, nd4j::DataType::FLOAT32);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
nd4j::ops::batch_to_space op;
|
2019-08-02 19:01:03 +02:00
|
|
|
auto result = op.execute({&x, &crops}, {}, {blockSize});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, eye_test1) {
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto expected = NDArrayFactory::create<float>('c', {3, 3}, {1, 0, 0, 0, 1, 0, 0, 0, 1});
|
|
|
|
|
|
|
|
nd4j::ops::eye op;
|
|
|
|
auto results = op.execute({}, {}, {-99, 3});
|
|
|
|
auto output = results->at(0);
|
|
|
|
// output->printIndexedBuffer();
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(expected.isSameShape(output));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(output));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, eye_test2) {
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto expected = NDArrayFactory::create<float>('c', {3, 4}, {1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0});
|
|
|
|
|
|
|
|
nd4j::ops::eye op;
|
|
|
|
auto results = op.execute({}, {}, {-99, 3, 4});
|
|
|
|
auto output = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(expected.isSameShape(output));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(output));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, eye_test3) {
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-08-28 17:27:08 +02:00
|
|
|
auto expected = NDArrayFactory::create<int>('c', {2, 3, 4}, {1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
nd4j::ops::eye op;
|
2019-08-28 17:27:08 +02:00
|
|
|
auto results = op.execute({}, {9 /*int*/}, {-99, 3, 4, 2});
|
2019-06-06 14:21:15 +02:00
|
|
|
auto output = results->at(0);
|
Merge master to upstream (#7945)
* Shugeo strided slice zeros (#14)
* Modified strided_slice op to properly work with empty-like shapes.
* Fixed test for reduce_mean with empty-like input.
* [WIP] Last merge (#15)
* correct logsoftmax looss (#2)
* Small SameDiff listener fix (#4)
* Various fixes (#6)
* #7839 Fix for asXMatrix and tests
* #7866 EmbeddingSequenceLayer dtype fix + test
* #7856 SameDiff save/load stream methods
* #7859 RegressionEvaluation rank 4 fix + tests + axis configuration
* EvaluationBinary 3d/4d
* More evaluation 3d/4d tests
* #7847 Evaluation empty checks
* Small test ifx
* #7848 Fix median edge case
* Improve DL4J samediff layer tests
* [WIP] FastText wrapper implemented (#8)
* FastText implemented
* Some fixes
* Fix shapes for wordsNearest
* Validation of input vectors
* Fixes
* Fixed test
* Thread tagged
* Some tweaks
* setContextClassLoader for DeallocatorServiceThread
* Numpy format tests (#1)
* Various fixes (#11)
* #7852 SameDiff gather fix
* #7892 SameDiff placeholder to constant conversion
* #7890 validate input rank for MLN/CG init methods
* Fix broken permute shape calculation
* Permute and gather fixes
* Tests
* #7850 LogSumExp fix + test
* Handful of test fixes
* Empty arrays with non-scalar shapes (#10)
* minor rearrangements for lambdas
* empty tensors with non-scalar shapes
* numpy empty tensors with non-scalar shapes
* few more empty tweaks
* Small fixes
* conv3d signature update
* micro fix in batchnorm mkldnn
* Import fixes
* Fix
* MKL-DNN update
* Small fill fix
* fill with empty input + test
* Fixes
* Small error improvement
* Fix
* one special test
* couple of fixes for lstm
* Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone
* Fixes
* FP16
* Unsigned
* BFloat16
* Fill op - empty tweaks
* - couple of fixes for empty arrays construction
- stack updated
* strided slice fix
* one transform test
* provide method for reducing shapeInfo in case of input array is empty
* Fixed reduceAlongDimensions to use empty input properly.
* couple of broadcast tests
* couple of tests broadcast tests + tweak to make them pass
* add check of non-empty to methods producing sub-arrays
* Fixed reshapeC with zeros in shape.
* complete empty check in reduce_... legacy ops
* Concat and cumsum/prod
* Tweak to empty shape inference on import
* add empty check to the rest of reduce legacy ops
* one more test
* correct typo in evalReduceShapeInfoEmpty
* Added tests for reduce_* ops to tests with zero shapes.
* few more tests for empty reductions
* Fixed strided_slice op with empty case and tests.
* one more empty reduction test
* Fixed strided_slice test.
* add empty check to NDArray::reshapei
* infOrMax
* empty min/max with infinity tests
* made unstack working correctly with empty arrays
* few IndexReduce tests + tweaks for empty shapes
* add test for empty concat
* few tests fixed
* Validation fix for reductions on empty shapes
* Reverse fix
* Reduction shape calc fixes
* SameDiff.generateOutputVariable: don't use shape function to determine number of outputs
* Range fix
* - NDArray constructor updated for scalars/empty arrays
- few tests fixed
* More fixes
* Empty creator fixes
* concat fix
* concat fix
* TF import tests: allow 'both all NaN' and 'both all inf' to pass
* Slice, zero fraction, and reshape fixes
* transpose, gather
* Zero fraction
* scalar cast fix
* Empty reduction axis support
* few more tests fixed
* Fixed input checks conforming with TF for concat op and tests.
* few tests fixed
* matmul scalar shape fix
* Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats.
* broadcast bool fix
* few more tests
* few more tests
* correct evalReduceShapeInfoEmpty
* argmax/argmin + tests
* one more empty edge case + one more test
* argmax/argmin/realdiv_bp tweaks
* empty reshape test + fix
* Helper fixes
* Small fixes
* Gather test fix
* Gather test fix
* Small fixes
* reduce scalar zero values
* scalar mean workaround
* Remove debug code
* along dim mean workaround
* one more test
* - equalsTo() tweak for empty arrays
- one more test
* broadcast tweaks
* [WIP] Fixing outstanding issues for NLP (#9)
* Avoid using not-inited objects
* Test fixed.
* Redundant method avoided for models like FastText
* KMeans++ implementation
* KMeans++ implementation
* Disable parallel execution
* KMeans++
* Tests
* Dev branch merge (#16)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Fix some issues on master (#17)
* Fix DataVec test issue
* Fix issue with dl4j SameDiff output layer
* Dtype fix for lambda layers
* #7912 BertIterator dtype fix (use float32 not global default)
* [WIP] Next set of CUDA stuff (#7)
New CUDA implementations and improvements
* bad file
* Dev branch master merge (#23)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Compatibility of deserialization (#18)
Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
* SameDiff: add activation gradient checking support for debugging (#19)
* SameDiff gradient checker: first pass on activation gradient checks
* Fixes + tests for activation gradient checking
* Javadoc
* [WIP] Some nd4j data type corrections (#20)
* Adjust data type
* Set correct Data type.
* Size of proper data type.
* fix averaged cpu load (#22)
* SameDiff ops, TF import and fixes (#24)
* CheckNumerics tests + fixes + misc fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fake quant
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* FakeQuantWithMinMaxArgs
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* CheckNumerics fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix libnd4j ALL_INTS and ALL_FLOATS declaration (uint and bfloat types)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Small fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Javadoc
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Exception tweak
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix for out of scope stack allocated var use
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Ignores
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Ignore for known failing test (already logged issue)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Merge upstream to fork (#25)
* Add thousand-separator commas to TotalParams (#7915)
* Add thousand-separator commas to TotalParams
The number of parameters can be quite large, and it would help the reading of the summary printout to have the TotalParams column & values at the bottom have thousand-separator-commas in them.
* Add thousand-separator commas to MultiLayerNetwork
Corresponding change to MultiLayerNetwork
Signed-off-by: Jxtps Jxtps <jxtps435@gmail.com>
* Update contributing and issue/PR templates (#7934)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix link to AdaDelta paper (#7942)
Fix link to AdaDelta paper hosted on matthewzeiler.com
Signed-off-by: Jxtps
* Fixes, and ignores for known/logged failing issues (#7943)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* SameDiff + DL4J/SameDiff: Multiple fixes (#28)
* #7919 HDF5 attribute buffer length fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7909 Arbiter constructor exception ux improvements
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7925 RNN output layer length checks
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7939 Add listener for validating inputs are not incorrectly modified
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7939 Integrate NonInplaceValidationListener into tests
* #7844 DL4J SameDiff fixes for variable minibatch size
* DL4J SameDiff fixes - ensure gradient for input placeholder is available
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Tweaks to ExternalErrorsFunction - use placeholders, make more robust
* Another fix
* More fixes
* More SameDiff/DL4J fixes
* Scope out scalar array creation in BaseScalarOp
* Remove debug code
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] Final dev branch merge (#29)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Compatibility of deserialization (#18)
Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
* SameDiff: add activation gradient checking support for debugging (#19)
* SameDiff gradient checker: first pass on activation gradient checks
* Fixes + tests for activation gradient checking
* Javadoc
* [WIP] Some nd4j data type corrections (#20)
* Adjust data type
* Set correct Data type.
* Size of proper data type.
* fix averaged cpu load (#22)
* [WIP] Multiple dataset iterators (#27)
* Splitting dataset into arbitrary number
* Fixes
* Multiple split of iterator
* Test
* Test
* Some fixes
* signature change
* one more tweak
Signed-off-by: raver119 <raver119@gmail.com>
* one more test for sequential use of DataSetIteratorSplitter
Signed-off-by: raver119 <raver119@gmail.com>
* Fixes
* Fixes
* one more test for Alexander
Signed-off-by: raver119 <raver119@gmail.com>
* Some fixes
* Some fixes
* one more test for Alexander
Signed-off-by: raver119 <raver119@gmail.com>
* minor test fix
Signed-off-by: raver119 <raver119@gmail.com>
* Some fixes
* Some fixes
* couple of assertions tweaked
Signed-off-by: raver119 <raver119@gmail.com>
* MDS splitter test :/
Signed-off-by: raver119 <raver119@gmail.com>
* Minor refactoring
* Multi dataset
* Some fixes
* More tests
* Small number of test fixes/improvements (failures on CI) (#31)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] More CUDA stuff (#26)
* initial commit
Signed-off-by: raver119 <raver119@gmail.com>
* LRN BP CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* less memory
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed bug with crop_and_resize op helper.
* get rid of unnecessary index-calculation dunction
Signed-off-by: Yurii <yurii@skymind.io>
* Fixed sort with nth_element cuda-based helper.
* Refactored nth_element.
* Refactored nth_element op and tests.
* Modified usage of dim array with sortTad routine.
* Refactored main routine of helper for non_max_image_suppression op.
* non_max_image_suppression op helper with cuda kernel implementation. Initial revision.
* fix vol2col cuda kernel
* meh
Signed-off-by: raver119 <raver119@gmail.com>
* topK concept
Signed-off-by: raver119 <raver119@gmail.com>
* unsorted topK with scanWitdh of 1
Signed-off-by: raver119 <raver119@gmail.com>
* correct vol2col tests
* sorted/unsorted topK
Signed-off-by: raver119 <raver119@gmail.com>
* implementation and fixing col2im/col2vol
* Corrected usage flags with input/output with reverse op.
* dup is const now
Signed-off-by: raver119 <raver119@gmail.com>
* percentile op
Signed-off-by: raver119 <raver119@gmail.com>
* group tests for mapool2d
Signed-off-by: Yurii <yurii@skymind.io>
* special test for george
Signed-off-by: raver119 <raver119@gmail.com>
* less threads for sortTad
Signed-off-by: raver119 <raver119@gmail.com>
* provide conv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* remove auther in sort tad kernel code
Signed-off-by: Yurii <yurii@skymind.io>
* provide depthwise_conv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* - max_pooling_with_argmax
- null check for special use
Signed-off-by: raver119 <raver119@gmail.com>
* dts cuda
Signed-off-by: raver119 <raver119@gmail.com>
* provide sconv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* std cuda
Signed-off-by: raver119 <raver119@gmail.com>
* Refactored non_max_suppression op to conform TF implementation.
* Improved suppression helper.
* provide pooling3d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* minor lstm rearrangements
Signed-off-by: raver119 <raver119@gmail.com>
* more of minor lstm rearrangements
Signed-off-by: raver119 <raver119@gmail.com>
* (bi)dynamic_rnn
Signed-off-by: raver119 <raver119@gmail.com>
* templates init order
Signed-off-by: raver119 <raver119@gmail.com>
* Refactored non_max_suppression op.
* Added cuda kernel for non_max_suppression.
* CPU sort by key/value
Signed-off-by: raver119 <raver119@gmail.com>
* CPU sort TAD by key/value
Signed-off-by: raver119 <raver119@gmail.com>
* CPU sort TAD by key/value tests
Signed-off-by: raver119 <raver119@gmail.com>
* Eliminate compiler error with cuda implementation.
* - repaired gradCheck in cuda
- provide conv2d_bp for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* missed signature
Signed-off-by: raver119 <raver119@gmail.com>
* provide depthwise_conv2d_bp for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* Implementation of lup helper with cuda kernel. Initial commit.
* further work on backprops for convolutions
Signed-off-by: Yurii <yurii@skymind.io>
* CUDA linear sort by key/val
Signed-off-by: raver119 <raver119@gmail.com>
* CUDA tad sort by key/val
Signed-off-by: raver119 <raver119@gmail.com>
* start providing of backprop for pooling2d/3d
Signed-off-by: Yurii <yurii@skymind.io>
* Added atomicAdd for bool datatype.
* dynamic partition concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic partition concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic partition scalar CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* important comment
Signed-off-by: raver119 <raver119@gmail.com>
* fix pooling2d/3d backprop helpers
Signed-off-by: Yurii <yurii@skymind.io>
* Added non-linear test with dynamic_partition.
* Improved test for dynamic_partition.
* dynamic_partition TAD concept
Signed-off-by: raver119 <raver119@gmail.com>
* - dynamic_partition TAD CUDA impl
- dynamic_partition TAD CPU fix
Signed-off-by: raver119 <raver119@gmail.com>
* - rewrite cpu code for usampling2d/3d
- write cuda code for usampling2d/3d
Signed-off-by: Yurii <yurii@skymind.io>
* dynamic_stitch CUDA vector case
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic_stitch CUDA TAD case concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic_stitch CUDA TAD case impl
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for dynamic_stitch 3D-4D cases.
* minor tests tweaks
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed type check for dynamic stitch.
* min/max bp
Signed-off-by: raver119 <raver119@gmail.com>
* rewrite code for upsampling2d/3d cpu
Signed-off-by: Yurii <yurii@skymind.io>
* reduce min/max/norm_max bp
Signed-off-by: raver119 <raver119@gmail.com>
* lup implementation. Additional enhancements.
* provide code for upsamling2d/3d backprop
Signed-off-by: Yurii <yurii@skymind.io>
* weightedCrossEntropyWithLogits
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed template math atomicMul for 64bit ints.
* Refactored dynamic_partition_bp op.
* inverseBroadcast fix
Signed-off-by: raver119 <raver119@gmail.com>
* DynamicPartitionBP test datatype fixed.
* - nd4j_atomicMul Windows fix
- cpu/NDArrayLambda.hpp excluded from CUDA
Signed-off-by: raver119 <raver119@gmail.com>
2019-06-27 17:37:04 +02:00
|
|
|
// output->printIndexedBuffer("Output eye");
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(expected.isSameShape(output));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(output));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, eye_test4) {
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-08-28 17:27:08 +02:00
|
|
|
auto expected = NDArrayFactory::create<double>('c', {2, 2, 3, 4}, {1., 0., 0., 0., 0., 1., 0., 0., 0., 0., 1., 0., 1., 0., 0., 0., 0., 1., 0., 0., 0., 0., 1., 0., 1., 0., 0., 0., 0., 1., 0., 0., 0., 0., 1., 0., 1., 0., 0., 0., 0., 1., 0., 0., 0., 0., 1., 0.});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
nd4j::ops::eye op;
|
2019-08-28 17:27:08 +02:00
|
|
|
auto results = op.execute({}, {6/*double*/}, {-99, 3, 4, 2, 2});
|
2019-06-06 14:21:15 +02:00
|
|
|
auto output = results->at(0);
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(expected.isSameShape(output));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(output));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
Merge master to upstream (#7945)
* Shugeo strided slice zeros (#14)
* Modified strided_slice op to properly work with empty-like shapes.
* Fixed test for reduce_mean with empty-like input.
* [WIP] Last merge (#15)
* correct logsoftmax looss (#2)
* Small SameDiff listener fix (#4)
* Various fixes (#6)
* #7839 Fix for asXMatrix and tests
* #7866 EmbeddingSequenceLayer dtype fix + test
* #7856 SameDiff save/load stream methods
* #7859 RegressionEvaluation rank 4 fix + tests + axis configuration
* EvaluationBinary 3d/4d
* More evaluation 3d/4d tests
* #7847 Evaluation empty checks
* Small test ifx
* #7848 Fix median edge case
* Improve DL4J samediff layer tests
* [WIP] FastText wrapper implemented (#8)
* FastText implemented
* Some fixes
* Fix shapes for wordsNearest
* Validation of input vectors
* Fixes
* Fixed test
* Thread tagged
* Some tweaks
* setContextClassLoader for DeallocatorServiceThread
* Numpy format tests (#1)
* Various fixes (#11)
* #7852 SameDiff gather fix
* #7892 SameDiff placeholder to constant conversion
* #7890 validate input rank for MLN/CG init methods
* Fix broken permute shape calculation
* Permute and gather fixes
* Tests
* #7850 LogSumExp fix + test
* Handful of test fixes
* Empty arrays with non-scalar shapes (#10)
* minor rearrangements for lambdas
* empty tensors with non-scalar shapes
* numpy empty tensors with non-scalar shapes
* few more empty tweaks
* Small fixes
* conv3d signature update
* micro fix in batchnorm mkldnn
* Import fixes
* Fix
* MKL-DNN update
* Small fill fix
* fill with empty input + test
* Fixes
* Small error improvement
* Fix
* one special test
* couple of fixes for lstm
* Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone
* Fixes
* FP16
* Unsigned
* BFloat16
* Fill op - empty tweaks
* - couple of fixes for empty arrays construction
- stack updated
* strided slice fix
* one transform test
* provide method for reducing shapeInfo in case of input array is empty
* Fixed reduceAlongDimensions to use empty input properly.
* couple of broadcast tests
* couple of tests broadcast tests + tweak to make them pass
* add check of non-empty to methods producing sub-arrays
* Fixed reshapeC with zeros in shape.
* complete empty check in reduce_... legacy ops
* Concat and cumsum/prod
* Tweak to empty shape inference on import
* add empty check to the rest of reduce legacy ops
* one more test
* correct typo in evalReduceShapeInfoEmpty
* Added tests for reduce_* ops to tests with zero shapes.
* few more tests for empty reductions
* Fixed strided_slice op with empty case and tests.
* one more empty reduction test
* Fixed strided_slice test.
* add empty check to NDArray::reshapei
* infOrMax
* empty min/max with infinity tests
* made unstack working correctly with empty arrays
* few IndexReduce tests + tweaks for empty shapes
* add test for empty concat
* few tests fixed
* Validation fix for reductions on empty shapes
* Reverse fix
* Reduction shape calc fixes
* SameDiff.generateOutputVariable: don't use shape function to determine number of outputs
* Range fix
* - NDArray constructor updated for scalars/empty arrays
- few tests fixed
* More fixes
* Empty creator fixes
* concat fix
* concat fix
* TF import tests: allow 'both all NaN' and 'both all inf' to pass
* Slice, zero fraction, and reshape fixes
* transpose, gather
* Zero fraction
* scalar cast fix
* Empty reduction axis support
* few more tests fixed
* Fixed input checks conforming with TF for concat op and tests.
* few tests fixed
* matmul scalar shape fix
* Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats.
* broadcast bool fix
* few more tests
* few more tests
* correct evalReduceShapeInfoEmpty
* argmax/argmin + tests
* one more empty edge case + one more test
* argmax/argmin/realdiv_bp tweaks
* empty reshape test + fix
* Helper fixes
* Small fixes
* Gather test fix
* Gather test fix
* Small fixes
* reduce scalar zero values
* scalar mean workaround
* Remove debug code
* along dim mean workaround
* one more test
* - equalsTo() tweak for empty arrays
- one more test
* broadcast tweaks
* [WIP] Fixing outstanding issues for NLP (#9)
* Avoid using not-inited objects
* Test fixed.
* Redundant method avoided for models like FastText
* KMeans++ implementation
* KMeans++ implementation
* Disable parallel execution
* KMeans++
* Tests
* Dev branch merge (#16)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Fix some issues on master (#17)
* Fix DataVec test issue
* Fix issue with dl4j SameDiff output layer
* Dtype fix for lambda layers
* #7912 BertIterator dtype fix (use float32 not global default)
* [WIP] Next set of CUDA stuff (#7)
New CUDA implementations and improvements
* bad file
* Dev branch master merge (#23)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Compatibility of deserialization (#18)
Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
* SameDiff: add activation gradient checking support for debugging (#19)
* SameDiff gradient checker: first pass on activation gradient checks
* Fixes + tests for activation gradient checking
* Javadoc
* [WIP] Some nd4j data type corrections (#20)
* Adjust data type
* Set correct Data type.
* Size of proper data type.
* fix averaged cpu load (#22)
* SameDiff ops, TF import and fixes (#24)
* CheckNumerics tests + fixes + misc fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fake quant
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* FakeQuantWithMinMaxArgs
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* CheckNumerics fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix libnd4j ALL_INTS and ALL_FLOATS declaration (uint and bfloat types)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Small fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Javadoc
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Exception tweak
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix for out of scope stack allocated var use
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Ignores
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Ignore for known failing test (already logged issue)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Merge upstream to fork (#25)
* Add thousand-separator commas to TotalParams (#7915)
* Add thousand-separator commas to TotalParams
The number of parameters can be quite large, and it would help the reading of the summary printout to have the TotalParams column & values at the bottom have thousand-separator-commas in them.
* Add thousand-separator commas to MultiLayerNetwork
Corresponding change to MultiLayerNetwork
Signed-off-by: Jxtps Jxtps <jxtps435@gmail.com>
* Update contributing and issue/PR templates (#7934)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix link to AdaDelta paper (#7942)
Fix link to AdaDelta paper hosted on matthewzeiler.com
Signed-off-by: Jxtps
* Fixes, and ignores for known/logged failing issues (#7943)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* SameDiff + DL4J/SameDiff: Multiple fixes (#28)
* #7919 HDF5 attribute buffer length fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7909 Arbiter constructor exception ux improvements
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7925 RNN output layer length checks
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7939 Add listener for validating inputs are not incorrectly modified
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7939 Integrate NonInplaceValidationListener into tests
* #7844 DL4J SameDiff fixes for variable minibatch size
* DL4J SameDiff fixes - ensure gradient for input placeholder is available
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Tweaks to ExternalErrorsFunction - use placeholders, make more robust
* Another fix
* More fixes
* More SameDiff/DL4J fixes
* Scope out scalar array creation in BaseScalarOp
* Remove debug code
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] Final dev branch merge (#29)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Compatibility of deserialization (#18)
Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
* SameDiff: add activation gradient checking support for debugging (#19)
* SameDiff gradient checker: first pass on activation gradient checks
* Fixes + tests for activation gradient checking
* Javadoc
* [WIP] Some nd4j data type corrections (#20)
* Adjust data type
* Set correct Data type.
* Size of proper data type.
* fix averaged cpu load (#22)
* [WIP] Multiple dataset iterators (#27)
* Splitting dataset into arbitrary number
* Fixes
* Multiple split of iterator
* Test
* Test
* Some fixes
* signature change
* one more tweak
Signed-off-by: raver119 <raver119@gmail.com>
* one more test for sequential use of DataSetIteratorSplitter
Signed-off-by: raver119 <raver119@gmail.com>
* Fixes
* Fixes
* one more test for Alexander
Signed-off-by: raver119 <raver119@gmail.com>
* Some fixes
* Some fixes
* one more test for Alexander
Signed-off-by: raver119 <raver119@gmail.com>
* minor test fix
Signed-off-by: raver119 <raver119@gmail.com>
* Some fixes
* Some fixes
* couple of assertions tweaked
Signed-off-by: raver119 <raver119@gmail.com>
* MDS splitter test :/
Signed-off-by: raver119 <raver119@gmail.com>
* Minor refactoring
* Multi dataset
* Some fixes
* More tests
* Small number of test fixes/improvements (failures on CI) (#31)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] More CUDA stuff (#26)
* initial commit
Signed-off-by: raver119 <raver119@gmail.com>
* LRN BP CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* less memory
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed bug with crop_and_resize op helper.
* get rid of unnecessary index-calculation dunction
Signed-off-by: Yurii <yurii@skymind.io>
* Fixed sort with nth_element cuda-based helper.
* Refactored nth_element.
* Refactored nth_element op and tests.
* Modified usage of dim array with sortTad routine.
* Refactored main routine of helper for non_max_image_suppression op.
* non_max_image_suppression op helper with cuda kernel implementation. Initial revision.
* fix vol2col cuda kernel
* meh
Signed-off-by: raver119 <raver119@gmail.com>
* topK concept
Signed-off-by: raver119 <raver119@gmail.com>
* unsorted topK with scanWitdh of 1
Signed-off-by: raver119 <raver119@gmail.com>
* correct vol2col tests
* sorted/unsorted topK
Signed-off-by: raver119 <raver119@gmail.com>
* implementation and fixing col2im/col2vol
* Corrected usage flags with input/output with reverse op.
* dup is const now
Signed-off-by: raver119 <raver119@gmail.com>
* percentile op
Signed-off-by: raver119 <raver119@gmail.com>
* group tests for mapool2d
Signed-off-by: Yurii <yurii@skymind.io>
* special test for george
Signed-off-by: raver119 <raver119@gmail.com>
* less threads for sortTad
Signed-off-by: raver119 <raver119@gmail.com>
* provide conv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* remove auther in sort tad kernel code
Signed-off-by: Yurii <yurii@skymind.io>
* provide depthwise_conv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* - max_pooling_with_argmax
- null check for special use
Signed-off-by: raver119 <raver119@gmail.com>
* dts cuda
Signed-off-by: raver119 <raver119@gmail.com>
* provide sconv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* std cuda
Signed-off-by: raver119 <raver119@gmail.com>
* Refactored non_max_suppression op to conform TF implementation.
* Improved suppression helper.
* provide pooling3d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* minor lstm rearrangements
Signed-off-by: raver119 <raver119@gmail.com>
* more of minor lstm rearrangements
Signed-off-by: raver119 <raver119@gmail.com>
* (bi)dynamic_rnn
Signed-off-by: raver119 <raver119@gmail.com>
* templates init order
Signed-off-by: raver119 <raver119@gmail.com>
* Refactored non_max_suppression op.
* Added cuda kernel for non_max_suppression.
* CPU sort by key/value
Signed-off-by: raver119 <raver119@gmail.com>
* CPU sort TAD by key/value
Signed-off-by: raver119 <raver119@gmail.com>
* CPU sort TAD by key/value tests
Signed-off-by: raver119 <raver119@gmail.com>
* Eliminate compiler error with cuda implementation.
* - repaired gradCheck in cuda
- provide conv2d_bp for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* missed signature
Signed-off-by: raver119 <raver119@gmail.com>
* provide depthwise_conv2d_bp for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* Implementation of lup helper with cuda kernel. Initial commit.
* further work on backprops for convolutions
Signed-off-by: Yurii <yurii@skymind.io>
* CUDA linear sort by key/val
Signed-off-by: raver119 <raver119@gmail.com>
* CUDA tad sort by key/val
Signed-off-by: raver119 <raver119@gmail.com>
* start providing of backprop for pooling2d/3d
Signed-off-by: Yurii <yurii@skymind.io>
* Added atomicAdd for bool datatype.
* dynamic partition concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic partition concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic partition scalar CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* important comment
Signed-off-by: raver119 <raver119@gmail.com>
* fix pooling2d/3d backprop helpers
Signed-off-by: Yurii <yurii@skymind.io>
* Added non-linear test with dynamic_partition.
* Improved test for dynamic_partition.
* dynamic_partition TAD concept
Signed-off-by: raver119 <raver119@gmail.com>
* - dynamic_partition TAD CUDA impl
- dynamic_partition TAD CPU fix
Signed-off-by: raver119 <raver119@gmail.com>
* - rewrite cpu code for usampling2d/3d
- write cuda code for usampling2d/3d
Signed-off-by: Yurii <yurii@skymind.io>
* dynamic_stitch CUDA vector case
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic_stitch CUDA TAD case concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic_stitch CUDA TAD case impl
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for dynamic_stitch 3D-4D cases.
* minor tests tweaks
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed type check for dynamic stitch.
* min/max bp
Signed-off-by: raver119 <raver119@gmail.com>
* rewrite code for upsampling2d/3d cpu
Signed-off-by: Yurii <yurii@skymind.io>
* reduce min/max/norm_max bp
Signed-off-by: raver119 <raver119@gmail.com>
* lup implementation. Additional enhancements.
* provide code for upsamling2d/3d backprop
Signed-off-by: Yurii <yurii@skymind.io>
* weightedCrossEntropyWithLogits
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed template math atomicMul for 64bit ints.
* Refactored dynamic_partition_bp op.
* inverseBroadcast fix
Signed-off-by: raver119 <raver119@gmail.com>
* DynamicPartitionBP test datatype fixed.
* - nd4j_atomicMul Windows fix
- cpu/NDArrayLambda.hpp excluded from CUDA
Signed-off-by: raver119 <raver119@gmail.com>
2019-06-27 17:37:04 +02:00
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, eye_test5) {
|
|
|
|
|
|
|
|
nd4j::ops::eye op;
|
|
|
|
auto result = op.execute({},{},{3, 2});
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, gatherNd_test1) {
|
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<double>('c', {4, 3, 2});
|
|
|
|
input.linspace(1);
|
|
|
|
auto indices = NDArrayFactory::create<int>('c', {2,2,1}, {3,2,3,2});
|
|
|
|
|
|
|
|
auto expected = NDArrayFactory::create<double>('c', {2,2,3,2}, {19, 20, 21, 22, 23, 24, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 13, 14, 15, 16, 17, 18});
|
|
|
|
|
|
|
|
nd4j::ops::gather_nd op;
|
|
|
|
auto results = op.execute({&input, &indices}, {}, {});
|
|
|
|
auto output = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(expected.isSameShape(output));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(output));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, gatherNd_test2) {
|
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<double>('c', {4, 3, 2});
|
|
|
|
input.linspace(1);
|
|
|
|
auto indices = NDArrayFactory::create<int>('c', {2,2,2}, {3,2,1,2, 0,1,0,1});
|
|
|
|
|
|
|
|
auto expected = NDArrayFactory::create<double>('c', {2,2,2}, {23, 24, 11, 12, 3, 4, 3, 4});
|
|
|
|
|
|
|
|
nd4j::ops::gather_nd op;
|
|
|
|
auto results = op.execute({&input, &indices}, {}, {});
|
|
|
|
auto output = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(expected.isSameShape(output));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(output));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, gatherNd_test3) {
|
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<double>('c', {4, 3, 2});
|
|
|
|
input.linspace(1);
|
|
|
|
auto indices = NDArrayFactory::create<int>('c', {3}, {3,2,1});
|
|
|
|
auto expected = NDArrayFactory::create<double>(24.);
|
|
|
|
|
|
|
|
nd4j::ops::gather_nd op;
|
|
|
|
auto results = op.execute({&input, &indices}, {}, {});
|
|
|
|
auto output = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(expected.isSameShape(output));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(output));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, gatherNd_test4) {
|
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<double>('c', {4, 3, 2});
|
|
|
|
input.linspace(1);
|
|
|
|
auto indices = NDArrayFactory::create<int>('c', {2,3}, {3,2,1,0,2,1});
|
|
|
|
auto expected = NDArrayFactory::create<double>('c',{2}, {24., 6});
|
|
|
|
|
|
|
|
nd4j::ops::gather_nd op;
|
|
|
|
auto results = op.execute({&input, &indices}, {}, {});
|
|
|
|
auto output = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(expected.isSameShape(output));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(output));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, gatherNd_test5) {
|
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<double>('c', {4}, {1,2,3,4});
|
|
|
|
auto indices = NDArrayFactory::create<int>('c', {5,1}, {3,2,0,1,1});
|
|
|
|
auto expected = NDArrayFactory::create<double>('c',{5}, {4.,3,1,2,2});
|
|
|
|
|
|
|
|
nd4j::ops::gather_nd op;
|
|
|
|
auto results = op.execute({&input, &indices}, {}, {});
|
|
|
|
auto output = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(expected.isSameShape(output));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(output));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, gatherNd_test6) {
|
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<double>('c', {4}, {1,2,3,4});
|
|
|
|
std::vector<Nd4jLong> shape = {1};
|
|
|
|
auto indices = NDArrayFactory::create<int>('c', shape, {2});
|
|
|
|
auto expected = NDArrayFactory::create<double>(3.);
|
|
|
|
|
|
|
|
nd4j::ops::gather_nd op;
|
|
|
|
auto results = op.execute({&input, &indices}, {}, {});
|
|
|
|
auto output = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(expected.isSameShape(output));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(output));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
2019-08-02 19:01:03 +02:00
|
|
|
TEST_F(DeclarableOpsTests5, gatherNd_test7) {
|
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<double>('c', {4, 4});
|
|
|
|
input.linspace(1);
|
|
|
|
auto indices = NDArrayFactory::create<int>('c', {3,3,2}, {0,2,1, 0,1,0, 1,3,1, 0,2,1, 0,1,0, 1,3,1});
|
|
|
|
auto expected = NDArrayFactory::create<double>('c', {3,3}, {3,5,5,8,5,10,2,2,14});
|
|
|
|
|
|
|
|
nd4j::ops::gather_nd op;
|
|
|
|
auto results = op.execute({&input, &indices}, {}, {});
|
|
|
|
auto output = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(expected.isSameShape(output));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(output));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
2019-08-27 11:35:14 +02:00
|
|
|
TEST_F(DeclarableOpsTests5, gatherNd_test8) {
|
|
|
|
auto x = NDArrayFactory::create<double>('c', {2, 2}, {1., 2., 3., 4.});
|
|
|
|
auto y = NDArrayFactory::create<int>('c', {2, 2}, {0, 0, 1, 1});
|
|
|
|
auto e = NDArrayFactory::create<double>('c', {2}, {1., 4.});
|
|
|
|
|
|
|
|
nd4j::ops::gather_nd op;
|
|
|
|
auto result = op.execute({&x, &y}, {}, {});
|
|
|
|
ASSERT_EQ(Status::OK(), result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_EQ(e, *z);
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
2019-06-06 14:21:15 +02:00
|
|
|
TEST_F(DeclarableOpsTests5, reverse_sequense_test1) {
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto input = NDArrayFactory::create<double>('c', {3, 4, 5});
|
|
|
|
input.linspace(1);
|
|
|
|
auto seqLengths = NDArrayFactory::create<int>('c', {4}, {4,4,4,4});
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', {3, 4, 5}, {4, 3, 2, 1, 5, 9, 8, 7, 6, 10, 14, 13, 12, 11, 15, 19, 18, 17, 16, 20, 24, 23, 22, 21, 25, 29, 28, 27, 26, 30, 34, 33, 32, 31, 35, 39, 38, 37, 36, 40, 44, 43, 42, 41, 45, 49, 48, 47, 46, 50, 54, 53, 52, 51, 55, 59, 58, 57, 56, 60});
|
|
|
|
|
|
|
|
nd4j::ops::reverse_sequence op;
|
|
|
|
auto results = op.execute({&input, &seqLengths}, {}, {2, 1});
|
2019-08-28 10:14:22 +02:00
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto output = results->at(0);
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-08-28 10:14:22 +02:00
|
|
|
exp.printIndexedBuffer("E");
|
|
|
|
output->printIndexedBuffer("O");
|
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(exp.isSameShape(output));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(output));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, reverse_sequense_test2) {
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto input = NDArrayFactory::create<double>('c', {3, 4, 5});
|
|
|
|
input.linspace(1);
|
|
|
|
auto seqLengths = NDArrayFactory::create<Nd4jLong>('c', {4}, {0,1,2,3});
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', {3, 4, 5}, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 11, 13, 14, 15, 18, 17, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 31, 33, 34, 35, 38, 37, 36, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 51, 53, 54, 55, 58, 57, 56, 59, 60});
|
|
|
|
|
|
|
|
nd4j::ops::reverse_sequence op;
|
|
|
|
auto results = op.execute({&input, &seqLengths}, {}, {2, 1});
|
|
|
|
auto output = results->at(0);
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(exp.isSameShape(output));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(output));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, reverse_sequense_test3) {
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto input = NDArrayFactory::create<double>('c', {3, 4, 5});
|
|
|
|
input.linspace(1);
|
|
|
|
auto seqLengths = NDArrayFactory::create<int>('c', {3}, {2,3,4});
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', {3, 4, 5}, {2, 1, 3, 4, 5, 7, 6, 8, 9, 10, 12, 11, 13, 14, 15, 17, 16, 18, 19, 20, 23, 22, 21, 24, 25, 28, 27, 26, 29, 30, 33, 32, 31, 34, 35, 38, 37, 36, 39, 40, 44, 43, 42, 41, 45, 49, 48, 47, 46, 50, 54, 53, 52, 51, 55, 59, 58, 57, 56, 60});
|
|
|
|
|
|
|
|
nd4j::ops::reverse_sequence op;
|
|
|
|
auto results = op.execute({&input, &seqLengths}, {}, {2, 0});
|
|
|
|
auto output = results->at(0);
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(exp.isSameShape(output));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(output));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, reverse_sequense_test4) {
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto input = NDArrayFactory::create<double>('c', {3, 4, 5});
|
|
|
|
input.linspace(1);
|
|
|
|
auto seqLengths = NDArrayFactory::create<int>('c', {5}, {1, 2, 1, 2, 3});
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', {3, 4, 5}, {1, 22, 3, 24, 45, 6, 27, 8, 29, 50, 11, 32, 13, 34, 55, 16, 37, 18, 39, 60, 21, 2, 23, 4, 25, 26, 7, 28, 9, 30, 31, 12, 33, 14, 35, 36, 17, 38, 19, 40, 41, 42, 43, 44, 5, 46, 47, 48, 49, 10, 51, 52, 53, 54, 15, 56, 57, 58, 59, 20});
|
|
|
|
|
|
|
|
nd4j::ops::reverse_sequence op;
|
|
|
|
auto results = op.execute({&input, &seqLengths}, {}, {0, 2});
|
|
|
|
auto output = results->at(0);
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(exp.isSameShape(output));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(output));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, reverse_sequense_test5) {
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto input = NDArrayFactory::create<double>('c', {3, 4, 5});
|
|
|
|
input.linspace(1);
|
|
|
|
auto seqLengths = NDArrayFactory::create<int>('c', {5}, {1, 2, 4, 2, 3});
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', {3, 4, 5}, {1, 7, 18, 9, 15, 6, 2, 13, 4, 10, 11, 12, 8, 14, 5, 16, 17, 3, 19, 20, 21, 27, 38, 29, 35, 26, 22, 33, 24, 30, 31, 32, 28, 34, 25, 36, 37, 23, 39, 40, 41, 47, 58, 49, 55, 46, 42, 53, 44, 50, 51, 52, 48, 54, 45, 56, 57, 43, 59, 60});
|
|
|
|
|
|
|
|
nd4j::ops::reverse_sequence op;
|
|
|
|
auto results = op.execute({&input, &seqLengths}, {}, {1, 2});
|
|
|
|
auto output = results->at(0);
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(exp.isSameShape(output));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(output));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, reverse_sequense_test6) {
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto input = NDArrayFactory::create<double>('c', {3, 4, 5});
|
|
|
|
input.linspace(1);
|
|
|
|
auto seqLengths = NDArrayFactory::create<int>('c', {4}, {1, 2, 3, 2});
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', {3, 4, 5}, {1, 2, 3, 4, 5, 26, 27, 28, 29, 30, 51, 52, 53, 54, 55, 36, 37, 38, 39, 40, 21, 22, 23, 24, 25, 6, 7, 8, 9, 10, 31, 32, 33, 34, 35, 16, 17, 18, 19, 20, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 11, 12, 13, 14, 15, 56, 57, 58, 59, 60});
|
|
|
|
|
|
|
|
nd4j::ops::reverse_sequence op;
|
|
|
|
auto results = op.execute({&input, &seqLengths}, {}, {0, 1});
|
|
|
|
auto output = results->at(0);
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(exp.isSameShape(output));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(output));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, reverse_sequense_test7) {
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto input = NDArrayFactory::create<double>('c', {1, 5});
|
|
|
|
input.linspace(1);
|
|
|
|
std::vector<int> data = {3};
|
|
|
|
auto seqLengths = NDArrayFactory::create<int>('c', {1}, data);
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', {1, 5}, {3, 2, 1, 4, 5});
|
|
|
|
|
|
|
|
nd4j::ops::reverse_sequence op;
|
|
|
|
auto results = op.execute({&input, &seqLengths}, {}, {1, 0});
|
|
|
|
auto output = results->at(0);
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(exp.isSameShape(output));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(output));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, reverse_sequense_test8) {
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto input = NDArrayFactory::create<double>('c', {1, 5});
|
|
|
|
input.linspace(1);
|
|
|
|
std::vector<int> data = {1,0,1,0,1};
|
|
|
|
auto seqLengths = NDArrayFactory::create<int>('c', {5}, data);
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', {1, 5}, {1, 2, 3, 4, 5});
|
|
|
|
|
|
|
|
nd4j::ops::reverse_sequence op;
|
|
|
|
auto results = op.execute({&input, &seqLengths}, {}, {0, 1});
|
|
|
|
auto output = results->at(0);
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(exp.isSameShape(output));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(output));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, reverse_sequense_test9) {
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto input = NDArrayFactory::create<double>('c', {5, 1});
|
|
|
|
input.linspace(1);
|
|
|
|
std::vector<Nd4jLong> data = {1,0,1,0,1};
|
|
|
|
auto seqLengths = NDArrayFactory::create<Nd4jLong>('c', {5}, data);
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', {5, 1}, {1, 2, 3, 4, 5});
|
|
|
|
|
|
|
|
nd4j::ops::reverse_sequence op;
|
|
|
|
auto results = op.execute({&input, &seqLengths}, {}, {1, 0});
|
|
|
|
auto output = results->at(0);
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(exp.isSameShape(output));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(output));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, reverse_sequense_test10) {
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto input = NDArrayFactory::create<double>('c', {5, 1});
|
|
|
|
input.linspace(1);
|
|
|
|
std::vector<int> data = {3};
|
|
|
|
auto seqLengths = NDArrayFactory::create<int>('c', {1}, data);
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', {5, 1}, {3, 2, 1, 4, 5});
|
|
|
|
|
|
|
|
nd4j::ops::reverse_sequence op;
|
|
|
|
auto results = op.execute({&input, &seqLengths}, {}, {0, 1});
|
|
|
|
auto output = results->at(0);
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(exp.isSameShape(output));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(output));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, reverse_sequense_test11) {
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto input = NDArrayFactory::create<double>('c', {1, 1, 5, 1});
|
|
|
|
input.linspace(1);
|
|
|
|
std::vector<int> data = {1, 0, 1, 0, 1};
|
|
|
|
auto seqLengths = NDArrayFactory::create<int>('c', {5}, data);
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', {1, 1, 5, 1}, {1, 2, 3, 4, 5});
|
|
|
|
|
|
|
|
nd4j::ops::reverse_sequence op;
|
|
|
|
auto results = op.execute({&input, &seqLengths}, {}, {1, 2});
|
|
|
|
auto output = results->at(0);
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(exp.isSameShape(output));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(output));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, reverse_sequense_test12) {
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto input = NDArrayFactory::create<double>('c', {1, 1, 5, 1});
|
|
|
|
input.linspace(1);
|
|
|
|
std::vector<int> data = {3};
|
|
|
|
auto seqLengths = NDArrayFactory::create<int>('c', {1}, data);
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', {1, 1, 5, 1}, {3, 2, 1, 4, 5});
|
|
|
|
|
|
|
|
nd4j::ops::reverse_sequence op;
|
|
|
|
auto results = op.execute({&input, &seqLengths}, {}, {2, 0});
|
|
|
|
auto output = results->at(0);
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(exp.isSameShape(output));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(output));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, reverse_sequense_test13) {
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto input = NDArrayFactory::create<double>('c', {1, 1, 5, 1});
|
|
|
|
input.linspace(1);
|
|
|
|
std::vector<int> data = {1};
|
|
|
|
auto seqLengths = NDArrayFactory::create<int>('c', {1}, data);
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', {1, 1, 5, 1}, {1, 2, 3, 4, 5});
|
|
|
|
|
|
|
|
nd4j::ops::reverse_sequence op;
|
|
|
|
auto results = op.execute({&input, &seqLengths}, {}, {3, 0});
|
|
|
|
auto output = results->at(0);
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(exp.isSameShape(output));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(output));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
2019-08-28 10:14:22 +02:00
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, reverse_sequense_test14) {
|
|
|
|
auto input = NDArrayFactory::create<double>('c', {8, 8, 3, 2}, {0.09753360, 0.76124972, 0.24693797, 0.13813169, 0.33144656, 0.08299957, 0.67197708, 0.80659380, 0.98274191, 0.63566073, 0.21592326, 0.54902743, 0.54555996, 0.23407607, 0.11372584, 0.49965927, 0.15210842, 0.53268608, 0.38700677, 0.68832738, 0.37292716, 0.94616004, 0.77735792, 0.60803430, 0.61523204, 0.64298760, 0.26848351, 0.75015615, 0.28683049, 0.70937606, 0.06478678, 0.68985848, 0.55216783, 0.55382648, 0.34652863, 0.17261296, 0.54193264, 0.05176904, 0.82555761, 0.71106697, 0.04416722, 0.07653656, 0.01034390, 0.99430482, 0.59944390, 0.17973880, 0.36437840, 0.86383673, 0.45025550, 0.97136977, 0.13565978, 0.71567448, 0.92094825, 0.93536442, 0.93630291, 0.67277404, 0.93899264, 0.52422773, 0.44892176, 0.03127759, 0.85910449, 0.18252879, 0.72830945, 0.96736828, 0.89831575, 0.83437150, 0.59050780, 0.36145925, 0.16483070, 0.44021176, 0.76018652, 0.44227383, 0.13052339, 0.18204235, 0.99743733, 0.26885190, 0.87726522, 0.16396056, 0.94943412, 0.40016700, 0.65267938, 0.71073267, 0.40094733, 0.91182634, 0.05391789, 0.49520416, 0.24963864, 0.34847086, 0.74088617, 0.36115701, 0.63074210, 0.97423085, 0.42216846, 0.06326975, 0.07858702, 0.20586622, 0.28752144, 0.38146961, 0.83518735, 0.08207577, 0.82083487, 0.81665728, 0.33309570, 0.67563176, 0.98343578, 0.95919930, 0.66994391, 0.89296165, 0.34755773, 0.63166554, 0.18849320, 0.34828456, 0.98477707, 0.75163124, 0.83306004, 0.14203056, 0.01497920, 0.85727447, 0.71194544, 0.85654019, 0.86160433, 0.79580411, 0.47710411, 0.09318029, 0.31369071, 0.64122249, 0.58399725, 0.26706597, 0.05655339, 0.91025211, 0.30330468, 0.33142930, 0.05668627, 0.02936449, 0.12613087, 0.09960114, 0.16218074, 0.15088139, 0.31239040, 0.55980062, 0.34804391, 0.34941538, 0.61370555, 0.07022964, 0.59757058, 0.31189846, 0.25215345, 0.52546591, 0.55744218, 0.59485650, 0.60553664, 0.07536713, 0.55971796, 0.38764845, 0.20737843, 0.37989120, 0.18361641, 0.48636240, 0.06052657, 0.04241913, 0.66710351, 0.07007925, 0.59371493, 0.74479056, 0.84699625, 0.51210368, 0.12489571, 0.23371067,
|
|
|
|
auto lengths = NDArrayFactory::create<Nd4jLong>('c', {8}, {7, 2, 3, 5, 2, 1, 6, 4});
|
|
|
|
auto e = NDArrayFactory::create<double>('c', {8, 8, 3, 2}, {0.54193264, 0.05176904, 0.82555761, 0.71106697, 0.04416722, 0.07653656, 0.06478678, 0.68985848, 0.55216783, 0.55382648, 0.34652863, 0.17261296, 0.61523204, 0.64298760, 0.26848351, 0.75015615, 0.28683049, 0.70937606, 0.38700677, 0.68832738, 0.37292716, 0.94616004, 0.77735792, 0.60803430, 0.54555996, 0.23407607, 0.11372584, 0.49965927, 0.15210842, 0.53268608, 0.67197708, 0.80659380, 0.98274191, 0.63566073, 0.21592326, 0.54902743, 0.09753360, 0.76124972, 0.24693797, 0.13813169, 0.33144656, 0.08299957, 0.01034390, 0.99430482, 0.59944390, 0.17973880, 0.36437840, 0.86383673, 0.93630291, 0.67277404, 0.93899264, 0.52422773, 0.44892176, 0.03127759, 0.45025550, 0.97136977, 0.13565978, 0.71567448, 0.92094825, 0.93536442, 0.85910449, 0.18252879, 0.72830945, 0.96736828, 0.89831575, 0.83437150, 0.59050780, 0.36145925, 0.16483070, 0.44021176, 0.76018652, 0.44227383, 0.13052339, 0.18204235, 0.99743733, 0.26885190, 0.87726522, 0.16396056, 0.94943412, 0.40016700, 0.65267938, 0.71073267, 0.40094733, 0.91182634, 0.05391789, 0.49520416, 0.24963864, 0.34847086, 0.74088617, 0.36115701, 0.63074210, 0.97423085, 0.42216846, 0.06326975, 0.07858702, 0.20586622, 0.34755773, 0.63166554, 0.18849320, 0.34828456, 0.98477707, 0.75163124, 0.33309570, 0.67563176, 0.98343578, 0.95919930, 0.66994391, 0.89296165, 0.28752144, 0.38146961, 0.83518735, 0.08207577, 0.82083487, 0.81665728, 0.83306004, 0.14203056, 0.01497920, 0.85727447, 0.71194544, 0.85654019, 0.86160433, 0.79580411, 0.47710411, 0.09318029, 0.31369071, 0.64122249, 0.58399725, 0.26706597, 0.05655339, 0.91025211, 0.30330468, 0.33142930, 0.05668627, 0.02936449, 0.12613087, 0.09960114, 0.16218074, 0.15088139, 0.31239040, 0.55980062, 0.34804391, 0.34941538, 0.61370555, 0.07022964, 0.27274571, 0.83306066, 0.75830824, 0.25963478, 0.87137718, 0.24418835, 0.59371493, 0.74479056, 0.84699625, 0.51210368, 0.12489571, 0.23371067, 0.18361641, 0.48636240, 0.06052657, 0.04241913, 0.66710351, 0.07007925, 0.60553664, 0.07536713, 0.55971796, 0.38764845, 0.20737843, 0.37989120,
|
|
|
|
|
|
|
|
nd4j::ops::reverse_sequence op;
|
|
|
|
auto results = op.execute({&input, &lengths}, {}, {1, 0});
|
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
|
|
|
|
auto z = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_EQ(e, *z);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, Test_TopK_0) {
|
|
|
|
auto x = NDArrayFactory::create<double>('c', {2, 6}, {1.0, 1.0, 1.0, 1.0, 11.0, 3.0, 1.0, 1.0, 1.0, 14.0, 5.0, 6.0});
|
|
|
|
auto expV = NDArrayFactory::create<double>('c', {2, 1}, {11.0, 14.0});
|
|
|
|
auto expI = NDArrayFactory::create<Nd4jLong>('c', {2, 1}, {4, 3});
|
|
|
|
|
|
|
|
nd4j::ops::top_k op;
|
|
|
|
auto result = op.execute({&x}, {}, {1, 0}); // without sorting
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
ASSERT_EQ(2, result->size());
|
|
|
|
|
|
|
|
auto v = result->at(0);
|
|
|
|
auto i = result->at(1);
|
|
|
|
/*
|
|
|
|
v->printShapeInfo("topK_0: shape v");
|
|
|
|
expV.printShapeInfo("topK_0: shape expV");
|
|
|
|
|
|
|
|
i->printShapeInfo("topK_0: shape I");
|
|
|
|
expI.printShapeInfo("topK_0: shape expI");
|
|
|
|
|
|
|
|
v->printIndexedBuffer("topK_0: v");
|
|
|
|
expV.printIndexedBuffer("topK_0: expV");
|
|
|
|
i->printIndexedBuffer("topK_0: i");
|
|
|
|
expI.printIndexedBuffer("topK_0: expI");
|
|
|
|
*/
|
|
|
|
|
|
|
|
ASSERT_TRUE(expV.isSameShape(v));
|
|
|
|
ASSERT_TRUE(expV.equalsTo(v));
|
|
|
|
|
|
|
|
ASSERT_TRUE(expI.isSameShape(i));
|
|
|
|
ASSERT_TRUE(expI.equalsTo(i));
|
|
|
|
// repeat res again
|
|
|
|
for (int cases = 0; cases < 100; ++cases) {
|
|
|
|
op.execute({&x}, {v, i}, {}, {1, 0}, {}); // without sorting
|
|
|
|
}
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, Test_TopK_1) {
|
|
|
|
auto x = NDArrayFactory::create<double>('c', {2, 3}, {1.0f, 11.0f, 3.0f, 14.0f, 5.0f, 6.0f});
|
|
|
|
auto expV = NDArrayFactory::create<double>('c', {2, 1}, {11.0f, 14.0f});
|
|
|
|
auto expI = NDArrayFactory::create<Nd4jLong>('c', {2, 1}, {1, 0});
|
|
|
|
|
|
|
|
nd4j::ops::top_k op;
|
|
|
|
auto result = op.execute({&x}, {}, {1, 0}); // without sorting
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
ASSERT_EQ(2, result->size());
|
|
|
|
|
|
|
|
auto v = result->at(0);
|
|
|
|
auto i = result->at(1);
|
|
|
|
|
|
|
|
// v->printShapeInfo("topK_1: shape v");
|
|
|
|
// expV.printShapeInfo("topK_1: shape expV");
|
|
|
|
|
|
|
|
// i->printShapeInfo("topK_1: shape I");
|
|
|
|
// expI.printShapeInfo("topK_1: shape expI");
|
|
|
|
|
|
|
|
// v->printIndexedBuffer("topK_1: v");
|
|
|
|
// expV.printIndexedBuffer("topK_1: expV");
|
|
|
|
// i->printIndexedBuffer("topK_1: i");
|
|
|
|
// expI.printIndexedBuffer("topK_1: expI");
|
|
|
|
|
|
|
|
|
|
|
|
ASSERT_TRUE(expV.isSameShape(v));
|
|
|
|
ASSERT_TRUE(expV.equalsTo(v));
|
|
|
|
|
|
|
|
ASSERT_TRUE(expI.isSameShape(i));
|
|
|
|
ASSERT_TRUE(expI.equalsTo(i));
|
|
|
|
// repeat res again
|
|
|
|
for (int cases = 0; cases < 100; ++cases) {
|
|
|
|
op.execute({&x}, {v, i}, {}, {1, 0}, {}); // without sorting
|
|
|
|
}
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, Test_TopK_2) {
|
|
|
|
auto x = NDArrayFactory::create<double>('c', {2, 3, 4}, {11.0, 3.0, 14.0, 5.0,
|
|
|
|
6.0, 9.0, 3.5, 7.0,
|
|
|
|
21.0, 3.0, 14.0, 15.0,
|
|
|
|
6.0, 9.0, 3.5, 7.0,
|
|
|
|
11.0, 13.0, 14.0, 5.0,
|
|
|
|
16.0, 9.0, 13.5, 7.0
|
|
|
|
}
|
|
|
|
);
|
|
|
|
// <<<14.>,<9.>>, <<21.>,<9.>>, <<14.>,<16.>>>
|
|
|
|
auto expV = NDArrayFactory::create<double>('c', {2, 3, 1}, {14.0f, 9.0f,
|
|
|
|
21.0f,
|
|
|
|
9.0f, 14.0f,
|
|
|
|
16.0f
|
|
|
|
}
|
|
|
|
);
|
|
|
|
|
|
|
|
auto expI = NDArrayFactory::create<Nd4jLong>('c', {2, 3, 1 }, {2, 1, 0, 1, 2, 0});
|
|
|
|
|
|
|
|
nd4j::ops::top_k op;
|
|
|
|
auto result = op.execute({&x}, {}, {1, 1});
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
ASSERT_EQ(2, result->size());
|
|
|
|
|
|
|
|
auto v = result->at(0);
|
|
|
|
auto i = result->at(1);
|
|
|
|
|
|
|
|
// v->printShapeInfo("shape v");
|
|
|
|
// expV.printShapeInfo("shape expV");
|
|
|
|
|
|
|
|
// i->printShapeInfo("shape I");
|
|
|
|
// expI.printShapeInfo("shape expI");
|
|
|
|
|
|
|
|
// v->printIndexedBuffer("v");
|
|
|
|
// expV.printIndexedBuffer("expV");
|
|
|
|
// i->printIndexedBuffer("i");
|
|
|
|
// expI.printIndexedBuffer("expI");
|
|
|
|
|
|
|
|
ASSERT_TRUE(expV.isSameShape(v));
|
|
|
|
ASSERT_TRUE(expV.equalsTo(v));
|
|
|
|
|
|
|
|
ASSERT_TRUE(expI.isSameShape(i));
|
|
|
|
ASSERT_TRUE(expI.equalsTo(i));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(DeclarableOpsTests5, Test_TopK_3) {
|
|
|
|
auto x = NDArrayFactory::create<double>('c', {2, 3, 4}, {11.0, 3.0, 14.0, 5.0,
|
|
|
|
6.0, 9.0, 3.5, 7.0,
|
|
|
|
21.0, 3.0, 14.0, 15.0,
|
|
|
|
6.0, 9.0, 3.5, 7.0,
|
|
|
|
11.0, 13.0, 14.0, 5.0,
|
|
|
|
16.0, 9.0, 13.5, 7.0
|
|
|
|
}
|
|
|
|
);
|
|
|
|
|
Merge master to upstream (#7945)
* Shugeo strided slice zeros (#14)
* Modified strided_slice op to properly work with empty-like shapes.
* Fixed test for reduce_mean with empty-like input.
* [WIP] Last merge (#15)
* correct logsoftmax looss (#2)
* Small SameDiff listener fix (#4)
* Various fixes (#6)
* #7839 Fix for asXMatrix and tests
* #7866 EmbeddingSequenceLayer dtype fix + test
* #7856 SameDiff save/load stream methods
* #7859 RegressionEvaluation rank 4 fix + tests + axis configuration
* EvaluationBinary 3d/4d
* More evaluation 3d/4d tests
* #7847 Evaluation empty checks
* Small test ifx
* #7848 Fix median edge case
* Improve DL4J samediff layer tests
* [WIP] FastText wrapper implemented (#8)
* FastText implemented
* Some fixes
* Fix shapes for wordsNearest
* Validation of input vectors
* Fixes
* Fixed test
* Thread tagged
* Some tweaks
* setContextClassLoader for DeallocatorServiceThread
* Numpy format tests (#1)
* Various fixes (#11)
* #7852 SameDiff gather fix
* #7892 SameDiff placeholder to constant conversion
* #7890 validate input rank for MLN/CG init methods
* Fix broken permute shape calculation
* Permute and gather fixes
* Tests
* #7850 LogSumExp fix + test
* Handful of test fixes
* Empty arrays with non-scalar shapes (#10)
* minor rearrangements for lambdas
* empty tensors with non-scalar shapes
* numpy empty tensors with non-scalar shapes
* few more empty tweaks
* Small fixes
* conv3d signature update
* micro fix in batchnorm mkldnn
* Import fixes
* Fix
* MKL-DNN update
* Small fill fix
* fill with empty input + test
* Fixes
* Small error improvement
* Fix
* one special test
* couple of fixes for lstm
* Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone
* Fixes
* FP16
* Unsigned
* BFloat16
* Fill op - empty tweaks
* - couple of fixes for empty arrays construction
- stack updated
* strided slice fix
* one transform test
* provide method for reducing shapeInfo in case of input array is empty
* Fixed reduceAlongDimensions to use empty input properly.
* couple of broadcast tests
* couple of tests broadcast tests + tweak to make them pass
* add check of non-empty to methods producing sub-arrays
* Fixed reshapeC with zeros in shape.
* complete empty check in reduce_... legacy ops
* Concat and cumsum/prod
* Tweak to empty shape inference on import
* add empty check to the rest of reduce legacy ops
* one more test
* correct typo in evalReduceShapeInfoEmpty
* Added tests for reduce_* ops to tests with zero shapes.
* few more tests for empty reductions
* Fixed strided_slice op with empty case and tests.
* one more empty reduction test
* Fixed strided_slice test.
* add empty check to NDArray::reshapei
* infOrMax
* empty min/max with infinity tests
* made unstack working correctly with empty arrays
* few IndexReduce tests + tweaks for empty shapes
* add test for empty concat
* few tests fixed
* Validation fix for reductions on empty shapes
* Reverse fix
* Reduction shape calc fixes
* SameDiff.generateOutputVariable: don't use shape function to determine number of outputs
* Range fix
* - NDArray constructor updated for scalars/empty arrays
- few tests fixed
* More fixes
* Empty creator fixes
* concat fix
* concat fix
* TF import tests: allow 'both all NaN' and 'both all inf' to pass
* Slice, zero fraction, and reshape fixes
* transpose, gather
* Zero fraction
* scalar cast fix
* Empty reduction axis support
* few more tests fixed
* Fixed input checks conforming with TF for concat op and tests.
* few tests fixed
* matmul scalar shape fix
* Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats.
* broadcast bool fix
* few more tests
* few more tests
* correct evalReduceShapeInfoEmpty
* argmax/argmin + tests
* one more empty edge case + one more test
* argmax/argmin/realdiv_bp tweaks
* empty reshape test + fix
* Helper fixes
* Small fixes
* Gather test fix
* Gather test fix
* Small fixes
* reduce scalar zero values
* scalar mean workaround
* Remove debug code
* along dim mean workaround
* one more test
* - equalsTo() tweak for empty arrays
- one more test
* broadcast tweaks
* [WIP] Fixing outstanding issues for NLP (#9)
* Avoid using not-inited objects
* Test fixed.
* Redundant method avoided for models like FastText
* KMeans++ implementation
* KMeans++ implementation
* Disable parallel execution
* KMeans++
* Tests
* Dev branch merge (#16)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Fix some issues on master (#17)
* Fix DataVec test issue
* Fix issue with dl4j SameDiff output layer
* Dtype fix for lambda layers
* #7912 BertIterator dtype fix (use float32 not global default)
* [WIP] Next set of CUDA stuff (#7)
New CUDA implementations and improvements
* bad file
* Dev branch master merge (#23)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Compatibility of deserialization (#18)
Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
* SameDiff: add activation gradient checking support for debugging (#19)
* SameDiff gradient checker: first pass on activation gradient checks
* Fixes + tests for activation gradient checking
* Javadoc
* [WIP] Some nd4j data type corrections (#20)
* Adjust data type
* Set correct Data type.
* Size of proper data type.
* fix averaged cpu load (#22)
* SameDiff ops, TF import and fixes (#24)
* CheckNumerics tests + fixes + misc fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fake quant
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* FakeQuantWithMinMaxArgs
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* CheckNumerics fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix libnd4j ALL_INTS and ALL_FLOATS declaration (uint and bfloat types)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Small fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Javadoc
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Exception tweak
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix for out of scope stack allocated var use
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Ignores
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Ignore for known failing test (already logged issue)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Merge upstream to fork (#25)
* Add thousand-separator commas to TotalParams (#7915)
* Add thousand-separator commas to TotalParams
The number of parameters can be quite large, and it would help the reading of the summary printout to have the TotalParams column & values at the bottom have thousand-separator-commas in them.
* Add thousand-separator commas to MultiLayerNetwork
Corresponding change to MultiLayerNetwork
Signed-off-by: Jxtps Jxtps <jxtps435@gmail.com>
* Update contributing and issue/PR templates (#7934)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix link to AdaDelta paper (#7942)
Fix link to AdaDelta paper hosted on matthewzeiler.com
Signed-off-by: Jxtps
* Fixes, and ignores for known/logged failing issues (#7943)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* SameDiff + DL4J/SameDiff: Multiple fixes (#28)
* #7919 HDF5 attribute buffer length fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7909 Arbiter constructor exception ux improvements
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7925 RNN output layer length checks
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7939 Add listener for validating inputs are not incorrectly modified
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7939 Integrate NonInplaceValidationListener into tests
* #7844 DL4J SameDiff fixes for variable minibatch size
* DL4J SameDiff fixes - ensure gradient for input placeholder is available
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Tweaks to ExternalErrorsFunction - use placeholders, make more robust
* Another fix
* More fixes
* More SameDiff/DL4J fixes
* Scope out scalar array creation in BaseScalarOp
* Remove debug code
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] Final dev branch merge (#29)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Compatibility of deserialization (#18)
Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
* SameDiff: add activation gradient checking support for debugging (#19)
* SameDiff gradient checker: first pass on activation gradient checks
* Fixes + tests for activation gradient checking
* Javadoc
* [WIP] Some nd4j data type corrections (#20)
* Adjust data type
* Set correct Data type.
* Size of proper data type.
* fix averaged cpu load (#22)
* [WIP] Multiple dataset iterators (#27)
* Splitting dataset into arbitrary number
* Fixes
* Multiple split of iterator
* Test
* Test
* Some fixes
* signature change
* one more tweak
Signed-off-by: raver119 <raver119@gmail.com>
* one more test for sequential use of DataSetIteratorSplitter
Signed-off-by: raver119 <raver119@gmail.com>
* Fixes
* Fixes
* one more test for Alexander
Signed-off-by: raver119 <raver119@gmail.com>
* Some fixes
* Some fixes
* one more test for Alexander
Signed-off-by: raver119 <raver119@gmail.com>
* minor test fix
Signed-off-by: raver119 <raver119@gmail.com>
* Some fixes
* Some fixes
* couple of assertions tweaked
Signed-off-by: raver119 <raver119@gmail.com>
* MDS splitter test :/
Signed-off-by: raver119 <raver119@gmail.com>
* Minor refactoring
* Multi dataset
* Some fixes
* More tests
* Small number of test fixes/improvements (failures on CI) (#31)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] More CUDA stuff (#26)
* initial commit
Signed-off-by: raver119 <raver119@gmail.com>
* LRN BP CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* less memory
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed bug with crop_and_resize op helper.
* get rid of unnecessary index-calculation dunction
Signed-off-by: Yurii <yurii@skymind.io>
* Fixed sort with nth_element cuda-based helper.
* Refactored nth_element.
* Refactored nth_element op and tests.
* Modified usage of dim array with sortTad routine.
* Refactored main routine of helper for non_max_image_suppression op.
* non_max_image_suppression op helper with cuda kernel implementation. Initial revision.
* fix vol2col cuda kernel
* meh
Signed-off-by: raver119 <raver119@gmail.com>
* topK concept
Signed-off-by: raver119 <raver119@gmail.com>
* unsorted topK with scanWitdh of 1
Signed-off-by: raver119 <raver119@gmail.com>
* correct vol2col tests
* sorted/unsorted topK
Signed-off-by: raver119 <raver119@gmail.com>
* implementation and fixing col2im/col2vol
* Corrected usage flags with input/output with reverse op.
* dup is const now
Signed-off-by: raver119 <raver119@gmail.com>
* percentile op
Signed-off-by: raver119 <raver119@gmail.com>
* group tests for mapool2d
Signed-off-by: Yurii <yurii@skymind.io>
* special test for george
Signed-off-by: raver119 <raver119@gmail.com>
* less threads for sortTad
Signed-off-by: raver119 <raver119@gmail.com>
* provide conv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* remove auther in sort tad kernel code
Signed-off-by: Yurii <yurii@skymind.io>
* provide depthwise_conv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* - max_pooling_with_argmax
- null check for special use
Signed-off-by: raver119 <raver119@gmail.com>
* dts cuda
Signed-off-by: raver119 <raver119@gmail.com>
* provide sconv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* std cuda
Signed-off-by: raver119 <raver119@gmail.com>
* Refactored non_max_suppression op to conform TF implementation.
* Improved suppression helper.
* provide pooling3d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* minor lstm rearrangements
Signed-off-by: raver119 <raver119@gmail.com>
* more of minor lstm rearrangements
Signed-off-by: raver119 <raver119@gmail.com>
* (bi)dynamic_rnn
Signed-off-by: raver119 <raver119@gmail.com>
* templates init order
Signed-off-by: raver119 <raver119@gmail.com>
* Refactored non_max_suppression op.
* Added cuda kernel for non_max_suppression.
* CPU sort by key/value
Signed-off-by: raver119 <raver119@gmail.com>
* CPU sort TAD by key/value
Signed-off-by: raver119 <raver119@gmail.com>
* CPU sort TAD by key/value tests
Signed-off-by: raver119 <raver119@gmail.com>
* Eliminate compiler error with cuda implementation.
* - repaired gradCheck in cuda
- provide conv2d_bp for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* missed signature
Signed-off-by: raver119 <raver119@gmail.com>
* provide depthwise_conv2d_bp for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* Implementation of lup helper with cuda kernel. Initial commit.
* further work on backprops for convolutions
Signed-off-by: Yurii <yurii@skymind.io>
* CUDA linear sort by key/val
Signed-off-by: raver119 <raver119@gmail.com>
* CUDA tad sort by key/val
Signed-off-by: raver119 <raver119@gmail.com>
* start providing of backprop for pooling2d/3d
Signed-off-by: Yurii <yurii@skymind.io>
* Added atomicAdd for bool datatype.
* dynamic partition concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic partition concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic partition scalar CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* important comment
Signed-off-by: raver119 <raver119@gmail.com>
* fix pooling2d/3d backprop helpers
Signed-off-by: Yurii <yurii@skymind.io>
* Added non-linear test with dynamic_partition.
* Improved test for dynamic_partition.
* dynamic_partition TAD concept
Signed-off-by: raver119 <raver119@gmail.com>
* - dynamic_partition TAD CUDA impl
- dynamic_partition TAD CPU fix
Signed-off-by: raver119 <raver119@gmail.com>
* - rewrite cpu code for usampling2d/3d
- write cuda code for usampling2d/3d
Signed-off-by: Yurii <yurii@skymind.io>
* dynamic_stitch CUDA vector case
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic_stitch CUDA TAD case concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic_stitch CUDA TAD case impl
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for dynamic_stitch 3D-4D cases.
* minor tests tweaks
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed type check for dynamic stitch.
* min/max bp
Signed-off-by: raver119 <raver119@gmail.com>
* rewrite code for upsampling2d/3d cpu
Signed-off-by: Yurii <yurii@skymind.io>
* reduce min/max/norm_max bp
Signed-off-by: raver119 <raver119@gmail.com>
* lup implementation. Additional enhancements.
* provide code for upsamling2d/3d backprop
Signed-off-by: Yurii <yurii@skymind.io>
* weightedCrossEntropyWithLogits
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed template math atomicMul for 64bit ints.
* Refactored dynamic_partition_bp op.
* inverseBroadcast fix
Signed-off-by: raver119 <raver119@gmail.com>
* DynamicPartitionBP test datatype fixed.
* - nd4j_atomicMul Windows fix
- cpu/NDArrayLambda.hpp excluded from CUDA
Signed-off-by: raver119 <raver119@gmail.com>
2019-06-27 17:37:04 +02:00
|
|
|
auto expV = NDArrayFactory::create<double>('c', {2, 3, 2}, {14.0f, 11.0f,
|
|
|
|
9.0f, 7.0f,
|
|
|
|
21.0f, 15.0f,
|
|
|
|
9.0f, 7.0f,
|
|
|
|
14.0f, 13.0f,
|
|
|
|
16.0f, 13.5f
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
);
|
|
|
|
|
|
|
|
auto expI = NDArrayFactory::create<Nd4jLong>('c', {2, 3, 2 }, {2, 0, 1, 3, 0, 3, 1, 3, 2, 1, 0, 2});
|
|
|
|
|
|
|
|
nd4j::ops::top_k op;
|
|
|
|
auto result = op.execute({&x}, {}, {2, 1});
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
ASSERT_EQ(2, result->size());
|
|
|
|
|
|
|
|
auto v = result->at(0);
|
|
|
|
auto i = result->at(1);
|
|
|
|
|
|
|
|
// v->printShapeInfo("shape v");
|
|
|
|
// expV.printShapeInfo("shape expV");
|
|
|
|
|
|
|
|
// i->printShapeInfo("shape I");
|
|
|
|
// expI.printShapeInfo("shape expI");
|
|
|
|
|
|
|
|
// v->printIndexedBuffer("v");
|
|
|
|
// expV.printIndexedBuffer("expV");
|
|
|
|
// i->printIndexedBuffer("i");
|
|
|
|
// expI.printIndexedBuffer("expI");
|
|
|
|
|
|
|
|
ASSERT_TRUE(expV.isSameShape(v));
|
|
|
|
ASSERT_TRUE(expV.equalsTo(v));
|
|
|
|
|
|
|
|
ASSERT_TRUE(expI.isSameShape(i));
|
|
|
|
ASSERT_TRUE(expI.equalsTo(i));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
Merge master to upstream (#7945)
* Shugeo strided slice zeros (#14)
* Modified strided_slice op to properly work with empty-like shapes.
* Fixed test for reduce_mean with empty-like input.
* [WIP] Last merge (#15)
* correct logsoftmax looss (#2)
* Small SameDiff listener fix (#4)
* Various fixes (#6)
* #7839 Fix for asXMatrix and tests
* #7866 EmbeddingSequenceLayer dtype fix + test
* #7856 SameDiff save/load stream methods
* #7859 RegressionEvaluation rank 4 fix + tests + axis configuration
* EvaluationBinary 3d/4d
* More evaluation 3d/4d tests
* #7847 Evaluation empty checks
* Small test ifx
* #7848 Fix median edge case
* Improve DL4J samediff layer tests
* [WIP] FastText wrapper implemented (#8)
* FastText implemented
* Some fixes
* Fix shapes for wordsNearest
* Validation of input vectors
* Fixes
* Fixed test
* Thread tagged
* Some tweaks
* setContextClassLoader for DeallocatorServiceThread
* Numpy format tests (#1)
* Various fixes (#11)
* #7852 SameDiff gather fix
* #7892 SameDiff placeholder to constant conversion
* #7890 validate input rank for MLN/CG init methods
* Fix broken permute shape calculation
* Permute and gather fixes
* Tests
* #7850 LogSumExp fix + test
* Handful of test fixes
* Empty arrays with non-scalar shapes (#10)
* minor rearrangements for lambdas
* empty tensors with non-scalar shapes
* numpy empty tensors with non-scalar shapes
* few more empty tweaks
* Small fixes
* conv3d signature update
* micro fix in batchnorm mkldnn
* Import fixes
* Fix
* MKL-DNN update
* Small fill fix
* fill with empty input + test
* Fixes
* Small error improvement
* Fix
* one special test
* couple of fixes for lstm
* Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone
* Fixes
* FP16
* Unsigned
* BFloat16
* Fill op - empty tweaks
* - couple of fixes for empty arrays construction
- stack updated
* strided slice fix
* one transform test
* provide method for reducing shapeInfo in case of input array is empty
* Fixed reduceAlongDimensions to use empty input properly.
* couple of broadcast tests
* couple of tests broadcast tests + tweak to make them pass
* add check of non-empty to methods producing sub-arrays
* Fixed reshapeC with zeros in shape.
* complete empty check in reduce_... legacy ops
* Concat and cumsum/prod
* Tweak to empty shape inference on import
* add empty check to the rest of reduce legacy ops
* one more test
* correct typo in evalReduceShapeInfoEmpty
* Added tests for reduce_* ops to tests with zero shapes.
* few more tests for empty reductions
* Fixed strided_slice op with empty case and tests.
* one more empty reduction test
* Fixed strided_slice test.
* add empty check to NDArray::reshapei
* infOrMax
* empty min/max with infinity tests
* made unstack working correctly with empty arrays
* few IndexReduce tests + tweaks for empty shapes
* add test for empty concat
* few tests fixed
* Validation fix for reductions on empty shapes
* Reverse fix
* Reduction shape calc fixes
* SameDiff.generateOutputVariable: don't use shape function to determine number of outputs
* Range fix
* - NDArray constructor updated for scalars/empty arrays
- few tests fixed
* More fixes
* Empty creator fixes
* concat fix
* concat fix
* TF import tests: allow 'both all NaN' and 'both all inf' to pass
* Slice, zero fraction, and reshape fixes
* transpose, gather
* Zero fraction
* scalar cast fix
* Empty reduction axis support
* few more tests fixed
* Fixed input checks conforming with TF for concat op and tests.
* few tests fixed
* matmul scalar shape fix
* Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats.
* broadcast bool fix
* few more tests
* few more tests
* correct evalReduceShapeInfoEmpty
* argmax/argmin + tests
* one more empty edge case + one more test
* argmax/argmin/realdiv_bp tweaks
* empty reshape test + fix
* Helper fixes
* Small fixes
* Gather test fix
* Gather test fix
* Small fixes
* reduce scalar zero values
* scalar mean workaround
* Remove debug code
* along dim mean workaround
* one more test
* - equalsTo() tweak for empty arrays
- one more test
* broadcast tweaks
* [WIP] Fixing outstanding issues for NLP (#9)
* Avoid using not-inited objects
* Test fixed.
* Redundant method avoided for models like FastText
* KMeans++ implementation
* KMeans++ implementation
* Disable parallel execution
* KMeans++
* Tests
* Dev branch merge (#16)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Fix some issues on master (#17)
* Fix DataVec test issue
* Fix issue with dl4j SameDiff output layer
* Dtype fix for lambda layers
* #7912 BertIterator dtype fix (use float32 not global default)
* [WIP] Next set of CUDA stuff (#7)
New CUDA implementations and improvements
* bad file
* Dev branch master merge (#23)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Compatibility of deserialization (#18)
Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
* SameDiff: add activation gradient checking support for debugging (#19)
* SameDiff gradient checker: first pass on activation gradient checks
* Fixes + tests for activation gradient checking
* Javadoc
* [WIP] Some nd4j data type corrections (#20)
* Adjust data type
* Set correct Data type.
* Size of proper data type.
* fix averaged cpu load (#22)
* SameDiff ops, TF import and fixes (#24)
* CheckNumerics tests + fixes + misc fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fake quant
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* FakeQuantWithMinMaxArgs
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* CheckNumerics fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix libnd4j ALL_INTS and ALL_FLOATS declaration (uint and bfloat types)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Small fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Javadoc
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Exception tweak
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix for out of scope stack allocated var use
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Ignores
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Ignore for known failing test (already logged issue)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Merge upstream to fork (#25)
* Add thousand-separator commas to TotalParams (#7915)
* Add thousand-separator commas to TotalParams
The number of parameters can be quite large, and it would help the reading of the summary printout to have the TotalParams column & values at the bottom have thousand-separator-commas in them.
* Add thousand-separator commas to MultiLayerNetwork
Corresponding change to MultiLayerNetwork
Signed-off-by: Jxtps Jxtps <jxtps435@gmail.com>
* Update contributing and issue/PR templates (#7934)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix link to AdaDelta paper (#7942)
Fix link to AdaDelta paper hosted on matthewzeiler.com
Signed-off-by: Jxtps
* Fixes, and ignores for known/logged failing issues (#7943)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* SameDiff + DL4J/SameDiff: Multiple fixes (#28)
* #7919 HDF5 attribute buffer length fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7909 Arbiter constructor exception ux improvements
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7925 RNN output layer length checks
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7939 Add listener for validating inputs are not incorrectly modified
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7939 Integrate NonInplaceValidationListener into tests
* #7844 DL4J SameDiff fixes for variable minibatch size
* DL4J SameDiff fixes - ensure gradient for input placeholder is available
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Tweaks to ExternalErrorsFunction - use placeholders, make more robust
* Another fix
* More fixes
* More SameDiff/DL4J fixes
* Scope out scalar array creation in BaseScalarOp
* Remove debug code
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] Final dev branch merge (#29)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Compatibility of deserialization (#18)
Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
* SameDiff: add activation gradient checking support for debugging (#19)
* SameDiff gradient checker: first pass on activation gradient checks
* Fixes + tests for activation gradient checking
* Javadoc
* [WIP] Some nd4j data type corrections (#20)
* Adjust data type
* Set correct Data type.
* Size of proper data type.
* fix averaged cpu load (#22)
* [WIP] Multiple dataset iterators (#27)
* Splitting dataset into arbitrary number
* Fixes
* Multiple split of iterator
* Test
* Test
* Some fixes
* signature change
* one more tweak
Signed-off-by: raver119 <raver119@gmail.com>
* one more test for sequential use of DataSetIteratorSplitter
Signed-off-by: raver119 <raver119@gmail.com>
* Fixes
* Fixes
* one more test for Alexander
Signed-off-by: raver119 <raver119@gmail.com>
* Some fixes
* Some fixes
* one more test for Alexander
Signed-off-by: raver119 <raver119@gmail.com>
* minor test fix
Signed-off-by: raver119 <raver119@gmail.com>
* Some fixes
* Some fixes
* couple of assertions tweaked
Signed-off-by: raver119 <raver119@gmail.com>
* MDS splitter test :/
Signed-off-by: raver119 <raver119@gmail.com>
* Minor refactoring
* Multi dataset
* Some fixes
* More tests
* Small number of test fixes/improvements (failures on CI) (#31)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] More CUDA stuff (#26)
* initial commit
Signed-off-by: raver119 <raver119@gmail.com>
* LRN BP CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* less memory
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed bug with crop_and_resize op helper.
* get rid of unnecessary index-calculation dunction
Signed-off-by: Yurii <yurii@skymind.io>
* Fixed sort with nth_element cuda-based helper.
* Refactored nth_element.
* Refactored nth_element op and tests.
* Modified usage of dim array with sortTad routine.
* Refactored main routine of helper for non_max_image_suppression op.
* non_max_image_suppression op helper with cuda kernel implementation. Initial revision.
* fix vol2col cuda kernel
* meh
Signed-off-by: raver119 <raver119@gmail.com>
* topK concept
Signed-off-by: raver119 <raver119@gmail.com>
* unsorted topK with scanWitdh of 1
Signed-off-by: raver119 <raver119@gmail.com>
* correct vol2col tests
* sorted/unsorted topK
Signed-off-by: raver119 <raver119@gmail.com>
* implementation and fixing col2im/col2vol
* Corrected usage flags with input/output with reverse op.
* dup is const now
Signed-off-by: raver119 <raver119@gmail.com>
* percentile op
Signed-off-by: raver119 <raver119@gmail.com>
* group tests for mapool2d
Signed-off-by: Yurii <yurii@skymind.io>
* special test for george
Signed-off-by: raver119 <raver119@gmail.com>
* less threads for sortTad
Signed-off-by: raver119 <raver119@gmail.com>
* provide conv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* remove auther in sort tad kernel code
Signed-off-by: Yurii <yurii@skymind.io>
* provide depthwise_conv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* - max_pooling_with_argmax
- null check for special use
Signed-off-by: raver119 <raver119@gmail.com>
* dts cuda
Signed-off-by: raver119 <raver119@gmail.com>
* provide sconv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* std cuda
Signed-off-by: raver119 <raver119@gmail.com>
* Refactored non_max_suppression op to conform TF implementation.
* Improved suppression helper.
* provide pooling3d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* minor lstm rearrangements
Signed-off-by: raver119 <raver119@gmail.com>
* more of minor lstm rearrangements
Signed-off-by: raver119 <raver119@gmail.com>
* (bi)dynamic_rnn
Signed-off-by: raver119 <raver119@gmail.com>
* templates init order
Signed-off-by: raver119 <raver119@gmail.com>
* Refactored non_max_suppression op.
* Added cuda kernel for non_max_suppression.
* CPU sort by key/value
Signed-off-by: raver119 <raver119@gmail.com>
* CPU sort TAD by key/value
Signed-off-by: raver119 <raver119@gmail.com>
* CPU sort TAD by key/value tests
Signed-off-by: raver119 <raver119@gmail.com>
* Eliminate compiler error with cuda implementation.
* - repaired gradCheck in cuda
- provide conv2d_bp for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* missed signature
Signed-off-by: raver119 <raver119@gmail.com>
* provide depthwise_conv2d_bp for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* Implementation of lup helper with cuda kernel. Initial commit.
* further work on backprops for convolutions
Signed-off-by: Yurii <yurii@skymind.io>
* CUDA linear sort by key/val
Signed-off-by: raver119 <raver119@gmail.com>
* CUDA tad sort by key/val
Signed-off-by: raver119 <raver119@gmail.com>
* start providing of backprop for pooling2d/3d
Signed-off-by: Yurii <yurii@skymind.io>
* Added atomicAdd for bool datatype.
* dynamic partition concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic partition concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic partition scalar CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* important comment
Signed-off-by: raver119 <raver119@gmail.com>
* fix pooling2d/3d backprop helpers
Signed-off-by: Yurii <yurii@skymind.io>
* Added non-linear test with dynamic_partition.
* Improved test for dynamic_partition.
* dynamic_partition TAD concept
Signed-off-by: raver119 <raver119@gmail.com>
* - dynamic_partition TAD CUDA impl
- dynamic_partition TAD CPU fix
Signed-off-by: raver119 <raver119@gmail.com>
* - rewrite cpu code for usampling2d/3d
- write cuda code for usampling2d/3d
Signed-off-by: Yurii <yurii@skymind.io>
* dynamic_stitch CUDA vector case
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic_stitch CUDA TAD case concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic_stitch CUDA TAD case impl
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for dynamic_stitch 3D-4D cases.
* minor tests tweaks
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed type check for dynamic stitch.
* min/max bp
Signed-off-by: raver119 <raver119@gmail.com>
* rewrite code for upsampling2d/3d cpu
Signed-off-by: Yurii <yurii@skymind.io>
* reduce min/max/norm_max bp
Signed-off-by: raver119 <raver119@gmail.com>
* lup implementation. Additional enhancements.
* provide code for upsamling2d/3d backprop
Signed-off-by: Yurii <yurii@skymind.io>
* weightedCrossEntropyWithLogits
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed template math atomicMul for 64bit ints.
* Refactored dynamic_partition_bp op.
* inverseBroadcast fix
Signed-off-by: raver119 <raver119@gmail.com>
* DynamicPartitionBP test datatype fixed.
* - nd4j_atomicMul Windows fix
- cpu/NDArrayLambda.hpp excluded from CUDA
Signed-off-by: raver119 <raver119@gmail.com>
2019-06-27 17:37:04 +02:00
|
|
|
TEST_F(DeclarableOpsTests5, Test_TopK_3_unsorted) {
|
|
|
|
auto x = NDArrayFactory::create<double>('c', {2, 3, 4}, {11.0, 3.0, 14.0, 5.0,
|
|
|
|
6.0, 9.0, 3.5, 7.0,
|
|
|
|
21.0, 3.0, 14.0, 15.0,
|
|
|
|
6.0, 9.0, 3.5, 7.0,
|
|
|
|
11.0, 13.0, 14.0, 5.0,
|
|
|
|
16.0, 9.0, 13.5, 7.0
|
|
|
|
}
|
|
|
|
);
|
|
|
|
|
|
|
|
auto expV = NDArrayFactory::create<double>('c', {2, 3, 2}, {11.0f, 14.0f,
|
|
|
|
9.0f, 7.0f,
|
|
|
|
21.0f, 15.0f,
|
|
|
|
9.0f, 7.0f,
|
|
|
|
13.0f, 14.0f,
|
|
|
|
16.0f, 13.5f
|
|
|
|
}
|
|
|
|
);
|
|
|
|
|
|
|
|
auto expI = NDArrayFactory::create<Nd4jLong>('c', {2, 3, 2 }, {0, 2, 1, 3, 0, 3, 1, 3, 1, 2, 0, 2});
|
|
|
|
|
|
|
|
nd4j::ops::top_k op;
|
|
|
|
auto result = op.execute({&x}, {}, {2}, {false});
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
ASSERT_EQ(2, result->size());
|
|
|
|
|
|
|
|
auto v = result->at(0);
|
|
|
|
auto i = result->at(1);
|
|
|
|
|
|
|
|
// v->printShapeInfo("shape v");
|
|
|
|
// expV.printShapeInfo("shape expV");
|
|
|
|
|
|
|
|
// i->printShapeInfo("shape I");
|
|
|
|
// expI.printShapeInfo("shape expI");
|
|
|
|
|
|
|
|
v->printIndexedBuffer("v");
|
|
|
|
// expV.printIndexedBuffer("expV");
|
|
|
|
i->printIndexedBuffer("i");
|
|
|
|
// expI.printIndexedBuffer("expI");
|
|
|
|
|
|
|
|
ASSERT_TRUE(expV.isSameShape(v));
|
|
|
|
ASSERT_TRUE(expV.equalsTo(v));
|
|
|
|
|
|
|
|
ASSERT_TRUE(expI.isSameShape(i));
|
|
|
|
ASSERT_TRUE(expI.equalsTo(i));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, Test_TopK_4) {
|
|
|
|
auto x = NDArrayFactory::create<double>('c', {2, 3}, {1.0f, 11.0f, 3.0f, 14.0f, 5.0f, 6.0f});
|
|
|
|
auto expV = NDArrayFactory::create<double>('c', {2, 2}, {11.0f, 3.0f, 14.0f, 6.0f});
|
|
|
|
auto expI = NDArrayFactory::create<Nd4jLong>('c', {2, 2}, {1, 2, 0, 2});
|
|
|
|
|
|
|
|
nd4j::ops::top_k op;
|
|
|
|
auto result = op.execute({&x}, {}, {2, 1});
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
ASSERT_EQ(2, result->size());
|
|
|
|
|
|
|
|
auto v = result->at(0);
|
|
|
|
auto i = result->at(1);
|
|
|
|
|
|
|
|
// v->printShapeInfo("shape v");
|
|
|
|
// expV.printShapeInfo("shape expV");
|
|
|
|
|
|
|
|
// i->printShapeInfo("shape I");
|
|
|
|
// expI.printShapeInfo("shape expI");
|
|
|
|
|
|
|
|
// v->printIndexedBuffer("v");
|
|
|
|
// expV.printIndexedBuffer("expV");
|
|
|
|
// i->printIndexedBuffer("i");
|
|
|
|
// expI.printIndexedBuffer("expI");
|
|
|
|
|
|
|
|
ASSERT_TRUE(expV.isSameShape(v));
|
|
|
|
ASSERT_TRUE(expV.equalsTo(v));
|
|
|
|
|
|
|
|
ASSERT_TRUE(expI.isSameShape(i));
|
|
|
|
ASSERT_TRUE(expI.equalsTo(i));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, Test_TopK_5) {
|
|
|
|
auto x = NDArrayFactory::create<double>('f', {2, 3}, {1.1, 5.2, 3.1, 14.2, 11.1, 6.2});
|
|
|
|
auto expV = NDArrayFactory::create<double>('f', {2, 2}, {11.1, 14.2, 3.1, 6.2});
|
|
|
|
auto expI = NDArrayFactory::create<Nd4jLong>('f', {2, 2}, {2, 1, 1, 2});
|
|
|
|
|
|
|
|
nd4j::ops::top_k op;
|
|
|
|
auto result = op.execute({&x}, {}, {2, 1});
|
|
|
|
for (Nd4jLong r = 0; r < 2; r++) {
|
|
|
|
for (Nd4jLong c = 0; c < 3; c++)
|
|
|
|
nd4j_printf("%f, ", x.e<double>(r,c));
|
|
|
|
nd4j_printf("\n", "");
|
|
|
|
}
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
ASSERT_EQ(2, result->size());
|
|
|
|
|
|
|
|
auto v = result->at(0);
|
|
|
|
auto i = result->at(1);
|
|
|
|
|
|
|
|
// x.printShapeInfo("shape of the source X");
|
|
|
|
// v->printShapeInfo("shape v");
|
|
|
|
// expV.printShapeInfo("shape expV");
|
|
|
|
|
|
|
|
// i->printShapeInfo("shape I");
|
|
|
|
// expI.printShapeInfo("shape expI");
|
|
|
|
|
|
|
|
v->printIndexedBuffer("v");
|
|
|
|
expV.printIndexedBuffer("expV");
|
|
|
|
i->printIndexedBuffer("i");
|
|
|
|
expI.printIndexedBuffer("expI");
|
|
|
|
|
|
|
|
ASSERT_TRUE(expV.isSameShape(v));
|
|
|
|
ASSERT_TRUE(expV.equalsTo(v));
|
|
|
|
|
|
|
|
ASSERT_TRUE(expI.isSameShape(i));
|
|
|
|
ASSERT_TRUE(expI.equalsTo(i));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, Test_Moments_1) {
|
|
|
|
auto x = NDArrayFactory::create<double>('c', {2, 3, 4}, {11.0, 3.0, 14.0, 5.0,
|
|
|
|
6.0, 9.0, 3.5, 7.0,
|
|
|
|
21.0, 3.0, 14.0, 15.0,
|
|
|
|
6.0, 9.0, 3.5, 7.0,
|
|
|
|
11.0, 13.0, 14.0, 5.0,
|
|
|
|
16.0, 9.0, 13.5, 7.0}
|
|
|
|
);
|
|
|
|
|
|
|
|
auto y = NDArrayFactory::create<double>('c', {3}, {0, 1, 2});
|
|
|
|
//auto expV('f', {6}, {1, 0, 0, 0, 0, 0 });
|
|
|
|
|
|
|
|
float expMean = 9.395833f;
|
|
|
|
float expDeviation = 22.4579f;
|
|
|
|
//Mean 9.395833
|
|
|
|
//Deviance 22.4579
|
|
|
|
|
|
|
|
float inf = 1.e-5f;
|
|
|
|
|
|
|
|
nd4j::ops::moments op;
|
|
|
|
auto result = op.execute({&x, &y}, {}, {});
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
ASSERT_EQ(2, result->size());
|
|
|
|
|
|
|
|
auto v = result->at(0);
|
|
|
|
auto d = result->at(1);
|
|
|
|
|
|
|
|
// v->printIndexedBuffer("Result is ");
|
|
|
|
// d->printIndexedBuffer("Result is ");
|
|
|
|
|
|
|
|
ASSERT_TRUE(v->isScalar());
|
|
|
|
ASSERT_NEAR(expMean, v->e<double>(0), inf);
|
|
|
|
ASSERT_NEAR(expDeviation, d->e<double>(0), inf);
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(DeclarableOpsTests5, Test_Moments_2) {
|
|
|
|
NDArray x('c', {2, 3, 4}, {11.0, 3.0, 14.0, 5.0,
|
|
|
|
6.0, 9.0, 3.5, 7.0,
|
|
|
|
21.0, 3.0, 14.0, 15.0,
|
|
|
|
6.0, 9.0, 3.5, 7.0,
|
|
|
|
11.0, 13.0, 14.0, 5.0,
|
|
|
|
16.0, 9.0, 13.5, 7.0}
|
|
|
|
);
|
|
|
|
|
|
|
|
NDArray expV('c', {4}, {11.833333, 7.6666665, 10.416667, 7.6666665});
|
|
|
|
NDArray expD('c', {4}, {28.472221, 12.888889, 23.951387, 11.555554});
|
|
|
|
|
|
|
|
nd4j::ops::moments op;
|
|
|
|
auto result = op.execute({&x}, {}, {0, 1});
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
ASSERT_EQ(2, result->size());
|
|
|
|
|
|
|
|
auto v = result->at(0);
|
|
|
|
auto d = result->at(1);
|
|
|
|
|
|
|
|
ASSERT_TRUE(v->isVector());
|
|
|
|
ASSERT_TRUE(d->isVector());
|
|
|
|
|
|
|
|
ASSERT_TRUE(v->equalsTo(&expV));
|
|
|
|
ASSERT_TRUE(d->equalsTo(&expD));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(DeclarableOpsTests5, Test_Moments_3) {
|
|
|
|
auto x = NDArrayFactory::create<double>('c', {2, 3, 4}, {11.0, 3.0, 14.0, 5.0,
|
|
|
|
6.0, 9.0, 3.5, 7.0,
|
|
|
|
21.0, 3.0, 14.0, 15.0,
|
|
|
|
6.0, 9.0, 3.5, 7.0,
|
|
|
|
11.0, 13.0, 14.0, 5.0,
|
|
|
|
16.0, 9.0, 13.5, 7.0}
|
|
|
|
);
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto expV = NDArrayFactory::create<double>('c', {3, 4}, { 8.5f, 6.f , 8.75f, 6.f,
|
2019-06-15 13:34:34 +02:00
|
|
|
8.5f, 11.f, 8.75f, 6.f,
|
2019-06-06 14:21:15 +02:00
|
|
|
18.5f, 6.f, 13.75f, 11.f});
|
|
|
|
auto expD = NDArrayFactory::create<double>('c', {3, 4}, { 6.25f, 9.f, 27.5625f, 1.f,
|
|
|
|
6.25f, 4.f, 27.5625f, 1.f,
|
|
|
|
6.25f, 9.f, 0.0625f, 16.f});
|
|
|
|
|
|
|
|
nd4j::ops::moments op;
|
|
|
|
auto result = op.execute({&x}, {}, {0});
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
ASSERT_EQ(2, result->size());
|
|
|
|
|
|
|
|
auto v = result->at(0);
|
|
|
|
auto d = result->at(1);
|
|
|
|
|
|
|
|
ASSERT_TRUE(v->isMatrix());
|
|
|
|
ASSERT_TRUE(d->isMatrix());
|
|
|
|
|
|
|
|
ASSERT_TRUE(v->equalsTo(&expV));
|
|
|
|
ASSERT_TRUE(d->equalsTo(&expD));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(DeclarableOpsTests5, Test_Moments_4) {
|
|
|
|
|
|
|
|
auto x = NDArrayFactory::create<double>('f', {2, 3, 4}, {11.0f, 6.0f, 6.0f, 11.0f, 21.0f, 16.0f, 3.0f, 9.0f, 9.0f, 13.0f, 3.0f, 9.0f,
|
|
|
|
14.0f, 3.5f, 3.5f, 14.0f, 14.0f, 13.5f, 5.0f, 7.0f, 7.0f, 5.0f, 15.0f, 7.0f});
|
|
|
|
|
|
|
|
|
|
|
|
auto expV = NDArrayFactory::create<double>('c', {3, 4}, { 8.5f, 6.f , 8.75f, 6.f, 8.5f, 11.f, 8.75f, 6.f, 18.5f, 6.f, 13.75f, 11.f});
|
|
|
|
auto expD = NDArrayFactory::create<double>('c', {3, 4}, { 6.25f, 9.f, 27.5625f, 1.f, 6.25f, 4.f, 27.5625f, 1.f, 6.25f, 9.f, 0.0625f, 16.f});
|
|
|
|
|
|
|
|
nd4j::ops::moments op;
|
|
|
|
auto result = op.execute({&x}, {}, {0});
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
ASSERT_EQ(2, result->size());
|
|
|
|
|
|
|
|
auto v = result->at(0);
|
|
|
|
auto d = result->at(1);
|
|
|
|
|
|
|
|
ASSERT_TRUE(v->isMatrix());
|
|
|
|
ASSERT_TRUE(d->isMatrix());
|
|
|
|
|
|
|
|
// v->printIndexedBuffer("v");
|
|
|
|
// expV.printIndexedBuffer("expV");
|
|
|
|
|
|
|
|
// d->printIndexedBuffer("d");
|
|
|
|
// expD.printIndexedBuffer("expD");
|
|
|
|
|
|
|
|
ASSERT_TRUE(v->equalsTo(&expV));
|
|
|
|
ASSERT_TRUE(d->equalsTo(&expD));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, trace_test1) {
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto input = NDArrayFactory::create<double>('c', {3, 4, 5});
|
|
|
|
input.linspace(1);
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', {3}, {40, 120, 200});
|
|
|
|
NDArray matrix('c', {3, 3}, {1., 2., 3., 4., 5., 6., 7., 8., 9.});
|
|
|
|
nd4j::ops::trace op;
|
|
|
|
auto results = op.execute({&input}, {}, {});
|
|
|
|
auto output = results->at(0);
|
|
|
|
double traceM = matrix.getTrace();
|
2019-07-12 10:51:51 +02:00
|
|
|
// nd4j_printf("Trace for matrix is %f\n", traceM);
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(exp.isSameShape(output));
|
2019-07-12 10:51:51 +02:00
|
|
|
// exp.printIndexedBuffer("EXP TRACE");
|
|
|
|
// output->printIndexedBuffer("OUT TRACE");
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(exp.equalsTo(output));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, trace_test2) {
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto input = NDArrayFactory::create<double>('c', {4, 5});
|
|
|
|
input.linspace(1);
|
|
|
|
auto exp = NDArrayFactory::create<double>(40.);
|
|
|
|
|
|
|
|
nd4j::ops::trace op;
|
|
|
|
auto results = op.execute({&input}, {}, {});
|
|
|
|
auto output = results->at(0);
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(exp.isSameShape(output));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(output));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, trace_test3) {
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto input = NDArrayFactory::create<double>('c', {1, 5});
|
|
|
|
input.linspace(1);
|
|
|
|
auto exp = NDArrayFactory::create<double>(1.);
|
|
|
|
|
|
|
|
nd4j::ops::trace op;
|
|
|
|
auto results = op.execute({&input}, {}, {});
|
|
|
|
auto output = results->at(0);
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(exp.isSameShape(output));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(output));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, trace_test4) {
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto input = NDArrayFactory::create<double>('c', {5, 1});
|
|
|
|
input.linspace(1);
|
|
|
|
auto exp = NDArrayFactory::create<double>(1.);
|
|
|
|
|
|
|
|
nd4j::ops::trace op;
|
|
|
|
auto results = op.execute({&input}, {}, {});
|
|
|
|
auto output = results->at(0);
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(exp.isSameShape(output));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(output));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, trace_test5) {
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto input = NDArrayFactory::create<double>('c', {3, 4, 5, 6});
|
|
|
|
input.linspace(1);
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', {3, 4}, {75, 225, 375, 525, 675, 825, 975, 1125, 1275, 1425, 1575, 1725});
|
|
|
|
|
|
|
|
nd4j::ops::trace op;
|
|
|
|
auto results = op.execute({&input}, {}, {}, {}, false, nd4j::DataType::DOUBLE);
|
|
|
|
auto output = results->at(0);
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(exp.isSameShape(output));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(output));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, random_shuffle_test1) {
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto input = NDArrayFactory::create<double>('c', {2, 2, 2});
|
|
|
|
input.linspace(1);
|
|
|
|
|
|
|
|
nd4j::ops::random_shuffle op;
|
|
|
|
auto results = op.execute({&input}, {}, {}, {}, false, nd4j::DataType::DOUBLE);
|
|
|
|
auto output = results->at(0);
|
|
|
|
|
|
|
|
bool haveZeros = false;
|
|
|
|
for(int i = 0; i < output->lengthOf(); ++i)
|
|
|
|
if(output->e<float>(i) == (float)0.)
|
|
|
|
haveZeros = true;
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(input.isSameShape(output));
|
|
|
|
ASSERT_TRUE(!input.equalsTo(output));
|
|
|
|
ASSERT_TRUE(!haveZeros);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, random_shuffle_test2) {
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto input = NDArrayFactory::create<double>('c', {1, 3, 2});
|
2019-06-15 13:34:34 +02:00
|
|
|
input.linspace(1);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
nd4j::ops::random_shuffle op;
|
|
|
|
auto results = op.execute({&input}, {}, {}, {}, false, nd4j::DataType::DOUBLE);
|
|
|
|
auto output = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(input.isSameShape(output));
|
2019-06-15 13:34:34 +02:00
|
|
|
ASSERT_TRUE(input.equalsTo(output));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, random_shuffle_test3) {
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto input = NDArrayFactory::create<double>('c', {3, 2, 1});
|
|
|
|
input.linspace(1);
|
|
|
|
|
|
|
|
nd4j::ops::random_shuffle op;
|
|
|
|
auto results = op.execute({&input}, {}, {}, {}, false, nd4j::DataType::DOUBLE);
|
|
|
|
auto output = results->at(0);
|
|
|
|
|
|
|
|
bool haveZeros = false;
|
|
|
|
for(int i = 0; i < output->lengthOf(); ++i)
|
|
|
|
if(output->e<float>(i) == (float)0.)
|
|
|
|
haveZeros = true;
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(input.isSameShape(output));
|
|
|
|
ASSERT_TRUE(!input.equalsTo(output));
|
|
|
|
ASSERT_TRUE(!haveZeros);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
2019-07-20 07:58:44 +02:00
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, random_shuffle_test04) {
|
|
|
|
auto input = NDArrayFactory::create<double>('c', {4});
|
|
|
|
input.linspace(1);
|
|
|
|
|
|
|
|
nd4j::ops::random_shuffle op;
|
|
|
|
//NDArray* output;
|
|
|
|
auto results = op.execute({&input}, {}, {}, {}, true, nd4j::DataType::DOUBLE);
|
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
auto output = &input; //results->at(0);
|
|
|
|
bool haveZeros = false;
|
|
|
|
for(int i = 0; i < output->lengthOf(); ++i)
|
|
|
|
if(output->e<float>(i) == (float)0.)
|
|
|
|
haveZeros = true;
|
|
|
|
|
|
|
|
ASSERT_TRUE(input.isSameShape(output));
|
|
|
|
//ASSERT_TRUE(!input.equalsTo(output));
|
|
|
|
ASSERT_TRUE(!haveZeros);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, random_shuffle_test4) {
|
|
|
|
auto input = NDArrayFactory::create<double>('c', {4});
|
|
|
|
input.linspace(1);
|
|
|
|
|
|
|
|
nd4j::ops::random_shuffle op;
|
2019-07-20 07:58:44 +02:00
|
|
|
//NDArray* output;
|
|
|
|
auto results = op.execute({&input}, {}, {}, {}, false, nd4j::DataType::DOUBLE);
|
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
2019-06-06 14:21:15 +02:00
|
|
|
auto output = results->at(0);
|
|
|
|
bool haveZeros = false;
|
|
|
|
for(int i = 0; i < output->lengthOf(); ++i)
|
|
|
|
if(output->e<float>(i) == (float)0.)
|
|
|
|
haveZeros = true;
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(input.isSameShape(output));
|
2019-07-20 07:58:44 +02:00
|
|
|
//ASSERT_TRUE(!input.equalsTo(output));
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(!haveZeros);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, random_shuffle_test5) {
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto input = NDArrayFactory::create<double>('c', {4,1});
|
|
|
|
input.linspace(1);
|
|
|
|
|
|
|
|
nd4j::ops::random_shuffle op;
|
|
|
|
auto results = op.execute({&input}, {}, {}, {}, false, nd4j::DataType::DOUBLE);
|
|
|
|
auto output = results->at(0);
|
|
|
|
|
|
|
|
bool haveZeros = false;
|
|
|
|
for(int i = 0; i < output->lengthOf(); ++i)
|
|
|
|
if(output->e<float>(i) == (float)0.)
|
|
|
|
haveZeros = true;
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(input.isSameShape(output));
|
|
|
|
ASSERT_TRUE(!input.equalsTo(output));
|
|
|
|
ASSERT_TRUE(!haveZeros);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, random_shuffle_test6) {
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto input = NDArrayFactory::create<double>('c', {4,1,1});
|
|
|
|
input.linspace(1);
|
|
|
|
|
|
|
|
nd4j::ops::random_shuffle op;
|
|
|
|
auto results = op.execute({&input}, {}, {}, {}, false, nd4j::DataType::DOUBLE);
|
|
|
|
auto output = results->at(0);
|
|
|
|
|
|
|
|
bool haveZeros = false;
|
|
|
|
for(int i = 0; i < output->lengthOf(); ++i)
|
|
|
|
if(output->e<float>(i) == (float)0.)
|
|
|
|
haveZeros = true;
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(input.isSameShape(output));
|
|
|
|
ASSERT_TRUE(!input.equalsTo(output));
|
|
|
|
ASSERT_TRUE(!haveZeros);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, random_shuffle_test7) {
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto input = NDArrayFactory::create<double>('c', {1,4});
|
|
|
|
input.linspace(1);
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', {1,4}, {1, 2, 3, 4});
|
|
|
|
|
|
|
|
nd4j::ops::random_shuffle op;
|
|
|
|
auto results = op.execute({&input}, {}, {}, {}, false, nd4j::DataType::DOUBLE);
|
|
|
|
auto output = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(input.isSameShape(output));
|
|
|
|
ASSERT_TRUE(input.equalsTo(output));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
TEST_F(DeclarableOpsTests5, EmbeddingLookup_1) {
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto x = NDArrayFactory::create<double>('c', {3, 4, 2}, {10, 20, 11, 21, 12, 22, 13, 23,
|
|
|
|
14, 24, 15, 25, 16, 26, 17, 27,
|
|
|
|
18, 28, 19, 29, 20, 30, 21, 31});
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto y = NDArrayFactory::create<int>({1, 1, 1, 0, 0, 0, 2, 2, 2});
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', {9, 4, 2}, {14, 24, 15, 25, 16, 26, 17, 27, 14, 24, 15, 25,
|
|
|
|
16, 26, 17, 27, 14, 24, 15, 25, 16, 26, 17, 27,
|
|
|
|
10, 20, 11, 21, 12, 22, 13, 23, 10, 20, 11, 21,
|
|
|
|
12, 22, 13, 23, 10, 20, 11, 21, 12, 22, 13, 23,
|
|
|
|
18, 28, 19, 29, 20, 30, 21, 31, 18, 28, 19, 29,
|
|
|
|
20, 30, 21, 31, 18, 28, 19, 29, 20, 30, 21, 31});
|
|
|
|
|
|
|
|
// y.printShapeInfo("y shape");
|
|
|
|
// y.printIndexedBuffer("y buffer");
|
|
|
|
|
|
|
|
nd4j::ops::embedding_lookup op;
|
|
|
|
auto result = op.execute({&x, &y}, {}, {0}, {}, false, nd4j::DataType::DOUBLE);
|
|
|
|
auto output = result->at(0);
|
|
|
|
// x.printShapeInfo("Input");
|
|
|
|
// output->printShapeInfo("Output");
|
|
|
|
// exp.printShapeInfo("Expected");
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
ASSERT_TRUE(exp.isSameShape(output));
|
|
|
|
//output->printIndexedBuffer("Output");
|
|
|
|
//exp.printIndexedBuffer("Expect");
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(exp.equalsTo(output));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(DeclarableOpsTests5, EmbeddingLookup_2) {
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto x = NDArrayFactory::create<double>('c', {3, 4, 2}, {10, 20, 30, 40, 50, 60,
|
2019-06-15 13:34:34 +02:00
|
|
|
70, 80, 90, 10, 11, 12,
|
|
|
|
13, 14, 15, 16, 17, 18,
|
2019-06-06 14:21:15 +02:00
|
|
|
19, 20, 21, 22, 23, 24});
|
|
|
|
//1, 0, 1, 0, 1, 0
|
|
|
|
auto y = NDArrayFactory::create<Nd4jLong>({1, 0, 1, 0, 1, 0});
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', {6, 4, 2}, {90, 10, 11, 12, 13, 14,
|
|
|
|
15, 16, 10, 20, 30, 40,
|
|
|
|
50, 60, 70, 80, 90, 10,
|
|
|
|
11, 12, 13, 14, 15, 16,
|
|
|
|
10, 20, 30, 40, 50, 60,
|
|
|
|
70, 80, 90, 10, 11, 12,
|
|
|
|
13, 14, 15, 16, 10, 20,
|
|
|
|
30, 40, 50, 60, 70, 80});
|
|
|
|
|
|
|
|
// y.printShapeInfo("y shape");
|
|
|
|
// y.printIndexedBuffer("y buffer");
|
|
|
|
|
|
|
|
nd4j::ops::embedding_lookup op;
|
|
|
|
auto result = op.execute({&x, &y}, {}, {0}, {}, false, nd4j::DataType::DOUBLE);
|
|
|
|
auto output = result->at(0);
|
|
|
|
// x.printShapeInfo("Input");
|
|
|
|
// output->printShapeInfo("Output");
|
|
|
|
// exp.printShapeInfo("Expected");
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
ASSERT_TRUE(exp.isSameShape(output));
|
|
|
|
// output->printIndexedBuffer("Output");
|
|
|
|
// exp.printIndexedBuffer("Expect");
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(exp.equalsTo(output));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(DeclarableOpsTests5, EmbeddingLookup_3) {
|
|
|
|
|
|
|
|
|
|
|
|
auto y = NDArrayFactory::create<Nd4jLong>('c', {3,2}, {5, 4, 4, 5, 3, 3});
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', {6, 3, 3}, {
|
|
|
|
6, 20, 11, 21, 12, 22, 13, 23, 14,
|
|
|
|
5, 20, 11, 21, 12, 22, 13, 23, 14,
|
|
|
|
5, 20, 11, 21, 12, 22, 13, 23, 14,
|
|
|
|
6, 20, 11, 21, 12, 22, 13, 23, 14,
|
|
|
|
4, 20, 11, 21, 12, 22, 13, 23, 14,
|
|
|
|
4, 20, 11, 21, 12, 22, 13, 23, 14 });
|
|
|
|
|
|
|
|
// y.printShapeInfo("y shape");
|
|
|
|
// y.printIndexedBuffer("y buffer");
|
|
|
|
auto p1 = NDArrayFactory::create<double>('c', {3,3}, {1, 20, 11, 21, 12, 22, 13, 23, 14});
|
|
|
|
auto p2 = NDArrayFactory::create<double>('c', {3,3}, {2, 20, 11, 21, 12, 22, 13, 23, 14});
|
|
|
|
auto p3 = NDArrayFactory::create<double>('c', {3,3}, {3, 20, 11, 21, 12, 22, 13, 23, 14});
|
|
|
|
auto p4 = NDArrayFactory::create<double>('c', {3,3}, {4, 20, 11, 21, 12, 22, 13, 23, 14});
|
|
|
|
auto p5 = NDArrayFactory::create<double>('c', {3,3}, {5, 20, 11, 21, 12, 22, 13, 23, 14});
|
|
|
|
auto p6 = NDArrayFactory::create<double>('c', {3,3}, {6, 20, 11, 21, 12, 22, 13, 23, 14});
|
|
|
|
auto p7 = NDArrayFactory::create<double>('c', {3,3}, {7, 20, 11, 21, 12, 22, 13, 23, 14});
|
|
|
|
auto p8 = NDArrayFactory::create<double>('c', {3,3}, {8, 20, 11, 21, 12, 22, 13, 23, 14});
|
|
|
|
|
|
|
|
// res = tf.nn.embedding_lookup((p1, p2, p3, p4, p5, p6, p7), ids, 'mod')
|
|
|
|
|
|
|
|
nd4j::ops::embedding_lookup op;
|
|
|
|
auto result = op.execute({&p1, &p2, &p3, &p4, &p5, &p6, &p7, &p8, &y}, {}, {1}, {}, false, nd4j::DataType::DOUBLE);
|
|
|
|
auto output = result->at(0);
|
|
|
|
// x.printShapeInfo("Input");
|
|
|
|
// output->printIndexedBuffer("Output");
|
|
|
|
// exp.printShapeInfo("Expected");
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
ASSERT_TRUE(exp.isSameShape(output));
|
|
|
|
// output->printIndexedBuffer("Output");
|
|
|
|
// exp.printIndexedBuffer("Expect");
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.equalsTo(output));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
2019-08-28 14:38:57 +02:00
|
|
|
/* @Test
|
|
|
|
public void testDynamicPartition(){
|
|
|
|
INDArray data = Nd4j.createFromArray(2, 1, 2, 0);
|
|
|
|
INDArray partitions = Nd4j.createFromArray(0, 2, 1, 0);
|
|
|
|
INDArray[] out = Nd4j.exec(DynamicCustomOp.builder("dynamic_partition")
|
|
|
|
.addOutputs(Nd4j.createUninitialized(DataType.INT, 2), Nd4j.createUninitialized(DataType.INT, 1), Nd4j.createUninitialized(DataType.INT, 1))
|
|
|
|
.addIntegerArguments(3) //3 partitions
|
|
|
|
.addInputs(data, partitions).build());
|
|
|
|
|
|
|
|
INDArray exp0 = Nd4j.createFromArray(2, 0);
|
|
|
|
INDArray exp1 = Nd4j.createFromArray(2);
|
|
|
|
INDArray exp2 = Nd4j.createFromArray(1);
|
|
|
|
|
|
|
|
assertEquals(exp0, out[0]); //Usually just gives [0,0]
|
|
|
|
assertEquals(exp1, out[1]);
|
|
|
|
assertEquals(exp2, out[2]);
|
|
|
|
}*/
|
|
|
|
TEST_F(DeclarableOpsTests5, DynamicPartition_01) {
|
|
|
|
|
|
|
|
auto x = NDArrayFactory::create<int>({2,1,2,0});
|
|
|
|
|
|
|
|
auto y = NDArrayFactory::create<int>({0,2,1,0});
|
|
|
|
|
|
|
|
int numPartition = 3;
|
|
|
|
std::vector<NDArray> exp( { NDArrayFactory::create<int>('c', {2}, {2, 0}),
|
|
|
|
NDArrayFactory::create<int>('c', {1}, {2}),
|
|
|
|
NDArrayFactory::create<int>('c', {1}, {1})});
|
|
|
|
|
|
|
|
nd4j::ops::dynamic_partition op;
|
|
|
|
auto result = op.execute({&x, &y}, {}, {numPartition});
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
ASSERT_EQ(result->size(), numPartition); // result has the same size as given param 4
|
|
|
|
|
|
|
|
for (int e = 0; e < result->size(); e++) {
|
|
|
|
auto output = result->at(e);
|
|
|
|
// output->printShapeInfo("Output shape> ");
|
|
|
|
// output->printIndexedBuffer("Output data> ");
|
|
|
|
ASSERT_TRUE(exp[e].isSameShape(output));
|
|
|
|
ASSERT_TRUE(exp[e].equalsTo(output));
|
|
|
|
}
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
TEST_F(DeclarableOpsTests5, DynamicPartition_1) {
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto x = NDArrayFactory::create<double>('c', {3, 4, 2}, {10, 20, 11, 21, 12, 22,
|
|
|
|
13, 23, 14, 24, 15, 25, 16, 26, 17, 27,
|
|
|
|
18, 28, 19, 29, 20, 30, 21, 31});
|
2019-06-15 13:34:34 +02:00
|
|
|
|
Merge master to upstream (#7945)
* Shugeo strided slice zeros (#14)
* Modified strided_slice op to properly work with empty-like shapes.
* Fixed test for reduce_mean with empty-like input.
* [WIP] Last merge (#15)
* correct logsoftmax looss (#2)
* Small SameDiff listener fix (#4)
* Various fixes (#6)
* #7839 Fix for asXMatrix and tests
* #7866 EmbeddingSequenceLayer dtype fix + test
* #7856 SameDiff save/load stream methods
* #7859 RegressionEvaluation rank 4 fix + tests + axis configuration
* EvaluationBinary 3d/4d
* More evaluation 3d/4d tests
* #7847 Evaluation empty checks
* Small test ifx
* #7848 Fix median edge case
* Improve DL4J samediff layer tests
* [WIP] FastText wrapper implemented (#8)
* FastText implemented
* Some fixes
* Fix shapes for wordsNearest
* Validation of input vectors
* Fixes
* Fixed test
* Thread tagged
* Some tweaks
* setContextClassLoader for DeallocatorServiceThread
* Numpy format tests (#1)
* Various fixes (#11)
* #7852 SameDiff gather fix
* #7892 SameDiff placeholder to constant conversion
* #7890 validate input rank for MLN/CG init methods
* Fix broken permute shape calculation
* Permute and gather fixes
* Tests
* #7850 LogSumExp fix + test
* Handful of test fixes
* Empty arrays with non-scalar shapes (#10)
* minor rearrangements for lambdas
* empty tensors with non-scalar shapes
* numpy empty tensors with non-scalar shapes
* few more empty tweaks
* Small fixes
* conv3d signature update
* micro fix in batchnorm mkldnn
* Import fixes
* Fix
* MKL-DNN update
* Small fill fix
* fill with empty input + test
* Fixes
* Small error improvement
* Fix
* one special test
* couple of fixes for lstm
* Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone
* Fixes
* FP16
* Unsigned
* BFloat16
* Fill op - empty tweaks
* - couple of fixes for empty arrays construction
- stack updated
* strided slice fix
* one transform test
* provide method for reducing shapeInfo in case of input array is empty
* Fixed reduceAlongDimensions to use empty input properly.
* couple of broadcast tests
* couple of tests broadcast tests + tweak to make them pass
* add check of non-empty to methods producing sub-arrays
* Fixed reshapeC with zeros in shape.
* complete empty check in reduce_... legacy ops
* Concat and cumsum/prod
* Tweak to empty shape inference on import
* add empty check to the rest of reduce legacy ops
* one more test
* correct typo in evalReduceShapeInfoEmpty
* Added tests for reduce_* ops to tests with zero shapes.
* few more tests for empty reductions
* Fixed strided_slice op with empty case and tests.
* one more empty reduction test
* Fixed strided_slice test.
* add empty check to NDArray::reshapei
* infOrMax
* empty min/max with infinity tests
* made unstack working correctly with empty arrays
* few IndexReduce tests + tweaks for empty shapes
* add test for empty concat
* few tests fixed
* Validation fix for reductions on empty shapes
* Reverse fix
* Reduction shape calc fixes
* SameDiff.generateOutputVariable: don't use shape function to determine number of outputs
* Range fix
* - NDArray constructor updated for scalars/empty arrays
- few tests fixed
* More fixes
* Empty creator fixes
* concat fix
* concat fix
* TF import tests: allow 'both all NaN' and 'both all inf' to pass
* Slice, zero fraction, and reshape fixes
* transpose, gather
* Zero fraction
* scalar cast fix
* Empty reduction axis support
* few more tests fixed
* Fixed input checks conforming with TF for concat op and tests.
* few tests fixed
* matmul scalar shape fix
* Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats.
* broadcast bool fix
* few more tests
* few more tests
* correct evalReduceShapeInfoEmpty
* argmax/argmin + tests
* one more empty edge case + one more test
* argmax/argmin/realdiv_bp tweaks
* empty reshape test + fix
* Helper fixes
* Small fixes
* Gather test fix
* Gather test fix
* Small fixes
* reduce scalar zero values
* scalar mean workaround
* Remove debug code
* along dim mean workaround
* one more test
* - equalsTo() tweak for empty arrays
- one more test
* broadcast tweaks
* [WIP] Fixing outstanding issues for NLP (#9)
* Avoid using not-inited objects
* Test fixed.
* Redundant method avoided for models like FastText
* KMeans++ implementation
* KMeans++ implementation
* Disable parallel execution
* KMeans++
* Tests
* Dev branch merge (#16)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Fix some issues on master (#17)
* Fix DataVec test issue
* Fix issue with dl4j SameDiff output layer
* Dtype fix for lambda layers
* #7912 BertIterator dtype fix (use float32 not global default)
* [WIP] Next set of CUDA stuff (#7)
New CUDA implementations and improvements
* bad file
* Dev branch master merge (#23)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Compatibility of deserialization (#18)
Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
* SameDiff: add activation gradient checking support for debugging (#19)
* SameDiff gradient checker: first pass on activation gradient checks
* Fixes + tests for activation gradient checking
* Javadoc
* [WIP] Some nd4j data type corrections (#20)
* Adjust data type
* Set correct Data type.
* Size of proper data type.
* fix averaged cpu load (#22)
* SameDiff ops, TF import and fixes (#24)
* CheckNumerics tests + fixes + misc fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fake quant
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* FakeQuantWithMinMaxArgs
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* CheckNumerics fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix libnd4j ALL_INTS and ALL_FLOATS declaration (uint and bfloat types)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Small fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Javadoc
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Exception tweak
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix for out of scope stack allocated var use
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Ignores
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Ignore for known failing test (already logged issue)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Merge upstream to fork (#25)
* Add thousand-separator commas to TotalParams (#7915)
* Add thousand-separator commas to TotalParams
The number of parameters can be quite large, and it would help the reading of the summary printout to have the TotalParams column & values at the bottom have thousand-separator-commas in them.
* Add thousand-separator commas to MultiLayerNetwork
Corresponding change to MultiLayerNetwork
Signed-off-by: Jxtps Jxtps <jxtps435@gmail.com>
* Update contributing and issue/PR templates (#7934)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix link to AdaDelta paper (#7942)
Fix link to AdaDelta paper hosted on matthewzeiler.com
Signed-off-by: Jxtps
* Fixes, and ignores for known/logged failing issues (#7943)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* SameDiff + DL4J/SameDiff: Multiple fixes (#28)
* #7919 HDF5 attribute buffer length fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7909 Arbiter constructor exception ux improvements
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7925 RNN output layer length checks
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7939 Add listener for validating inputs are not incorrectly modified
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7939 Integrate NonInplaceValidationListener into tests
* #7844 DL4J SameDiff fixes for variable minibatch size
* DL4J SameDiff fixes - ensure gradient for input placeholder is available
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Tweaks to ExternalErrorsFunction - use placeholders, make more robust
* Another fix
* More fixes
* More SameDiff/DL4J fixes
* Scope out scalar array creation in BaseScalarOp
* Remove debug code
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] Final dev branch merge (#29)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Compatibility of deserialization (#18)
Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
* SameDiff: add activation gradient checking support for debugging (#19)
* SameDiff gradient checker: first pass on activation gradient checks
* Fixes + tests for activation gradient checking
* Javadoc
* [WIP] Some nd4j data type corrections (#20)
* Adjust data type
* Set correct Data type.
* Size of proper data type.
* fix averaged cpu load (#22)
* [WIP] Multiple dataset iterators (#27)
* Splitting dataset into arbitrary number
* Fixes
* Multiple split of iterator
* Test
* Test
* Some fixes
* signature change
* one more tweak
Signed-off-by: raver119 <raver119@gmail.com>
* one more test for sequential use of DataSetIteratorSplitter
Signed-off-by: raver119 <raver119@gmail.com>
* Fixes
* Fixes
* one more test for Alexander
Signed-off-by: raver119 <raver119@gmail.com>
* Some fixes
* Some fixes
* one more test for Alexander
Signed-off-by: raver119 <raver119@gmail.com>
* minor test fix
Signed-off-by: raver119 <raver119@gmail.com>
* Some fixes
* Some fixes
* couple of assertions tweaked
Signed-off-by: raver119 <raver119@gmail.com>
* MDS splitter test :/
Signed-off-by: raver119 <raver119@gmail.com>
* Minor refactoring
* Multi dataset
* Some fixes
* More tests
* Small number of test fixes/improvements (failures on CI) (#31)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] More CUDA stuff (#26)
* initial commit
Signed-off-by: raver119 <raver119@gmail.com>
* LRN BP CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* less memory
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed bug with crop_and_resize op helper.
* get rid of unnecessary index-calculation dunction
Signed-off-by: Yurii <yurii@skymind.io>
* Fixed sort with nth_element cuda-based helper.
* Refactored nth_element.
* Refactored nth_element op and tests.
* Modified usage of dim array with sortTad routine.
* Refactored main routine of helper for non_max_image_suppression op.
* non_max_image_suppression op helper with cuda kernel implementation. Initial revision.
* fix vol2col cuda kernel
* meh
Signed-off-by: raver119 <raver119@gmail.com>
* topK concept
Signed-off-by: raver119 <raver119@gmail.com>
* unsorted topK with scanWitdh of 1
Signed-off-by: raver119 <raver119@gmail.com>
* correct vol2col tests
* sorted/unsorted topK
Signed-off-by: raver119 <raver119@gmail.com>
* implementation and fixing col2im/col2vol
* Corrected usage flags with input/output with reverse op.
* dup is const now
Signed-off-by: raver119 <raver119@gmail.com>
* percentile op
Signed-off-by: raver119 <raver119@gmail.com>
* group tests for mapool2d
Signed-off-by: Yurii <yurii@skymind.io>
* special test for george
Signed-off-by: raver119 <raver119@gmail.com>
* less threads for sortTad
Signed-off-by: raver119 <raver119@gmail.com>
* provide conv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* remove auther in sort tad kernel code
Signed-off-by: Yurii <yurii@skymind.io>
* provide depthwise_conv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* - max_pooling_with_argmax
- null check for special use
Signed-off-by: raver119 <raver119@gmail.com>
* dts cuda
Signed-off-by: raver119 <raver119@gmail.com>
* provide sconv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* std cuda
Signed-off-by: raver119 <raver119@gmail.com>
* Refactored non_max_suppression op to conform TF implementation.
* Improved suppression helper.
* provide pooling3d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* minor lstm rearrangements
Signed-off-by: raver119 <raver119@gmail.com>
* more of minor lstm rearrangements
Signed-off-by: raver119 <raver119@gmail.com>
* (bi)dynamic_rnn
Signed-off-by: raver119 <raver119@gmail.com>
* templates init order
Signed-off-by: raver119 <raver119@gmail.com>
* Refactored non_max_suppression op.
* Added cuda kernel for non_max_suppression.
* CPU sort by key/value
Signed-off-by: raver119 <raver119@gmail.com>
* CPU sort TAD by key/value
Signed-off-by: raver119 <raver119@gmail.com>
* CPU sort TAD by key/value tests
Signed-off-by: raver119 <raver119@gmail.com>
* Eliminate compiler error with cuda implementation.
* - repaired gradCheck in cuda
- provide conv2d_bp for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* missed signature
Signed-off-by: raver119 <raver119@gmail.com>
* provide depthwise_conv2d_bp for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* Implementation of lup helper with cuda kernel. Initial commit.
* further work on backprops for convolutions
Signed-off-by: Yurii <yurii@skymind.io>
* CUDA linear sort by key/val
Signed-off-by: raver119 <raver119@gmail.com>
* CUDA tad sort by key/val
Signed-off-by: raver119 <raver119@gmail.com>
* start providing of backprop for pooling2d/3d
Signed-off-by: Yurii <yurii@skymind.io>
* Added atomicAdd for bool datatype.
* dynamic partition concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic partition concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic partition scalar CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* important comment
Signed-off-by: raver119 <raver119@gmail.com>
* fix pooling2d/3d backprop helpers
Signed-off-by: Yurii <yurii@skymind.io>
* Added non-linear test with dynamic_partition.
* Improved test for dynamic_partition.
* dynamic_partition TAD concept
Signed-off-by: raver119 <raver119@gmail.com>
* - dynamic_partition TAD CUDA impl
- dynamic_partition TAD CPU fix
Signed-off-by: raver119 <raver119@gmail.com>
* - rewrite cpu code for usampling2d/3d
- write cuda code for usampling2d/3d
Signed-off-by: Yurii <yurii@skymind.io>
* dynamic_stitch CUDA vector case
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic_stitch CUDA TAD case concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic_stitch CUDA TAD case impl
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for dynamic_stitch 3D-4D cases.
* minor tests tweaks
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed type check for dynamic stitch.
* min/max bp
Signed-off-by: raver119 <raver119@gmail.com>
* rewrite code for upsampling2d/3d cpu
Signed-off-by: Yurii <yurii@skymind.io>
* reduce min/max/norm_max bp
Signed-off-by: raver119 <raver119@gmail.com>
* lup implementation. Additional enhancements.
* provide code for upsamling2d/3d backprop
Signed-off-by: Yurii <yurii@skymind.io>
* weightedCrossEntropyWithLogits
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed template math atomicMul for 64bit ints.
* Refactored dynamic_partition_bp op.
* inverseBroadcast fix
Signed-off-by: raver119 <raver119@gmail.com>
* DynamicPartitionBP test datatype fixed.
* - nd4j_atomicMul Windows fix
- cpu/NDArrayLambda.hpp excluded from CUDA
Signed-off-by: raver119 <raver119@gmail.com>
2019-06-27 17:37:04 +02:00
|
|
|
auto y = NDArrayFactory::create<int>('c', {3, 4, 2}, {0, 0, 0, 0, 0, 0,
|
|
|
|
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
|
|
|
1, 1, 1, 1, 1, 1, 1, 1
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
);
|
|
|
|
/* auto y = NDArrayFactory::create<double>('c', {3, 4}, {0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
|
2019-06-15 13:34:34 +02:00
|
|
|
2.f, 2.f, 2.f, 2.f, 2.f, 2.f, 2.f, 2.f, 2.f, 2.f,
|
|
|
|
1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
);
|
|
|
|
*/
|
|
|
|
int numPartition = 3;
|
|
|
|
std::vector<NDArray> exp( { NDArrayFactory::create<double>('c', {6}, {10, 20, 11, 21, 12, 22}),
|
|
|
|
NDArrayFactory::create<double>('c', {8}, {18, 28, 19, 29, 20, 30, 21, 31}),
|
|
|
|
NDArrayFactory::create<double>('c', {10}, {13, 23, 14, 24, 15, 25, 16, 26, 17, 27})});
|
|
|
|
|
|
|
|
nd4j::ops::dynamic_partition op;
|
|
|
|
auto result = op.execute({&x, &y}, {}, {numPartition});
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
ASSERT_EQ(result->size(), numPartition); // result has the same size as given param 4
|
|
|
|
|
|
|
|
for (int e = 0; e < result->size(); e++) {
|
|
|
|
auto output = result->at(e);
|
|
|
|
// output->printShapeInfo("Output shape> ");
|
|
|
|
// output->printIndexedBuffer("Output data> ");
|
|
|
|
ASSERT_TRUE(exp[e].isSameShape(output));
|
|
|
|
ASSERT_TRUE(exp[e].equalsTo(output));
|
|
|
|
}
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
TEST_F(DeclarableOpsTests5, DynamicPartition_2) {
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto x = NDArrayFactory::create<double>('c', {2, 4}, {0.1f, -1.f, 5.2f, 4.3f, -1.f, 7.4f, 0.0f, -2.2f});
|
Merge master to upstream (#7945)
* Shugeo strided slice zeros (#14)
* Modified strided_slice op to properly work with empty-like shapes.
* Fixed test for reduce_mean with empty-like input.
* [WIP] Last merge (#15)
* correct logsoftmax looss (#2)
* Small SameDiff listener fix (#4)
* Various fixes (#6)
* #7839 Fix for asXMatrix and tests
* #7866 EmbeddingSequenceLayer dtype fix + test
* #7856 SameDiff save/load stream methods
* #7859 RegressionEvaluation rank 4 fix + tests + axis configuration
* EvaluationBinary 3d/4d
* More evaluation 3d/4d tests
* #7847 Evaluation empty checks
* Small test ifx
* #7848 Fix median edge case
* Improve DL4J samediff layer tests
* [WIP] FastText wrapper implemented (#8)
* FastText implemented
* Some fixes
* Fix shapes for wordsNearest
* Validation of input vectors
* Fixes
* Fixed test
* Thread tagged
* Some tweaks
* setContextClassLoader for DeallocatorServiceThread
* Numpy format tests (#1)
* Various fixes (#11)
* #7852 SameDiff gather fix
* #7892 SameDiff placeholder to constant conversion
* #7890 validate input rank for MLN/CG init methods
* Fix broken permute shape calculation
* Permute and gather fixes
* Tests
* #7850 LogSumExp fix + test
* Handful of test fixes
* Empty arrays with non-scalar shapes (#10)
* minor rearrangements for lambdas
* empty tensors with non-scalar shapes
* numpy empty tensors with non-scalar shapes
* few more empty tweaks
* Small fixes
* conv3d signature update
* micro fix in batchnorm mkldnn
* Import fixes
* Fix
* MKL-DNN update
* Small fill fix
* fill with empty input + test
* Fixes
* Small error improvement
* Fix
* one special test
* couple of fixes for lstm
* Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone
* Fixes
* FP16
* Unsigned
* BFloat16
* Fill op - empty tweaks
* - couple of fixes for empty arrays construction
- stack updated
* strided slice fix
* one transform test
* provide method for reducing shapeInfo in case of input array is empty
* Fixed reduceAlongDimensions to use empty input properly.
* couple of broadcast tests
* couple of tests broadcast tests + tweak to make them pass
* add check of non-empty to methods producing sub-arrays
* Fixed reshapeC with zeros in shape.
* complete empty check in reduce_... legacy ops
* Concat and cumsum/prod
* Tweak to empty shape inference on import
* add empty check to the rest of reduce legacy ops
* one more test
* correct typo in evalReduceShapeInfoEmpty
* Added tests for reduce_* ops to tests with zero shapes.
* few more tests for empty reductions
* Fixed strided_slice op with empty case and tests.
* one more empty reduction test
* Fixed strided_slice test.
* add empty check to NDArray::reshapei
* infOrMax
* empty min/max with infinity tests
* made unstack working correctly with empty arrays
* few IndexReduce tests + tweaks for empty shapes
* add test for empty concat
* few tests fixed
* Validation fix for reductions on empty shapes
* Reverse fix
* Reduction shape calc fixes
* SameDiff.generateOutputVariable: don't use shape function to determine number of outputs
* Range fix
* - NDArray constructor updated for scalars/empty arrays
- few tests fixed
* More fixes
* Empty creator fixes
* concat fix
* concat fix
* TF import tests: allow 'both all NaN' and 'both all inf' to pass
* Slice, zero fraction, and reshape fixes
* transpose, gather
* Zero fraction
* scalar cast fix
* Empty reduction axis support
* few more tests fixed
* Fixed input checks conforming with TF for concat op and tests.
* few tests fixed
* matmul scalar shape fix
* Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats.
* broadcast bool fix
* few more tests
* few more tests
* correct evalReduceShapeInfoEmpty
* argmax/argmin + tests
* one more empty edge case + one more test
* argmax/argmin/realdiv_bp tweaks
* empty reshape test + fix
* Helper fixes
* Small fixes
* Gather test fix
* Gather test fix
* Small fixes
* reduce scalar zero values
* scalar mean workaround
* Remove debug code
* along dim mean workaround
* one more test
* - equalsTo() tweak for empty arrays
- one more test
* broadcast tweaks
* [WIP] Fixing outstanding issues for NLP (#9)
* Avoid using not-inited objects
* Test fixed.
* Redundant method avoided for models like FastText
* KMeans++ implementation
* KMeans++ implementation
* Disable parallel execution
* KMeans++
* Tests
* Dev branch merge (#16)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Fix some issues on master (#17)
* Fix DataVec test issue
* Fix issue with dl4j SameDiff output layer
* Dtype fix for lambda layers
* #7912 BertIterator dtype fix (use float32 not global default)
* [WIP] Next set of CUDA stuff (#7)
New CUDA implementations and improvements
* bad file
* Dev branch master merge (#23)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Compatibility of deserialization (#18)
Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
* SameDiff: add activation gradient checking support for debugging (#19)
* SameDiff gradient checker: first pass on activation gradient checks
* Fixes + tests for activation gradient checking
* Javadoc
* [WIP] Some nd4j data type corrections (#20)
* Adjust data type
* Set correct Data type.
* Size of proper data type.
* fix averaged cpu load (#22)
* SameDiff ops, TF import and fixes (#24)
* CheckNumerics tests + fixes + misc fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fake quant
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* FakeQuantWithMinMaxArgs
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* CheckNumerics fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix libnd4j ALL_INTS and ALL_FLOATS declaration (uint and bfloat types)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Small fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Javadoc
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Exception tweak
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix for out of scope stack allocated var use
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Ignores
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Ignore for known failing test (already logged issue)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Merge upstream to fork (#25)
* Add thousand-separator commas to TotalParams (#7915)
* Add thousand-separator commas to TotalParams
The number of parameters can be quite large, and it would help the reading of the summary printout to have the TotalParams column & values at the bottom have thousand-separator-commas in them.
* Add thousand-separator commas to MultiLayerNetwork
Corresponding change to MultiLayerNetwork
Signed-off-by: Jxtps Jxtps <jxtps435@gmail.com>
* Update contributing and issue/PR templates (#7934)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix link to AdaDelta paper (#7942)
Fix link to AdaDelta paper hosted on matthewzeiler.com
Signed-off-by: Jxtps
* Fixes, and ignores for known/logged failing issues (#7943)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* SameDiff + DL4J/SameDiff: Multiple fixes (#28)
* #7919 HDF5 attribute buffer length fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7909 Arbiter constructor exception ux improvements
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7925 RNN output layer length checks
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7939 Add listener for validating inputs are not incorrectly modified
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7939 Integrate NonInplaceValidationListener into tests
* #7844 DL4J SameDiff fixes for variable minibatch size
* DL4J SameDiff fixes - ensure gradient for input placeholder is available
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Tweaks to ExternalErrorsFunction - use placeholders, make more robust
* Another fix
* More fixes
* More SameDiff/DL4J fixes
* Scope out scalar array creation in BaseScalarOp
* Remove debug code
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] Final dev branch merge (#29)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Compatibility of deserialization (#18)
Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
* SameDiff: add activation gradient checking support for debugging (#19)
* SameDiff gradient checker: first pass on activation gradient checks
* Fixes + tests for activation gradient checking
* Javadoc
* [WIP] Some nd4j data type corrections (#20)
* Adjust data type
* Set correct Data type.
* Size of proper data type.
* fix averaged cpu load (#22)
* [WIP] Multiple dataset iterators (#27)
* Splitting dataset into arbitrary number
* Fixes
* Multiple split of iterator
* Test
* Test
* Some fixes
* signature change
* one more tweak
Signed-off-by: raver119 <raver119@gmail.com>
* one more test for sequential use of DataSetIteratorSplitter
Signed-off-by: raver119 <raver119@gmail.com>
* Fixes
* Fixes
* one more test for Alexander
Signed-off-by: raver119 <raver119@gmail.com>
* Some fixes
* Some fixes
* one more test for Alexander
Signed-off-by: raver119 <raver119@gmail.com>
* minor test fix
Signed-off-by: raver119 <raver119@gmail.com>
* Some fixes
* Some fixes
* couple of assertions tweaked
Signed-off-by: raver119 <raver119@gmail.com>
* MDS splitter test :/
Signed-off-by: raver119 <raver119@gmail.com>
* Minor refactoring
* Multi dataset
* Some fixes
* More tests
* Small number of test fixes/improvements (failures on CI) (#31)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] More CUDA stuff (#26)
* initial commit
Signed-off-by: raver119 <raver119@gmail.com>
* LRN BP CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* less memory
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed bug with crop_and_resize op helper.
* get rid of unnecessary index-calculation dunction
Signed-off-by: Yurii <yurii@skymind.io>
* Fixed sort with nth_element cuda-based helper.
* Refactored nth_element.
* Refactored nth_element op and tests.
* Modified usage of dim array with sortTad routine.
* Refactored main routine of helper for non_max_image_suppression op.
* non_max_image_suppression op helper with cuda kernel implementation. Initial revision.
* fix vol2col cuda kernel
* meh
Signed-off-by: raver119 <raver119@gmail.com>
* topK concept
Signed-off-by: raver119 <raver119@gmail.com>
* unsorted topK with scanWitdh of 1
Signed-off-by: raver119 <raver119@gmail.com>
* correct vol2col tests
* sorted/unsorted topK
Signed-off-by: raver119 <raver119@gmail.com>
* implementation and fixing col2im/col2vol
* Corrected usage flags with input/output with reverse op.
* dup is const now
Signed-off-by: raver119 <raver119@gmail.com>
* percentile op
Signed-off-by: raver119 <raver119@gmail.com>
* group tests for mapool2d
Signed-off-by: Yurii <yurii@skymind.io>
* special test for george
Signed-off-by: raver119 <raver119@gmail.com>
* less threads for sortTad
Signed-off-by: raver119 <raver119@gmail.com>
* provide conv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* remove auther in sort tad kernel code
Signed-off-by: Yurii <yurii@skymind.io>
* provide depthwise_conv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* - max_pooling_with_argmax
- null check for special use
Signed-off-by: raver119 <raver119@gmail.com>
* dts cuda
Signed-off-by: raver119 <raver119@gmail.com>
* provide sconv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* std cuda
Signed-off-by: raver119 <raver119@gmail.com>
* Refactored non_max_suppression op to conform TF implementation.
* Improved suppression helper.
* provide pooling3d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* minor lstm rearrangements
Signed-off-by: raver119 <raver119@gmail.com>
* more of minor lstm rearrangements
Signed-off-by: raver119 <raver119@gmail.com>
* (bi)dynamic_rnn
Signed-off-by: raver119 <raver119@gmail.com>
* templates init order
Signed-off-by: raver119 <raver119@gmail.com>
* Refactored non_max_suppression op.
* Added cuda kernel for non_max_suppression.
* CPU sort by key/value
Signed-off-by: raver119 <raver119@gmail.com>
* CPU sort TAD by key/value
Signed-off-by: raver119 <raver119@gmail.com>
* CPU sort TAD by key/value tests
Signed-off-by: raver119 <raver119@gmail.com>
* Eliminate compiler error with cuda implementation.
* - repaired gradCheck in cuda
- provide conv2d_bp for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* missed signature
Signed-off-by: raver119 <raver119@gmail.com>
* provide depthwise_conv2d_bp for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* Implementation of lup helper with cuda kernel. Initial commit.
* further work on backprops for convolutions
Signed-off-by: Yurii <yurii@skymind.io>
* CUDA linear sort by key/val
Signed-off-by: raver119 <raver119@gmail.com>
* CUDA tad sort by key/val
Signed-off-by: raver119 <raver119@gmail.com>
* start providing of backprop for pooling2d/3d
Signed-off-by: Yurii <yurii@skymind.io>
* Added atomicAdd for bool datatype.
* dynamic partition concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic partition concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic partition scalar CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* important comment
Signed-off-by: raver119 <raver119@gmail.com>
* fix pooling2d/3d backprop helpers
Signed-off-by: Yurii <yurii@skymind.io>
* Added non-linear test with dynamic_partition.
* Improved test for dynamic_partition.
* dynamic_partition TAD concept
Signed-off-by: raver119 <raver119@gmail.com>
* - dynamic_partition TAD CUDA impl
- dynamic_partition TAD CPU fix
Signed-off-by: raver119 <raver119@gmail.com>
* - rewrite cpu code for usampling2d/3d
- write cuda code for usampling2d/3d
Signed-off-by: Yurii <yurii@skymind.io>
* dynamic_stitch CUDA vector case
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic_stitch CUDA TAD case concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic_stitch CUDA TAD case impl
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for dynamic_stitch 3D-4D cases.
* minor tests tweaks
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed type check for dynamic stitch.
* min/max bp
Signed-off-by: raver119 <raver119@gmail.com>
* rewrite code for upsampling2d/3d cpu
Signed-off-by: Yurii <yurii@skymind.io>
* reduce min/max/norm_max bp
Signed-off-by: raver119 <raver119@gmail.com>
* lup implementation. Additional enhancements.
* provide code for upsamling2d/3d backprop
Signed-off-by: Yurii <yurii@skymind.io>
* weightedCrossEntropyWithLogits
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed template math atomicMul for 64bit ints.
* Refactored dynamic_partition_bp op.
* inverseBroadcast fix
Signed-off-by: raver119 <raver119@gmail.com>
* DynamicPartitionBP test datatype fixed.
* - nd4j_atomicMul Windows fix
- cpu/NDArrayLambda.hpp excluded from CUDA
Signed-off-by: raver119 <raver119@gmail.com>
2019-06-27 17:37:04 +02:00
|
|
|
auto y = NDArrayFactory::create<int>('c', {2, 4}, {1, 2, 1, 2, 1, 2, 3, 0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
std::vector<NDArray> exp( {NDArrayFactory::create<double>('c', {1}, {-2.2}),
|
|
|
|
NDArrayFactory::create<double>('c', {3}, {0.1, 5.2, -1.}),
|
|
|
|
NDArrayFactory::create<double>('c', {3}, {-1., 4.3, 7.4}),
|
|
|
|
NDArrayFactory::create<double>('c', {1}, {0.0})});
|
|
|
|
|
|
|
|
nd4j::ops::dynamic_partition op;
|
|
|
|
int numPartition = 4;
|
|
|
|
auto result = op.execute({&x, &y}, {}, {numPartition});
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
ASSERT_EQ(result->size(), numPartition); // result has the same size as given param 4
|
|
|
|
|
|
|
|
for (int e = 0; e < result->size(); e++) {
|
|
|
|
auto output = result->at(e);
|
|
|
|
nd4j_printf("%i: ", e);
|
|
|
|
output->printShapeInfo("Output shape> ");
|
|
|
|
exp[e].printShapeInfo("Expected shape> ");
|
|
|
|
output->printIndexedBuffer("Output data> ");
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp[e].isSameShape(output));
|
|
|
|
ASSERT_TRUE(exp[e].equalsTo(output));
|
|
|
|
}
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(DeclarableOpsTests5, DynamicPartition_3) {
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto x = NDArrayFactory::create<double>('c', {2, 4}, {0.1f, -1.f, 5.2f, 4.3f, -1.f, 7.4f, 0.0f, -2.2f});
|
Merge master to upstream (#7945)
* Shugeo strided slice zeros (#14)
* Modified strided_slice op to properly work with empty-like shapes.
* Fixed test for reduce_mean with empty-like input.
* [WIP] Last merge (#15)
* correct logsoftmax looss (#2)
* Small SameDiff listener fix (#4)
* Various fixes (#6)
* #7839 Fix for asXMatrix and tests
* #7866 EmbeddingSequenceLayer dtype fix + test
* #7856 SameDiff save/load stream methods
* #7859 RegressionEvaluation rank 4 fix + tests + axis configuration
* EvaluationBinary 3d/4d
* More evaluation 3d/4d tests
* #7847 Evaluation empty checks
* Small test ifx
* #7848 Fix median edge case
* Improve DL4J samediff layer tests
* [WIP] FastText wrapper implemented (#8)
* FastText implemented
* Some fixes
* Fix shapes for wordsNearest
* Validation of input vectors
* Fixes
* Fixed test
* Thread tagged
* Some tweaks
* setContextClassLoader for DeallocatorServiceThread
* Numpy format tests (#1)
* Various fixes (#11)
* #7852 SameDiff gather fix
* #7892 SameDiff placeholder to constant conversion
* #7890 validate input rank for MLN/CG init methods
* Fix broken permute shape calculation
* Permute and gather fixes
* Tests
* #7850 LogSumExp fix + test
* Handful of test fixes
* Empty arrays with non-scalar shapes (#10)
* minor rearrangements for lambdas
* empty tensors with non-scalar shapes
* numpy empty tensors with non-scalar shapes
* few more empty tweaks
* Small fixes
* conv3d signature update
* micro fix in batchnorm mkldnn
* Import fixes
* Fix
* MKL-DNN update
* Small fill fix
* fill with empty input + test
* Fixes
* Small error improvement
* Fix
* one special test
* couple of fixes for lstm
* Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone
* Fixes
* FP16
* Unsigned
* BFloat16
* Fill op - empty tweaks
* - couple of fixes for empty arrays construction
- stack updated
* strided slice fix
* one transform test
* provide method for reducing shapeInfo in case of input array is empty
* Fixed reduceAlongDimensions to use empty input properly.
* couple of broadcast tests
* couple of tests broadcast tests + tweak to make them pass
* add check of non-empty to methods producing sub-arrays
* Fixed reshapeC with zeros in shape.
* complete empty check in reduce_... legacy ops
* Concat and cumsum/prod
* Tweak to empty shape inference on import
* add empty check to the rest of reduce legacy ops
* one more test
* correct typo in evalReduceShapeInfoEmpty
* Added tests for reduce_* ops to tests with zero shapes.
* few more tests for empty reductions
* Fixed strided_slice op with empty case and tests.
* one more empty reduction test
* Fixed strided_slice test.
* add empty check to NDArray::reshapei
* infOrMax
* empty min/max with infinity tests
* made unstack working correctly with empty arrays
* few IndexReduce tests + tweaks for empty shapes
* add test for empty concat
* few tests fixed
* Validation fix for reductions on empty shapes
* Reverse fix
* Reduction shape calc fixes
* SameDiff.generateOutputVariable: don't use shape function to determine number of outputs
* Range fix
* - NDArray constructor updated for scalars/empty arrays
- few tests fixed
* More fixes
* Empty creator fixes
* concat fix
* concat fix
* TF import tests: allow 'both all NaN' and 'both all inf' to pass
* Slice, zero fraction, and reshape fixes
* transpose, gather
* Zero fraction
* scalar cast fix
* Empty reduction axis support
* few more tests fixed
* Fixed input checks conforming with TF for concat op and tests.
* few tests fixed
* matmul scalar shape fix
* Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats.
* broadcast bool fix
* few more tests
* few more tests
* correct evalReduceShapeInfoEmpty
* argmax/argmin + tests
* one more empty edge case + one more test
* argmax/argmin/realdiv_bp tweaks
* empty reshape test + fix
* Helper fixes
* Small fixes
* Gather test fix
* Gather test fix
* Small fixes
* reduce scalar zero values
* scalar mean workaround
* Remove debug code
* along dim mean workaround
* one more test
* - equalsTo() tweak for empty arrays
- one more test
* broadcast tweaks
* [WIP] Fixing outstanding issues for NLP (#9)
* Avoid using not-inited objects
* Test fixed.
* Redundant method avoided for models like FastText
* KMeans++ implementation
* KMeans++ implementation
* Disable parallel execution
* KMeans++
* Tests
* Dev branch merge (#16)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Fix some issues on master (#17)
* Fix DataVec test issue
* Fix issue with dl4j SameDiff output layer
* Dtype fix for lambda layers
* #7912 BertIterator dtype fix (use float32 not global default)
* [WIP] Next set of CUDA stuff (#7)
New CUDA implementations and improvements
* bad file
* Dev branch master merge (#23)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Compatibility of deserialization (#18)
Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
* SameDiff: add activation gradient checking support for debugging (#19)
* SameDiff gradient checker: first pass on activation gradient checks
* Fixes + tests for activation gradient checking
* Javadoc
* [WIP] Some nd4j data type corrections (#20)
* Adjust data type
* Set correct Data type.
* Size of proper data type.
* fix averaged cpu load (#22)
* SameDiff ops, TF import and fixes (#24)
* CheckNumerics tests + fixes + misc fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fake quant
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* FakeQuantWithMinMaxArgs
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* CheckNumerics fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix libnd4j ALL_INTS and ALL_FLOATS declaration (uint and bfloat types)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Small fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Javadoc
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Exception tweak
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix for out of scope stack allocated var use
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Ignores
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Ignore for known failing test (already logged issue)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Merge upstream to fork (#25)
* Add thousand-separator commas to TotalParams (#7915)
* Add thousand-separator commas to TotalParams
The number of parameters can be quite large, and it would help the reading of the summary printout to have the TotalParams column & values at the bottom have thousand-separator-commas in them.
* Add thousand-separator commas to MultiLayerNetwork
Corresponding change to MultiLayerNetwork
Signed-off-by: Jxtps Jxtps <jxtps435@gmail.com>
* Update contributing and issue/PR templates (#7934)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix link to AdaDelta paper (#7942)
Fix link to AdaDelta paper hosted on matthewzeiler.com
Signed-off-by: Jxtps
* Fixes, and ignores for known/logged failing issues (#7943)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* SameDiff + DL4J/SameDiff: Multiple fixes (#28)
* #7919 HDF5 attribute buffer length fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7909 Arbiter constructor exception ux improvements
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7925 RNN output layer length checks
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7939 Add listener for validating inputs are not incorrectly modified
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7939 Integrate NonInplaceValidationListener into tests
* #7844 DL4J SameDiff fixes for variable minibatch size
* DL4J SameDiff fixes - ensure gradient for input placeholder is available
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Tweaks to ExternalErrorsFunction - use placeholders, make more robust
* Another fix
* More fixes
* More SameDiff/DL4J fixes
* Scope out scalar array creation in BaseScalarOp
* Remove debug code
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] Final dev branch merge (#29)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Compatibility of deserialization (#18)
Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
* SameDiff: add activation gradient checking support for debugging (#19)
* SameDiff gradient checker: first pass on activation gradient checks
* Fixes + tests for activation gradient checking
* Javadoc
* [WIP] Some nd4j data type corrections (#20)
* Adjust data type
* Set correct Data type.
* Size of proper data type.
* fix averaged cpu load (#22)
* [WIP] Multiple dataset iterators (#27)
* Splitting dataset into arbitrary number
* Fixes
* Multiple split of iterator
* Test
* Test
* Some fixes
* signature change
* one more tweak
Signed-off-by: raver119 <raver119@gmail.com>
* one more test for sequential use of DataSetIteratorSplitter
Signed-off-by: raver119 <raver119@gmail.com>
* Fixes
* Fixes
* one more test for Alexander
Signed-off-by: raver119 <raver119@gmail.com>
* Some fixes
* Some fixes
* one more test for Alexander
Signed-off-by: raver119 <raver119@gmail.com>
* minor test fix
Signed-off-by: raver119 <raver119@gmail.com>
* Some fixes
* Some fixes
* couple of assertions tweaked
Signed-off-by: raver119 <raver119@gmail.com>
* MDS splitter test :/
Signed-off-by: raver119 <raver119@gmail.com>
* Minor refactoring
* Multi dataset
* Some fixes
* More tests
* Small number of test fixes/improvements (failures on CI) (#31)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] More CUDA stuff (#26)
* initial commit
Signed-off-by: raver119 <raver119@gmail.com>
* LRN BP CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* less memory
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed bug with crop_and_resize op helper.
* get rid of unnecessary index-calculation dunction
Signed-off-by: Yurii <yurii@skymind.io>
* Fixed sort with nth_element cuda-based helper.
* Refactored nth_element.
* Refactored nth_element op and tests.
* Modified usage of dim array with sortTad routine.
* Refactored main routine of helper for non_max_image_suppression op.
* non_max_image_suppression op helper with cuda kernel implementation. Initial revision.
* fix vol2col cuda kernel
* meh
Signed-off-by: raver119 <raver119@gmail.com>
* topK concept
Signed-off-by: raver119 <raver119@gmail.com>
* unsorted topK with scanWitdh of 1
Signed-off-by: raver119 <raver119@gmail.com>
* correct vol2col tests
* sorted/unsorted topK
Signed-off-by: raver119 <raver119@gmail.com>
* implementation and fixing col2im/col2vol
* Corrected usage flags with input/output with reverse op.
* dup is const now
Signed-off-by: raver119 <raver119@gmail.com>
* percentile op
Signed-off-by: raver119 <raver119@gmail.com>
* group tests for mapool2d
Signed-off-by: Yurii <yurii@skymind.io>
* special test for george
Signed-off-by: raver119 <raver119@gmail.com>
* less threads for sortTad
Signed-off-by: raver119 <raver119@gmail.com>
* provide conv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* remove auther in sort tad kernel code
Signed-off-by: Yurii <yurii@skymind.io>
* provide depthwise_conv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* - max_pooling_with_argmax
- null check for special use
Signed-off-by: raver119 <raver119@gmail.com>
* dts cuda
Signed-off-by: raver119 <raver119@gmail.com>
* provide sconv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* std cuda
Signed-off-by: raver119 <raver119@gmail.com>
* Refactored non_max_suppression op to conform TF implementation.
* Improved suppression helper.
* provide pooling3d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* minor lstm rearrangements
Signed-off-by: raver119 <raver119@gmail.com>
* more of minor lstm rearrangements
Signed-off-by: raver119 <raver119@gmail.com>
* (bi)dynamic_rnn
Signed-off-by: raver119 <raver119@gmail.com>
* templates init order
Signed-off-by: raver119 <raver119@gmail.com>
* Refactored non_max_suppression op.
* Added cuda kernel for non_max_suppression.
* CPU sort by key/value
Signed-off-by: raver119 <raver119@gmail.com>
* CPU sort TAD by key/value
Signed-off-by: raver119 <raver119@gmail.com>
* CPU sort TAD by key/value tests
Signed-off-by: raver119 <raver119@gmail.com>
* Eliminate compiler error with cuda implementation.
* - repaired gradCheck in cuda
- provide conv2d_bp for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* missed signature
Signed-off-by: raver119 <raver119@gmail.com>
* provide depthwise_conv2d_bp for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* Implementation of lup helper with cuda kernel. Initial commit.
* further work on backprops for convolutions
Signed-off-by: Yurii <yurii@skymind.io>
* CUDA linear sort by key/val
Signed-off-by: raver119 <raver119@gmail.com>
* CUDA tad sort by key/val
Signed-off-by: raver119 <raver119@gmail.com>
* start providing of backprop for pooling2d/3d
Signed-off-by: Yurii <yurii@skymind.io>
* Added atomicAdd for bool datatype.
* dynamic partition concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic partition concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic partition scalar CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* important comment
Signed-off-by: raver119 <raver119@gmail.com>
* fix pooling2d/3d backprop helpers
Signed-off-by: Yurii <yurii@skymind.io>
* Added non-linear test with dynamic_partition.
* Improved test for dynamic_partition.
* dynamic_partition TAD concept
Signed-off-by: raver119 <raver119@gmail.com>
* - dynamic_partition TAD CUDA impl
- dynamic_partition TAD CPU fix
Signed-off-by: raver119 <raver119@gmail.com>
* - rewrite cpu code for usampling2d/3d
- write cuda code for usampling2d/3d
Signed-off-by: Yurii <yurii@skymind.io>
* dynamic_stitch CUDA vector case
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic_stitch CUDA TAD case concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic_stitch CUDA TAD case impl
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for dynamic_stitch 3D-4D cases.
* minor tests tweaks
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed type check for dynamic stitch.
* min/max bp
Signed-off-by: raver119 <raver119@gmail.com>
* rewrite code for upsampling2d/3d cpu
Signed-off-by: Yurii <yurii@skymind.io>
* reduce min/max/norm_max bp
Signed-off-by: raver119 <raver119@gmail.com>
* lup implementation. Additional enhancements.
* provide code for upsamling2d/3d backprop
Signed-off-by: Yurii <yurii@skymind.io>
* weightedCrossEntropyWithLogits
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed template math atomicMul for 64bit ints.
* Refactored dynamic_partition_bp op.
* inverseBroadcast fix
Signed-off-by: raver119 <raver119@gmail.com>
* DynamicPartitionBP test datatype fixed.
* - nd4j_atomicMul Windows fix
- cpu/NDArrayLambda.hpp excluded from CUDA
Signed-off-by: raver119 <raver119@gmail.com>
2019-06-27 17:37:04 +02:00
|
|
|
auto y = NDArrayFactory::create<Nd4jLong>('c', {2, 4}, {0, 1, 0, 2, 0, 2, 3, 0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
std::vector<NDArray> exp( {NDArrayFactory::create<double>({0.1f, 5.2f, -1.f, -2.2f}),
|
|
|
|
NDArrayFactory::create<double>('c', {1}, {-1.f}),
|
|
|
|
NDArrayFactory::create<double>({4.3f, 7.4f}),
|
|
|
|
NDArrayFactory::create<double>('c', {1}, {0.0f})});
|
|
|
|
|
|
|
|
nd4j::ops::dynamic_partition op;
|
|
|
|
int numPartition = 4;
|
|
|
|
auto result = op.execute({&x, &y}, {}, {numPartition});
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
ASSERT_EQ(result->size(), numPartition); // result has the same size as given param 4
|
|
|
|
|
|
|
|
for (int e = 0; e < result->size(); e++) {
|
|
|
|
auto output = result->at(e);
|
|
|
|
if (output)
|
|
|
|
{
|
|
|
|
// output->printShapeInfo("Output shape> ");
|
|
|
|
// exp[e].printShapeInfo("Expected shape> ");
|
|
|
|
// output->printIndexedBuffer("Output data> ");
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(exp[e].isSameShape(output));
|
|
|
|
ASSERT_TRUE(exp[e].equalsTo(output));
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
ASSERT_TRUE(exp[e].lengthOf() == 0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
2019-08-28 14:38:57 +02:00
|
|
|
TEST_F(DeclarableOpsTests5, DynamicStitch_empty_1) {
|
|
|
|
auto i0 = NDArrayFactory::create<int>('c', {2}, {2, 3});
|
|
|
|
auto i1 = NDArrayFactory::empty<int>();
|
|
|
|
auto i2 = NDArrayFactory::create<int>('c', {2}, {0, 1});
|
|
|
|
|
|
|
|
auto d0 = NDArrayFactory::create<double>('c', {2, 5}, {0.085571885,0.7937801,0.65908563,0.55552566,0.15962744,0.7787856,0.80119777,0.72437465,0.23089433,0.72714126});
|
|
|
|
auto d1 = NDArrayFactory::empty<double>();
|
|
|
|
auto d2 = NDArrayFactory::create<double>('c', {2, 5}, {0.94414854,0.5956861,0.8668989,0.3502196,0.5100082,0.061725974,0.6621324,0.034165382,0.32576954,0.51917326});
|
|
|
|
|
|
|
|
nd4j::ops::dynamic_stitch op;
|
|
|
|
auto result = op.execute({&i0, &i1, &i2, &d0, &d1, &d2}, {}, {});
|
|
|
|
ASSERT_EQ(Status::OK(), result->status());
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(DeclarableOpsTests5, DynamicStitch_empty_2) {
|
|
|
|
auto i0 = NDArrayFactory::create<int>('c', {2}, {2, 3});
|
|
|
|
auto i1 = NDArrayFactory::create<int>('c', {0});
|
|
|
|
auto i2 = NDArrayFactory::create<int>('c', {2}, {0, 1});
|
|
|
|
|
|
|
|
auto d0 = NDArrayFactory::create<double>('c', {2, 5}, {0.085571885,0.7937801,0.65908563,0.55552566,0.15962744,0.7787856,0.80119777,0.72437465,0.23089433,0.72714126});
|
|
|
|
auto d1 = NDArrayFactory::create<double>('c', {0, 5});
|
|
|
|
auto d2 = NDArrayFactory::create<double>('c', {2, 5}, {0.94414854,0.5956861,0.8668989,0.3502196,0.5100082,0.061725974,0.6621324,0.034165382,0.32576954,0.51917326});
|
|
|
|
|
|
|
|
nd4j::ops::dynamic_stitch op;
|
|
|
|
auto result = op.execute({&i0, &i1, &i2, &d0, &d1, &d2}, {}, {});
|
|
|
|
ASSERT_EQ(Status::OK(), result->status());
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
TEST_F(DeclarableOpsTests5, DynamicStitch_1) {
|
2019-06-15 13:34:34 +02:00
|
|
|
|
Merge master to upstream (#7945)
* Shugeo strided slice zeros (#14)
* Modified strided_slice op to properly work with empty-like shapes.
* Fixed test for reduce_mean with empty-like input.
* [WIP] Last merge (#15)
* correct logsoftmax looss (#2)
* Small SameDiff listener fix (#4)
* Various fixes (#6)
* #7839 Fix for asXMatrix and tests
* #7866 EmbeddingSequenceLayer dtype fix + test
* #7856 SameDiff save/load stream methods
* #7859 RegressionEvaluation rank 4 fix + tests + axis configuration
* EvaluationBinary 3d/4d
* More evaluation 3d/4d tests
* #7847 Evaluation empty checks
* Small test ifx
* #7848 Fix median edge case
* Improve DL4J samediff layer tests
* [WIP] FastText wrapper implemented (#8)
* FastText implemented
* Some fixes
* Fix shapes for wordsNearest
* Validation of input vectors
* Fixes
* Fixed test
* Thread tagged
* Some tweaks
* setContextClassLoader for DeallocatorServiceThread
* Numpy format tests (#1)
* Various fixes (#11)
* #7852 SameDiff gather fix
* #7892 SameDiff placeholder to constant conversion
* #7890 validate input rank for MLN/CG init methods
* Fix broken permute shape calculation
* Permute and gather fixes
* Tests
* #7850 LogSumExp fix + test
* Handful of test fixes
* Empty arrays with non-scalar shapes (#10)
* minor rearrangements for lambdas
* empty tensors with non-scalar shapes
* numpy empty tensors with non-scalar shapes
* few more empty tweaks
* Small fixes
* conv3d signature update
* micro fix in batchnorm mkldnn
* Import fixes
* Fix
* MKL-DNN update
* Small fill fix
* fill with empty input + test
* Fixes
* Small error improvement
* Fix
* one special test
* couple of fixes for lstm
* Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone
* Fixes
* FP16
* Unsigned
* BFloat16
* Fill op - empty tweaks
* - couple of fixes for empty arrays construction
- stack updated
* strided slice fix
* one transform test
* provide method for reducing shapeInfo in case of input array is empty
* Fixed reduceAlongDimensions to use empty input properly.
* couple of broadcast tests
* couple of tests broadcast tests + tweak to make them pass
* add check of non-empty to methods producing sub-arrays
* Fixed reshapeC with zeros in shape.
* complete empty check in reduce_... legacy ops
* Concat and cumsum/prod
* Tweak to empty shape inference on import
* add empty check to the rest of reduce legacy ops
* one more test
* correct typo in evalReduceShapeInfoEmpty
* Added tests for reduce_* ops to tests with zero shapes.
* few more tests for empty reductions
* Fixed strided_slice op with empty case and tests.
* one more empty reduction test
* Fixed strided_slice test.
* add empty check to NDArray::reshapei
* infOrMax
* empty min/max with infinity tests
* made unstack working correctly with empty arrays
* few IndexReduce tests + tweaks for empty shapes
* add test for empty concat
* few tests fixed
* Validation fix for reductions on empty shapes
* Reverse fix
* Reduction shape calc fixes
* SameDiff.generateOutputVariable: don't use shape function to determine number of outputs
* Range fix
* - NDArray constructor updated for scalars/empty arrays
- few tests fixed
* More fixes
* Empty creator fixes
* concat fix
* concat fix
* TF import tests: allow 'both all NaN' and 'both all inf' to pass
* Slice, zero fraction, and reshape fixes
* transpose, gather
* Zero fraction
* scalar cast fix
* Empty reduction axis support
* few more tests fixed
* Fixed input checks conforming with TF for concat op and tests.
* few tests fixed
* matmul scalar shape fix
* Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats.
* broadcast bool fix
* few more tests
* few more tests
* correct evalReduceShapeInfoEmpty
* argmax/argmin + tests
* one more empty edge case + one more test
* argmax/argmin/realdiv_bp tweaks
* empty reshape test + fix
* Helper fixes
* Small fixes
* Gather test fix
* Gather test fix
* Small fixes
* reduce scalar zero values
* scalar mean workaround
* Remove debug code
* along dim mean workaround
* one more test
* - equalsTo() tweak for empty arrays
- one more test
* broadcast tweaks
* [WIP] Fixing outstanding issues for NLP (#9)
* Avoid using not-inited objects
* Test fixed.
* Redundant method avoided for models like FastText
* KMeans++ implementation
* KMeans++ implementation
* Disable parallel execution
* KMeans++
* Tests
* Dev branch merge (#16)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Fix some issues on master (#17)
* Fix DataVec test issue
* Fix issue with dl4j SameDiff output layer
* Dtype fix for lambda layers
* #7912 BertIterator dtype fix (use float32 not global default)
* [WIP] Next set of CUDA stuff (#7)
New CUDA implementations and improvements
* bad file
* Dev branch master merge (#23)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Compatibility of deserialization (#18)
Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
* SameDiff: add activation gradient checking support for debugging (#19)
* SameDiff gradient checker: first pass on activation gradient checks
* Fixes + tests for activation gradient checking
* Javadoc
* [WIP] Some nd4j data type corrections (#20)
* Adjust data type
* Set correct Data type.
* Size of proper data type.
* fix averaged cpu load (#22)
* SameDiff ops, TF import and fixes (#24)
* CheckNumerics tests + fixes + misc fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fake quant
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* FakeQuantWithMinMaxArgs
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* CheckNumerics fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix libnd4j ALL_INTS and ALL_FLOATS declaration (uint and bfloat types)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Small fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Javadoc
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Exception tweak
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix for out of scope stack allocated var use
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Ignores
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Ignore for known failing test (already logged issue)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Merge upstream to fork (#25)
* Add thousand-separator commas to TotalParams (#7915)
* Add thousand-separator commas to TotalParams
The number of parameters can be quite large, and it would help the reading of the summary printout to have the TotalParams column & values at the bottom have thousand-separator-commas in them.
* Add thousand-separator commas to MultiLayerNetwork
Corresponding change to MultiLayerNetwork
Signed-off-by: Jxtps Jxtps <jxtps435@gmail.com>
* Update contributing and issue/PR templates (#7934)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix link to AdaDelta paper (#7942)
Fix link to AdaDelta paper hosted on matthewzeiler.com
Signed-off-by: Jxtps
* Fixes, and ignores for known/logged failing issues (#7943)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* SameDiff + DL4J/SameDiff: Multiple fixes (#28)
* #7919 HDF5 attribute buffer length fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7909 Arbiter constructor exception ux improvements
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7925 RNN output layer length checks
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7939 Add listener for validating inputs are not incorrectly modified
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7939 Integrate NonInplaceValidationListener into tests
* #7844 DL4J SameDiff fixes for variable minibatch size
* DL4J SameDiff fixes - ensure gradient for input placeholder is available
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Tweaks to ExternalErrorsFunction - use placeholders, make more robust
* Another fix
* More fixes
* More SameDiff/DL4J fixes
* Scope out scalar array creation in BaseScalarOp
* Remove debug code
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] Final dev branch merge (#29)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Compatibility of deserialization (#18)
Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
* SameDiff: add activation gradient checking support for debugging (#19)
* SameDiff gradient checker: first pass on activation gradient checks
* Fixes + tests for activation gradient checking
* Javadoc
* [WIP] Some nd4j data type corrections (#20)
* Adjust data type
* Set correct Data type.
* Size of proper data type.
* fix averaged cpu load (#22)
* [WIP] Multiple dataset iterators (#27)
* Splitting dataset into arbitrary number
* Fixes
* Multiple split of iterator
* Test
* Test
* Some fixes
* signature change
* one more tweak
Signed-off-by: raver119 <raver119@gmail.com>
* one more test for sequential use of DataSetIteratorSplitter
Signed-off-by: raver119 <raver119@gmail.com>
* Fixes
* Fixes
* one more test for Alexander
Signed-off-by: raver119 <raver119@gmail.com>
* Some fixes
* Some fixes
* one more test for Alexander
Signed-off-by: raver119 <raver119@gmail.com>
* minor test fix
Signed-off-by: raver119 <raver119@gmail.com>
* Some fixes
* Some fixes
* couple of assertions tweaked
Signed-off-by: raver119 <raver119@gmail.com>
* MDS splitter test :/
Signed-off-by: raver119 <raver119@gmail.com>
* Minor refactoring
* Multi dataset
* Some fixes
* More tests
* Small number of test fixes/improvements (failures on CI) (#31)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] More CUDA stuff (#26)
* initial commit
Signed-off-by: raver119 <raver119@gmail.com>
* LRN BP CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* less memory
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed bug with crop_and_resize op helper.
* get rid of unnecessary index-calculation dunction
Signed-off-by: Yurii <yurii@skymind.io>
* Fixed sort with nth_element cuda-based helper.
* Refactored nth_element.
* Refactored nth_element op and tests.
* Modified usage of dim array with sortTad routine.
* Refactored main routine of helper for non_max_image_suppression op.
* non_max_image_suppression op helper with cuda kernel implementation. Initial revision.
* fix vol2col cuda kernel
* meh
Signed-off-by: raver119 <raver119@gmail.com>
* topK concept
Signed-off-by: raver119 <raver119@gmail.com>
* unsorted topK with scanWitdh of 1
Signed-off-by: raver119 <raver119@gmail.com>
* correct vol2col tests
* sorted/unsorted topK
Signed-off-by: raver119 <raver119@gmail.com>
* implementation and fixing col2im/col2vol
* Corrected usage flags with input/output with reverse op.
* dup is const now
Signed-off-by: raver119 <raver119@gmail.com>
* percentile op
Signed-off-by: raver119 <raver119@gmail.com>
* group tests for mapool2d
Signed-off-by: Yurii <yurii@skymind.io>
* special test for george
Signed-off-by: raver119 <raver119@gmail.com>
* less threads for sortTad
Signed-off-by: raver119 <raver119@gmail.com>
* provide conv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* remove auther in sort tad kernel code
Signed-off-by: Yurii <yurii@skymind.io>
* provide depthwise_conv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* - max_pooling_with_argmax
- null check for special use
Signed-off-by: raver119 <raver119@gmail.com>
* dts cuda
Signed-off-by: raver119 <raver119@gmail.com>
* provide sconv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* std cuda
Signed-off-by: raver119 <raver119@gmail.com>
* Refactored non_max_suppression op to conform TF implementation.
* Improved suppression helper.
* provide pooling3d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* minor lstm rearrangements
Signed-off-by: raver119 <raver119@gmail.com>
* more of minor lstm rearrangements
Signed-off-by: raver119 <raver119@gmail.com>
* (bi)dynamic_rnn
Signed-off-by: raver119 <raver119@gmail.com>
* templates init order
Signed-off-by: raver119 <raver119@gmail.com>
* Refactored non_max_suppression op.
* Added cuda kernel for non_max_suppression.
* CPU sort by key/value
Signed-off-by: raver119 <raver119@gmail.com>
* CPU sort TAD by key/value
Signed-off-by: raver119 <raver119@gmail.com>
* CPU sort TAD by key/value tests
Signed-off-by: raver119 <raver119@gmail.com>
* Eliminate compiler error with cuda implementation.
* - repaired gradCheck in cuda
- provide conv2d_bp for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* missed signature
Signed-off-by: raver119 <raver119@gmail.com>
* provide depthwise_conv2d_bp for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* Implementation of lup helper with cuda kernel. Initial commit.
* further work on backprops for convolutions
Signed-off-by: Yurii <yurii@skymind.io>
* CUDA linear sort by key/val
Signed-off-by: raver119 <raver119@gmail.com>
* CUDA tad sort by key/val
Signed-off-by: raver119 <raver119@gmail.com>
* start providing of backprop for pooling2d/3d
Signed-off-by: Yurii <yurii@skymind.io>
* Added atomicAdd for bool datatype.
* dynamic partition concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic partition concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic partition scalar CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* important comment
Signed-off-by: raver119 <raver119@gmail.com>
* fix pooling2d/3d backprop helpers
Signed-off-by: Yurii <yurii@skymind.io>
* Added non-linear test with dynamic_partition.
* Improved test for dynamic_partition.
* dynamic_partition TAD concept
Signed-off-by: raver119 <raver119@gmail.com>
* - dynamic_partition TAD CUDA impl
- dynamic_partition TAD CPU fix
Signed-off-by: raver119 <raver119@gmail.com>
* - rewrite cpu code for usampling2d/3d
- write cuda code for usampling2d/3d
Signed-off-by: Yurii <yurii@skymind.io>
* dynamic_stitch CUDA vector case
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic_stitch CUDA TAD case concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic_stitch CUDA TAD case impl
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for dynamic_stitch 3D-4D cases.
* minor tests tweaks
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed type check for dynamic stitch.
* min/max bp
Signed-off-by: raver119 <raver119@gmail.com>
* rewrite code for upsampling2d/3d cpu
Signed-off-by: Yurii <yurii@skymind.io>
* reduce min/max/norm_max bp
Signed-off-by: raver119 <raver119@gmail.com>
* lup implementation. Additional enhancements.
* provide code for upsamling2d/3d backprop
Signed-off-by: Yurii <yurii@skymind.io>
* weightedCrossEntropyWithLogits
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed template math atomicMul for 64bit ints.
* Refactored dynamic_partition_bp op.
* inverseBroadcast fix
Signed-off-by: raver119 <raver119@gmail.com>
* DynamicPartitionBP test datatype fixed.
* - nd4j_atomicMul Windows fix
- cpu/NDArrayLambda.hpp excluded from CUDA
Signed-off-by: raver119 <raver119@gmail.com>
2019-06-27 17:37:04 +02:00
|
|
|
auto x1 = NDArrayFactory::create<int>({1, 3, 5, 0});
|
|
|
|
auto x2 = NDArrayFactory::create<int>({2, 4});
|
2019-06-06 14:21:15 +02:00
|
|
|
auto y2 = NDArrayFactory::create<double>({-1., -1.});
|
|
|
|
auto y1 = NDArrayFactory::create<double>({0.1f, 5.2f, 4.3f, 7.4f});
|
|
|
|
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto exp = NDArrayFactory::create<double>({7.4f, 0.1f, -1.f, 5.2f, -1.f, 4.3f});
|
|
|
|
|
|
|
|
nd4j::ops::dynamic_stitch op;
|
|
|
|
auto result = op.execute({&x1, &x2, &y1, &y2}, {}, {});
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto output = result->at(0);
|
|
|
|
|
|
|
|
// output->printShapeInfo("Output shape> ");
|
|
|
|
// exp.printShapeInfo("Expected shape> ");
|
Merge master to upstream (#7945)
* Shugeo strided slice zeros (#14)
* Modified strided_slice op to properly work with empty-like shapes.
* Fixed test for reduce_mean with empty-like input.
* [WIP] Last merge (#15)
* correct logsoftmax looss (#2)
* Small SameDiff listener fix (#4)
* Various fixes (#6)
* #7839 Fix for asXMatrix and tests
* #7866 EmbeddingSequenceLayer dtype fix + test
* #7856 SameDiff save/load stream methods
* #7859 RegressionEvaluation rank 4 fix + tests + axis configuration
* EvaluationBinary 3d/4d
* More evaluation 3d/4d tests
* #7847 Evaluation empty checks
* Small test ifx
* #7848 Fix median edge case
* Improve DL4J samediff layer tests
* [WIP] FastText wrapper implemented (#8)
* FastText implemented
* Some fixes
* Fix shapes for wordsNearest
* Validation of input vectors
* Fixes
* Fixed test
* Thread tagged
* Some tweaks
* setContextClassLoader for DeallocatorServiceThread
* Numpy format tests (#1)
* Various fixes (#11)
* #7852 SameDiff gather fix
* #7892 SameDiff placeholder to constant conversion
* #7890 validate input rank for MLN/CG init methods
* Fix broken permute shape calculation
* Permute and gather fixes
* Tests
* #7850 LogSumExp fix + test
* Handful of test fixes
* Empty arrays with non-scalar shapes (#10)
* minor rearrangements for lambdas
* empty tensors with non-scalar shapes
* numpy empty tensors with non-scalar shapes
* few more empty tweaks
* Small fixes
* conv3d signature update
* micro fix in batchnorm mkldnn
* Import fixes
* Fix
* MKL-DNN update
* Small fill fix
* fill with empty input + test
* Fixes
* Small error improvement
* Fix
* one special test
* couple of fixes for lstm
* Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone
* Fixes
* FP16
* Unsigned
* BFloat16
* Fill op - empty tweaks
* - couple of fixes for empty arrays construction
- stack updated
* strided slice fix
* one transform test
* provide method for reducing shapeInfo in case of input array is empty
* Fixed reduceAlongDimensions to use empty input properly.
* couple of broadcast tests
* couple of tests broadcast tests + tweak to make them pass
* add check of non-empty to methods producing sub-arrays
* Fixed reshapeC with zeros in shape.
* complete empty check in reduce_... legacy ops
* Concat and cumsum/prod
* Tweak to empty shape inference on import
* add empty check to the rest of reduce legacy ops
* one more test
* correct typo in evalReduceShapeInfoEmpty
* Added tests for reduce_* ops to tests with zero shapes.
* few more tests for empty reductions
* Fixed strided_slice op with empty case and tests.
* one more empty reduction test
* Fixed strided_slice test.
* add empty check to NDArray::reshapei
* infOrMax
* empty min/max with infinity tests
* made unstack working correctly with empty arrays
* few IndexReduce tests + tweaks for empty shapes
* add test for empty concat
* few tests fixed
* Validation fix for reductions on empty shapes
* Reverse fix
* Reduction shape calc fixes
* SameDiff.generateOutputVariable: don't use shape function to determine number of outputs
* Range fix
* - NDArray constructor updated for scalars/empty arrays
- few tests fixed
* More fixes
* Empty creator fixes
* concat fix
* concat fix
* TF import tests: allow 'both all NaN' and 'both all inf' to pass
* Slice, zero fraction, and reshape fixes
* transpose, gather
* Zero fraction
* scalar cast fix
* Empty reduction axis support
* few more tests fixed
* Fixed input checks conforming with TF for concat op and tests.
* few tests fixed
* matmul scalar shape fix
* Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats.
* broadcast bool fix
* few more tests
* few more tests
* correct evalReduceShapeInfoEmpty
* argmax/argmin + tests
* one more empty edge case + one more test
* argmax/argmin/realdiv_bp tweaks
* empty reshape test + fix
* Helper fixes
* Small fixes
* Gather test fix
* Gather test fix
* Small fixes
* reduce scalar zero values
* scalar mean workaround
* Remove debug code
* along dim mean workaround
* one more test
* - equalsTo() tweak for empty arrays
- one more test
* broadcast tweaks
* [WIP] Fixing outstanding issues for NLP (#9)
* Avoid using not-inited objects
* Test fixed.
* Redundant method avoided for models like FastText
* KMeans++ implementation
* KMeans++ implementation
* Disable parallel execution
* KMeans++
* Tests
* Dev branch merge (#16)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Fix some issues on master (#17)
* Fix DataVec test issue
* Fix issue with dl4j SameDiff output layer
* Dtype fix for lambda layers
* #7912 BertIterator dtype fix (use float32 not global default)
* [WIP] Next set of CUDA stuff (#7)
New CUDA implementations and improvements
* bad file
* Dev branch master merge (#23)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Compatibility of deserialization (#18)
Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
* SameDiff: add activation gradient checking support for debugging (#19)
* SameDiff gradient checker: first pass on activation gradient checks
* Fixes + tests for activation gradient checking
* Javadoc
* [WIP] Some nd4j data type corrections (#20)
* Adjust data type
* Set correct Data type.
* Size of proper data type.
* fix averaged cpu load (#22)
* SameDiff ops, TF import and fixes (#24)
* CheckNumerics tests + fixes + misc fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fake quant
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* FakeQuantWithMinMaxArgs
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* CheckNumerics fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix libnd4j ALL_INTS and ALL_FLOATS declaration (uint and bfloat types)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Small fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Javadoc
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Exception tweak
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix for out of scope stack allocated var use
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Ignores
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Ignore for known failing test (already logged issue)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Merge upstream to fork (#25)
* Add thousand-separator commas to TotalParams (#7915)
* Add thousand-separator commas to TotalParams
The number of parameters can be quite large, and it would help the reading of the summary printout to have the TotalParams column & values at the bottom have thousand-separator-commas in them.
* Add thousand-separator commas to MultiLayerNetwork
Corresponding change to MultiLayerNetwork
Signed-off-by: Jxtps Jxtps <jxtps435@gmail.com>
* Update contributing and issue/PR templates (#7934)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix link to AdaDelta paper (#7942)
Fix link to AdaDelta paper hosted on matthewzeiler.com
Signed-off-by: Jxtps
* Fixes, and ignores for known/logged failing issues (#7943)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* SameDiff + DL4J/SameDiff: Multiple fixes (#28)
* #7919 HDF5 attribute buffer length fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7909 Arbiter constructor exception ux improvements
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7925 RNN output layer length checks
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7939 Add listener for validating inputs are not incorrectly modified
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7939 Integrate NonInplaceValidationListener into tests
* #7844 DL4J SameDiff fixes for variable minibatch size
* DL4J SameDiff fixes - ensure gradient for input placeholder is available
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Tweaks to ExternalErrorsFunction - use placeholders, make more robust
* Another fix
* More fixes
* More SameDiff/DL4J fixes
* Scope out scalar array creation in BaseScalarOp
* Remove debug code
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] Final dev branch merge (#29)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Compatibility of deserialization (#18)
Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
* SameDiff: add activation gradient checking support for debugging (#19)
* SameDiff gradient checker: first pass on activation gradient checks
* Fixes + tests for activation gradient checking
* Javadoc
* [WIP] Some nd4j data type corrections (#20)
* Adjust data type
* Set correct Data type.
* Size of proper data type.
* fix averaged cpu load (#22)
* [WIP] Multiple dataset iterators (#27)
* Splitting dataset into arbitrary number
* Fixes
* Multiple split of iterator
* Test
* Test
* Some fixes
* signature change
* one more tweak
Signed-off-by: raver119 <raver119@gmail.com>
* one more test for sequential use of DataSetIteratorSplitter
Signed-off-by: raver119 <raver119@gmail.com>
* Fixes
* Fixes
* one more test for Alexander
Signed-off-by: raver119 <raver119@gmail.com>
* Some fixes
* Some fixes
* one more test for Alexander
Signed-off-by: raver119 <raver119@gmail.com>
* minor test fix
Signed-off-by: raver119 <raver119@gmail.com>
* Some fixes
* Some fixes
* couple of assertions tweaked
Signed-off-by: raver119 <raver119@gmail.com>
* MDS splitter test :/
Signed-off-by: raver119 <raver119@gmail.com>
* Minor refactoring
* Multi dataset
* Some fixes
* More tests
* Small number of test fixes/improvements (failures on CI) (#31)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] More CUDA stuff (#26)
* initial commit
Signed-off-by: raver119 <raver119@gmail.com>
* LRN BP CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* less memory
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed bug with crop_and_resize op helper.
* get rid of unnecessary index-calculation dunction
Signed-off-by: Yurii <yurii@skymind.io>
* Fixed sort with nth_element cuda-based helper.
* Refactored nth_element.
* Refactored nth_element op and tests.
* Modified usage of dim array with sortTad routine.
* Refactored main routine of helper for non_max_image_suppression op.
* non_max_image_suppression op helper with cuda kernel implementation. Initial revision.
* fix vol2col cuda kernel
* meh
Signed-off-by: raver119 <raver119@gmail.com>
* topK concept
Signed-off-by: raver119 <raver119@gmail.com>
* unsorted topK with scanWitdh of 1
Signed-off-by: raver119 <raver119@gmail.com>
* correct vol2col tests
* sorted/unsorted topK
Signed-off-by: raver119 <raver119@gmail.com>
* implementation and fixing col2im/col2vol
* Corrected usage flags with input/output with reverse op.
* dup is const now
Signed-off-by: raver119 <raver119@gmail.com>
* percentile op
Signed-off-by: raver119 <raver119@gmail.com>
* group tests for mapool2d
Signed-off-by: Yurii <yurii@skymind.io>
* special test for george
Signed-off-by: raver119 <raver119@gmail.com>
* less threads for sortTad
Signed-off-by: raver119 <raver119@gmail.com>
* provide conv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* remove auther in sort tad kernel code
Signed-off-by: Yurii <yurii@skymind.io>
* provide depthwise_conv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* - max_pooling_with_argmax
- null check for special use
Signed-off-by: raver119 <raver119@gmail.com>
* dts cuda
Signed-off-by: raver119 <raver119@gmail.com>
* provide sconv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* std cuda
Signed-off-by: raver119 <raver119@gmail.com>
* Refactored non_max_suppression op to conform TF implementation.
* Improved suppression helper.
* provide pooling3d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* minor lstm rearrangements
Signed-off-by: raver119 <raver119@gmail.com>
* more of minor lstm rearrangements
Signed-off-by: raver119 <raver119@gmail.com>
* (bi)dynamic_rnn
Signed-off-by: raver119 <raver119@gmail.com>
* templates init order
Signed-off-by: raver119 <raver119@gmail.com>
* Refactored non_max_suppression op.
* Added cuda kernel for non_max_suppression.
* CPU sort by key/value
Signed-off-by: raver119 <raver119@gmail.com>
* CPU sort TAD by key/value
Signed-off-by: raver119 <raver119@gmail.com>
* CPU sort TAD by key/value tests
Signed-off-by: raver119 <raver119@gmail.com>
* Eliminate compiler error with cuda implementation.
* - repaired gradCheck in cuda
- provide conv2d_bp for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* missed signature
Signed-off-by: raver119 <raver119@gmail.com>
* provide depthwise_conv2d_bp for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* Implementation of lup helper with cuda kernel. Initial commit.
* further work on backprops for convolutions
Signed-off-by: Yurii <yurii@skymind.io>
* CUDA linear sort by key/val
Signed-off-by: raver119 <raver119@gmail.com>
* CUDA tad sort by key/val
Signed-off-by: raver119 <raver119@gmail.com>
* start providing of backprop for pooling2d/3d
Signed-off-by: Yurii <yurii@skymind.io>
* Added atomicAdd for bool datatype.
* dynamic partition concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic partition concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic partition scalar CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* important comment
Signed-off-by: raver119 <raver119@gmail.com>
* fix pooling2d/3d backprop helpers
Signed-off-by: Yurii <yurii@skymind.io>
* Added non-linear test with dynamic_partition.
* Improved test for dynamic_partition.
* dynamic_partition TAD concept
Signed-off-by: raver119 <raver119@gmail.com>
* - dynamic_partition TAD CUDA impl
- dynamic_partition TAD CPU fix
Signed-off-by: raver119 <raver119@gmail.com>
* - rewrite cpu code for usampling2d/3d
- write cuda code for usampling2d/3d
Signed-off-by: Yurii <yurii@skymind.io>
* dynamic_stitch CUDA vector case
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic_stitch CUDA TAD case concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic_stitch CUDA TAD case impl
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for dynamic_stitch 3D-4D cases.
* minor tests tweaks
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed type check for dynamic stitch.
* min/max bp
Signed-off-by: raver119 <raver119@gmail.com>
* rewrite code for upsampling2d/3d cpu
Signed-off-by: Yurii <yurii@skymind.io>
* reduce min/max/norm_max bp
Signed-off-by: raver119 <raver119@gmail.com>
* lup implementation. Additional enhancements.
* provide code for upsamling2d/3d backprop
Signed-off-by: Yurii <yurii@skymind.io>
* weightedCrossEntropyWithLogits
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed template math atomicMul for 64bit ints.
* Refactored dynamic_partition_bp op.
* inverseBroadcast fix
Signed-off-by: raver119 <raver119@gmail.com>
* DynamicPartitionBP test datatype fixed.
* - nd4j_atomicMul Windows fix
- cpu/NDArrayLambda.hpp excluded from CUDA
Signed-off-by: raver119 <raver119@gmail.com>
2019-06-27 17:37:04 +02:00
|
|
|
output->printIndexedBuffer("O data");
|
|
|
|
exp.printIndexedBuffer("E data");
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(exp.isSameShape(output));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(output));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
TEST_F(DeclarableOpsTests5, DynamicStitch_2) {
|
2019-06-15 13:34:34 +02:00
|
|
|
|
Merge master to upstream (#7945)
* Shugeo strided slice zeros (#14)
* Modified strided_slice op to properly work with empty-like shapes.
* Fixed test for reduce_mean with empty-like input.
* [WIP] Last merge (#15)
* correct logsoftmax looss (#2)
* Small SameDiff listener fix (#4)
* Various fixes (#6)
* #7839 Fix for asXMatrix and tests
* #7866 EmbeddingSequenceLayer dtype fix + test
* #7856 SameDiff save/load stream methods
* #7859 RegressionEvaluation rank 4 fix + tests + axis configuration
* EvaluationBinary 3d/4d
* More evaluation 3d/4d tests
* #7847 Evaluation empty checks
* Small test ifx
* #7848 Fix median edge case
* Improve DL4J samediff layer tests
* [WIP] FastText wrapper implemented (#8)
* FastText implemented
* Some fixes
* Fix shapes for wordsNearest
* Validation of input vectors
* Fixes
* Fixed test
* Thread tagged
* Some tweaks
* setContextClassLoader for DeallocatorServiceThread
* Numpy format tests (#1)
* Various fixes (#11)
* #7852 SameDiff gather fix
* #7892 SameDiff placeholder to constant conversion
* #7890 validate input rank for MLN/CG init methods
* Fix broken permute shape calculation
* Permute and gather fixes
* Tests
* #7850 LogSumExp fix + test
* Handful of test fixes
* Empty arrays with non-scalar shapes (#10)
* minor rearrangements for lambdas
* empty tensors with non-scalar shapes
* numpy empty tensors with non-scalar shapes
* few more empty tweaks
* Small fixes
* conv3d signature update
* micro fix in batchnorm mkldnn
* Import fixes
* Fix
* MKL-DNN update
* Small fill fix
* fill with empty input + test
* Fixes
* Small error improvement
* Fix
* one special test
* couple of fixes for lstm
* Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone
* Fixes
* FP16
* Unsigned
* BFloat16
* Fill op - empty tweaks
* - couple of fixes for empty arrays construction
- stack updated
* strided slice fix
* one transform test
* provide method for reducing shapeInfo in case of input array is empty
* Fixed reduceAlongDimensions to use empty input properly.
* couple of broadcast tests
* couple of tests broadcast tests + tweak to make them pass
* add check of non-empty to methods producing sub-arrays
* Fixed reshapeC with zeros in shape.
* complete empty check in reduce_... legacy ops
* Concat and cumsum/prod
* Tweak to empty shape inference on import
* add empty check to the rest of reduce legacy ops
* one more test
* correct typo in evalReduceShapeInfoEmpty
* Added tests for reduce_* ops to tests with zero shapes.
* few more tests for empty reductions
* Fixed strided_slice op with empty case and tests.
* one more empty reduction test
* Fixed strided_slice test.
* add empty check to NDArray::reshapei
* infOrMax
* empty min/max with infinity tests
* made unstack working correctly with empty arrays
* few IndexReduce tests + tweaks for empty shapes
* add test for empty concat
* few tests fixed
* Validation fix for reductions on empty shapes
* Reverse fix
* Reduction shape calc fixes
* SameDiff.generateOutputVariable: don't use shape function to determine number of outputs
* Range fix
* - NDArray constructor updated for scalars/empty arrays
- few tests fixed
* More fixes
* Empty creator fixes
* concat fix
* concat fix
* TF import tests: allow 'both all NaN' and 'both all inf' to pass
* Slice, zero fraction, and reshape fixes
* transpose, gather
* Zero fraction
* scalar cast fix
* Empty reduction axis support
* few more tests fixed
* Fixed input checks conforming with TF for concat op and tests.
* few tests fixed
* matmul scalar shape fix
* Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats.
* broadcast bool fix
* few more tests
* few more tests
* correct evalReduceShapeInfoEmpty
* argmax/argmin + tests
* one more empty edge case + one more test
* argmax/argmin/realdiv_bp tweaks
* empty reshape test + fix
* Helper fixes
* Small fixes
* Gather test fix
* Gather test fix
* Small fixes
* reduce scalar zero values
* scalar mean workaround
* Remove debug code
* along dim mean workaround
* one more test
* - equalsTo() tweak for empty arrays
- one more test
* broadcast tweaks
* [WIP] Fixing outstanding issues for NLP (#9)
* Avoid using not-inited objects
* Test fixed.
* Redundant method avoided for models like FastText
* KMeans++ implementation
* KMeans++ implementation
* Disable parallel execution
* KMeans++
* Tests
* Dev branch merge (#16)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Fix some issues on master (#17)
* Fix DataVec test issue
* Fix issue with dl4j SameDiff output layer
* Dtype fix for lambda layers
* #7912 BertIterator dtype fix (use float32 not global default)
* [WIP] Next set of CUDA stuff (#7)
New CUDA implementations and improvements
* bad file
* Dev branch master merge (#23)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Compatibility of deserialization (#18)
Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
* SameDiff: add activation gradient checking support for debugging (#19)
* SameDiff gradient checker: first pass on activation gradient checks
* Fixes + tests for activation gradient checking
* Javadoc
* [WIP] Some nd4j data type corrections (#20)
* Adjust data type
* Set correct Data type.
* Size of proper data type.
* fix averaged cpu load (#22)
* SameDiff ops, TF import and fixes (#24)
* CheckNumerics tests + fixes + misc fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fake quant
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* FakeQuantWithMinMaxArgs
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* CheckNumerics fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix libnd4j ALL_INTS and ALL_FLOATS declaration (uint and bfloat types)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Small fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Javadoc
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Exception tweak
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix for out of scope stack allocated var use
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Ignores
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Ignore for known failing test (already logged issue)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Merge upstream to fork (#25)
* Add thousand-separator commas to TotalParams (#7915)
* Add thousand-separator commas to TotalParams
The number of parameters can be quite large, and it would help the reading of the summary printout to have the TotalParams column & values at the bottom have thousand-separator-commas in them.
* Add thousand-separator commas to MultiLayerNetwork
Corresponding change to MultiLayerNetwork
Signed-off-by: Jxtps Jxtps <jxtps435@gmail.com>
* Update contributing and issue/PR templates (#7934)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix link to AdaDelta paper (#7942)
Fix link to AdaDelta paper hosted on matthewzeiler.com
Signed-off-by: Jxtps
* Fixes, and ignores for known/logged failing issues (#7943)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* SameDiff + DL4J/SameDiff: Multiple fixes (#28)
* #7919 HDF5 attribute buffer length fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7909 Arbiter constructor exception ux improvements
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7925 RNN output layer length checks
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7939 Add listener for validating inputs are not incorrectly modified
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7939 Integrate NonInplaceValidationListener into tests
* #7844 DL4J SameDiff fixes for variable minibatch size
* DL4J SameDiff fixes - ensure gradient for input placeholder is available
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Tweaks to ExternalErrorsFunction - use placeholders, make more robust
* Another fix
* More fixes
* More SameDiff/DL4J fixes
* Scope out scalar array creation in BaseScalarOp
* Remove debug code
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] Final dev branch merge (#29)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Compatibility of deserialization (#18)
Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
* SameDiff: add activation gradient checking support for debugging (#19)
* SameDiff gradient checker: first pass on activation gradient checks
* Fixes + tests for activation gradient checking
* Javadoc
* [WIP] Some nd4j data type corrections (#20)
* Adjust data type
* Set correct Data type.
* Size of proper data type.
* fix averaged cpu load (#22)
* [WIP] Multiple dataset iterators (#27)
* Splitting dataset into arbitrary number
* Fixes
* Multiple split of iterator
* Test
* Test
* Some fixes
* signature change
* one more tweak
Signed-off-by: raver119 <raver119@gmail.com>
* one more test for sequential use of DataSetIteratorSplitter
Signed-off-by: raver119 <raver119@gmail.com>
* Fixes
* Fixes
* one more test for Alexander
Signed-off-by: raver119 <raver119@gmail.com>
* Some fixes
* Some fixes
* one more test for Alexander
Signed-off-by: raver119 <raver119@gmail.com>
* minor test fix
Signed-off-by: raver119 <raver119@gmail.com>
* Some fixes
* Some fixes
* couple of assertions tweaked
Signed-off-by: raver119 <raver119@gmail.com>
* MDS splitter test :/
Signed-off-by: raver119 <raver119@gmail.com>
* Minor refactoring
* Multi dataset
* Some fixes
* More tests
* Small number of test fixes/improvements (failures on CI) (#31)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] More CUDA stuff (#26)
* initial commit
Signed-off-by: raver119 <raver119@gmail.com>
* LRN BP CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* less memory
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed bug with crop_and_resize op helper.
* get rid of unnecessary index-calculation dunction
Signed-off-by: Yurii <yurii@skymind.io>
* Fixed sort with nth_element cuda-based helper.
* Refactored nth_element.
* Refactored nth_element op and tests.
* Modified usage of dim array with sortTad routine.
* Refactored main routine of helper for non_max_image_suppression op.
* non_max_image_suppression op helper with cuda kernel implementation. Initial revision.
* fix vol2col cuda kernel
* meh
Signed-off-by: raver119 <raver119@gmail.com>
* topK concept
Signed-off-by: raver119 <raver119@gmail.com>
* unsorted topK with scanWitdh of 1
Signed-off-by: raver119 <raver119@gmail.com>
* correct vol2col tests
* sorted/unsorted topK
Signed-off-by: raver119 <raver119@gmail.com>
* implementation and fixing col2im/col2vol
* Corrected usage flags with input/output with reverse op.
* dup is const now
Signed-off-by: raver119 <raver119@gmail.com>
* percentile op
Signed-off-by: raver119 <raver119@gmail.com>
* group tests for mapool2d
Signed-off-by: Yurii <yurii@skymind.io>
* special test for george
Signed-off-by: raver119 <raver119@gmail.com>
* less threads for sortTad
Signed-off-by: raver119 <raver119@gmail.com>
* provide conv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* remove auther in sort tad kernel code
Signed-off-by: Yurii <yurii@skymind.io>
* provide depthwise_conv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* - max_pooling_with_argmax
- null check for special use
Signed-off-by: raver119 <raver119@gmail.com>
* dts cuda
Signed-off-by: raver119 <raver119@gmail.com>
* provide sconv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* std cuda
Signed-off-by: raver119 <raver119@gmail.com>
* Refactored non_max_suppression op to conform TF implementation.
* Improved suppression helper.
* provide pooling3d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* minor lstm rearrangements
Signed-off-by: raver119 <raver119@gmail.com>
* more of minor lstm rearrangements
Signed-off-by: raver119 <raver119@gmail.com>
* (bi)dynamic_rnn
Signed-off-by: raver119 <raver119@gmail.com>
* templates init order
Signed-off-by: raver119 <raver119@gmail.com>
* Refactored non_max_suppression op.
* Added cuda kernel for non_max_suppression.
* CPU sort by key/value
Signed-off-by: raver119 <raver119@gmail.com>
* CPU sort TAD by key/value
Signed-off-by: raver119 <raver119@gmail.com>
* CPU sort TAD by key/value tests
Signed-off-by: raver119 <raver119@gmail.com>
* Eliminate compiler error with cuda implementation.
* - repaired gradCheck in cuda
- provide conv2d_bp for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* missed signature
Signed-off-by: raver119 <raver119@gmail.com>
* provide depthwise_conv2d_bp for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* Implementation of lup helper with cuda kernel. Initial commit.
* further work on backprops for convolutions
Signed-off-by: Yurii <yurii@skymind.io>
* CUDA linear sort by key/val
Signed-off-by: raver119 <raver119@gmail.com>
* CUDA tad sort by key/val
Signed-off-by: raver119 <raver119@gmail.com>
* start providing of backprop for pooling2d/3d
Signed-off-by: Yurii <yurii@skymind.io>
* Added atomicAdd for bool datatype.
* dynamic partition concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic partition concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic partition scalar CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* important comment
Signed-off-by: raver119 <raver119@gmail.com>
* fix pooling2d/3d backprop helpers
Signed-off-by: Yurii <yurii@skymind.io>
* Added non-linear test with dynamic_partition.
* Improved test for dynamic_partition.
* dynamic_partition TAD concept
Signed-off-by: raver119 <raver119@gmail.com>
* - dynamic_partition TAD CUDA impl
- dynamic_partition TAD CPU fix
Signed-off-by: raver119 <raver119@gmail.com>
* - rewrite cpu code for usampling2d/3d
- write cuda code for usampling2d/3d
Signed-off-by: Yurii <yurii@skymind.io>
* dynamic_stitch CUDA vector case
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic_stitch CUDA TAD case concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic_stitch CUDA TAD case impl
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for dynamic_stitch 3D-4D cases.
* minor tests tweaks
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed type check for dynamic stitch.
* min/max bp
Signed-off-by: raver119 <raver119@gmail.com>
* rewrite code for upsampling2d/3d cpu
Signed-off-by: Yurii <yurii@skymind.io>
* reduce min/max/norm_max bp
Signed-off-by: raver119 <raver119@gmail.com>
* lup implementation. Additional enhancements.
* provide code for upsamling2d/3d backprop
Signed-off-by: Yurii <yurii@skymind.io>
* weightedCrossEntropyWithLogits
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed template math atomicMul for 64bit ints.
* Refactored dynamic_partition_bp op.
* inverseBroadcast fix
Signed-off-by: raver119 <raver119@gmail.com>
* DynamicPartitionBP test datatype fixed.
* - nd4j_atomicMul Windows fix
- cpu/NDArrayLambda.hpp excluded from CUDA
Signed-off-by: raver119 <raver119@gmail.com>
2019-06-27 17:37:04 +02:00
|
|
|
auto x1 = NDArrayFactory::create<int>({1, 3});
|
|
|
|
auto x2 = NDArrayFactory::create<int>({5, 0, 2, 4});
|
2019-06-06 14:21:15 +02:00
|
|
|
auto y1 = NDArrayFactory::create<double>({-1.f, -1.f});
|
|
|
|
auto y2 = NDArrayFactory::create<double>({0.1f, 5.2f, 4.3f, 7.4f});
|
|
|
|
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto exp = NDArrayFactory::create<double>({5.2f, -1.f, 4.3f, -1.f, 7.4f, 0.1f});
|
|
|
|
|
|
|
|
nd4j::ops::dynamic_stitch op;
|
|
|
|
auto result = op.execute({&x1, &x2, &y1, &y2}, {}, {});
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto output = result->at(0);
|
|
|
|
|
|
|
|
// output->printShapeInfo("Output shape> ");
|
|
|
|
// exp.printShapeInfo("Expected shape> ");
|
|
|
|
// output->printIndexedBuffer("Output data> ");
|
2019-06-15 13:34:34 +02:00
|
|
|
// exp.printIndexedBuffer("Expected res>");
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(exp.isSameShape(output));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(output));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, fusedBatchNorm_test1) {
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto x = NDArrayFactory::create<double>('c', {2, 2, 3, 4});
|
|
|
|
x.linspace(1);
|
|
|
|
auto scale = NDArrayFactory::create<double>('c', {4});
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
scale = 0.5;
|
|
|
|
auto offset = NDArrayFactory::create<double>('c', {4});
|
|
|
|
offset = 2.;
|
|
|
|
auto expY = NDArrayFactory::create<double>('c', {2, 2, 3, 4}, {1.20337462, 1.20337462, 1.20337462, 1.20337462, 1.34821558, 1.34821558, 1.34821558, 1.34821558, 1.49305654, 1.49305654, 1.49305654, 1.49305654, 1.63789749, 1.63789749, 1.63789749, 1.63789749, 1.78273857, 1.78273857, 1.78273857, 1.78273857, 1.92757952, 1.92757952, 1.92757952, 1.92757952, 2.0724206 , 2.0724206 , 2.0724206 , 2.0724206 , 2.21726155, 2.21726155, 2.21726155, 2.21726155, 2.36210251, 2.36210251, 2.36210251, 2.36210251, 2.50694346, 2.50694346, 2.50694346, 2.50694346, 2.65178442, 2.65178442, 2.65178442, 2.65178442, 2.79662538, 2.79662538, 2.79662538, 2.79662538});
|
|
|
|
auto expBatchMean = NDArrayFactory::create<double>('c', {4}, {23., 24., 25., 26.});
|
|
|
|
auto expBatchVar = NDArrayFactory::create<double>('c', {4}, {208.00001526, 208.00001526, 208.00001526, 208.00001526});
|
|
|
|
|
|
|
|
|
|
|
|
nd4j::ops::fused_batch_norm op;
|
|
|
|
auto results = op.execute({&x, &scale, &offset}, {}, {0,1});
|
|
|
|
auto y = results->at(0);
|
|
|
|
auto batchMean = results->at(1);
|
|
|
|
auto batchVar = results->at(2);
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(expY.isSameShape(y));
|
|
|
|
ASSERT_TRUE(expBatchMean.isSameShape(batchMean));
|
|
|
|
ASSERT_TRUE(expBatchVar.isSameShape(batchVar));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, fusedBatchNorm_test2) {
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto x = NDArrayFactory::create<double>('c', {2, 2, 3, 4});
|
|
|
|
x.linspace(1);
|
|
|
|
|
|
|
|
auto scale = NDArrayFactory::create<double>('c', {4});
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
scale = 0.5;
|
|
|
|
auto offset = NDArrayFactory::create<double>('c', {4});
|
|
|
|
offset = 2.;
|
|
|
|
auto expY = NDArrayFactory::create<double>('c', {2, 2, 3, 4}, {1.20347691, 1.20347691, 1.20347691, 1.20347691, 1.34829926, 1.34829926, 1.34829926, 1.34829926, 1.49312162, 1.49312162, 1.49312162, 1.49312162, 1.6379441 , 1.6379441 , 1.6379441 , 1.6379441 , 1.78276646, 1.78276646, 1.78276646, 1.78276646, 1.92758882, 1.92758882, 1.92758882, 1.92758882, 2.0724113 , 2.0724113 , 2.0724113 , 2.0724113 , 2.21723366, 2.21723366, 2.21723366, 2.21723366, 2.36205602, 2.36205602, 2.36205602, 2.36205602, 2.50687838, 2.50687838, 2.50687838, 2.50687838, 2.65170074, 2.65170074, 2.65170074, 2.65170074, 2.79652309, 2.79652309, 2.79652309, 2.79652309});
|
|
|
|
auto expBatchMean = NDArrayFactory::create<double>('c', {4}, {23., 24., 25., 26.});
|
|
|
|
auto expBatchVar = NDArrayFactory::create<double>('c', {4}, {208.00001526, 208.00001526, 208.00001526, 208.00001526});
|
|
|
|
|
|
|
|
nd4j::ops::fused_batch_norm op;
|
|
|
|
auto results = op.execute({&x, &scale, &offset}, {0.05}, {0,1});
|
|
|
|
auto y = results->at(0);
|
|
|
|
auto batchMean = results->at(1);
|
|
|
|
auto batchVar = results->at(2);
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(expY.isSameShape(y));
|
|
|
|
ASSERT_TRUE(expBatchMean.isSameShape(batchMean));
|
|
|
|
ASSERT_TRUE(expBatchVar.isSameShape(batchVar));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, fusedBatchNorm_test3) {
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto x = NDArrayFactory::create<double>('c', {2, 4, 2, 3});
|
|
|
|
x.linspace(1);
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto scale = NDArrayFactory::create<double>('c', {4});
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
scale = 0.5;
|
|
|
|
auto offset = NDArrayFactory::create<double>('c', {4});
|
|
|
|
offset = 2.;
|
|
|
|
auto expY = NDArrayFactory::create<double>('c', {2, 4, 2, 3}, {1.20337462, 1.20337462, 1.20337462, 1.20337462, 1.34821558, 1.34821558, 1.34821558, 1.34821558, 1.49305654, 1.49305654, 1.49305654, 1.49305654, 1.63789749, 1.63789749, 1.63789749, 1.63789749, 1.78273857, 1.78273857, 1.78273857, 1.78273857, 1.92757952, 1.92757952, 1.92757952, 1.92757952, 2.0724206 , 2.0724206 , 2.0724206 , 2.0724206 , 2.21726155, 2.21726155, 2.21726155, 2.21726155, 2.36210251, 2.36210251, 2.36210251, 2.36210251, 2.50694346, 2.50694346, 2.50694346, 2.50694346, 2.65178442, 2.65178442, 2.65178442, 2.65178442, 2.79662538, 2.79662538, 2.79662538, 2.79662538});
|
|
|
|
auto expBatchMean = NDArrayFactory::create<double>('c', {4}, {23., 24., 25., 26.});
|
|
|
|
auto expBatchVar = NDArrayFactory::create<double>('c', {4}, {208.00001526, 208.00001526, 208.00001526, 208.00001526});
|
|
|
|
|
|
|
|
nd4j::ops::fused_batch_norm op;
|
|
|
|
auto results = op.execute({&x, &scale, &offset}, {}, {1,1});
|
|
|
|
auto y = results->at(0);
|
|
|
|
auto batchMean = results->at(1);
|
|
|
|
auto batchVar = results->at(2);
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(expY.isSameShape(y));
|
|
|
|
ASSERT_TRUE(expBatchMean.isSameShape(batchMean));
|
|
|
|
ASSERT_TRUE(expBatchVar.isSameShape(batchVar));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, fusedBatchNorm_test4) {
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto x = NDArrayFactory::create<double>('c', {2, 2, 3, 4});
|
|
|
|
x.linspace(1);
|
|
|
|
std::vector<Nd4jLong> shape = {4};
|
|
|
|
auto scale = NDArrayFactory::create<double>('c', shape);
|
|
|
|
auto offset = NDArrayFactory::create<double>('c', shape);
|
|
|
|
auto mean = NDArrayFactory::create<double>('c', shape);
|
|
|
|
auto variance = NDArrayFactory::create<double>('c', shape);
|
2019-06-15 13:34:34 +02:00
|
|
|
|
|
|
|
scale = 0.5;
|
2019-06-06 14:21:15 +02:00
|
|
|
offset = 2.;
|
|
|
|
mean = 25.;
|
|
|
|
variance = 5.;
|
|
|
|
|
|
|
|
auto expY = NDArrayFactory::create<double>('c', {2, 2, 3, 4}, {-3.36602688, -3.14244223, -2.91885757, -2.6952734 , -2.47168875, -2.24810457, -2.02451992, -1.80093551, -1.57735109, -1.35376668, -1.13018227, -0.90659785, -0.68301344, -0.45942879, -0.23584437, -0.01225996, 0.21132445, 0.43490887, 0.65849328, 0.88207781, 1.10566223, 1.32924664, 1.55283117, 1.77641559, 2. , 2.22358441, 2.44716883, 2.67075348, 2.89433765, 3.11792231, 3.34150672, 3.56509113, 3.78867555, 4.01225996, 4.23584461, 4.45942879, 4.68301344, 4.90659809, 5.13018227, 5.35376644, 5.57735109, 5.80093575, 6.02451992, 6.24810457, 6.47168875, 6.6952734 , 6.91885757, 7.14244223});
|
|
|
|
auto expBatchMean = NDArrayFactory::create<double>('c', shape, {0., 0., 0., 0.});
|
|
|
|
auto expBatchVar = NDArrayFactory::create<double>('c', shape, {0., 0., 0., 0.});
|
|
|
|
|
|
|
|
|
|
|
|
nd4j::ops::fused_batch_norm op;
|
|
|
|
auto results = op.execute({&x, &scale, &offset}, {}, {0,1});
|
|
|
|
auto y = results->at(0);
|
|
|
|
auto batchMean = results->at(1);
|
|
|
|
auto batchVar = results->at(2);
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(expY.isSameShape(y));
|
|
|
|
ASSERT_TRUE(expBatchMean.isSameShape(batchMean));
|
|
|
|
ASSERT_TRUE(expBatchVar.isSameShape(batchVar));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, fusedBatchNorm_test5) {
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto x = NDArrayFactory::create<double>('c', {2, 2, 3, 4});
|
|
|
|
x.linspace(1);
|
|
|
|
std::vector<Nd4jLong> shape = {4};
|
|
|
|
auto scale = NDArrayFactory::create<double>('c', shape);
|
|
|
|
auto offset = NDArrayFactory::create<double>('c', shape);
|
|
|
|
auto mean = NDArrayFactory::create<double>('c', shape);
|
|
|
|
auto variance = NDArrayFactory::create<double>('c', shape);
|
2019-06-15 13:34:34 +02:00
|
|
|
|
|
|
|
scale = 0.5;
|
2019-06-06 14:21:15 +02:00
|
|
|
offset = 2.;
|
|
|
|
mean = 25.;
|
|
|
|
variance = 5.;
|
|
|
|
|
|
|
|
auto expY = NDArrayFactory::create<double>('c', {2, 2, 3, 4}, {-3.33992958e+00, -3.11743259e+00, -2.89493513e+00, -2.67243814e+00, -2.44994116e+00, -2.22744417e+00, -2.00494719e+00, -1.78244996e+00, -1.55995297e+00, -1.33745599e+00, -1.11495876e+00, -8.92461777e-01, -6.69964790e-01, -4.47467566e-01, -2.24970579e-01, -2.47359276e-03, 2.20023513e-01, 4.42520618e-01, 6.65017605e-01, 8.87514710e-01, 1.11001182e+00, 1.33250880e+00, 1.55500591e+00, 1.77750289e+00, 2.00000000e+00, 2.22249699e+00, 2.44499421e+00, 2.66749120e+00, 2.88998818e+00, 3.11248541e+00, 3.33498240e+00, 3.55747938e+00, 3.77997637e+00, 4.00247383e+00, 4.22497082e+00, 4.44746780e+00, 4.66996479e+00, 4.89246178e+00, 5.11495876e+00, 5.33745575e+00, 5.55995274e+00, 5.78244972e+00, 6.00494719e+00, 6.22744417e+00, 6.44994116e+00, 6.67243814e+00, 6.89493513e+00, 7.11743259e+00});
|
|
|
|
auto expBatchMean = NDArrayFactory::create<double>('c', shape, {0., 0., 0., 0.});
|
|
|
|
auto expBatchVar = NDArrayFactory::create<double>('c', shape, {0., 0., 0., 0.});
|
|
|
|
|
|
|
|
|
|
|
|
nd4j::ops::fused_batch_norm op;
|
|
|
|
auto results = op.execute({&x, &scale, &offset}, {0.05}, {0,1});
|
|
|
|
auto y = results->at(0);
|
|
|
|
auto batchMean = results->at(1);
|
|
|
|
auto batchVar = results->at(2);
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(expY.isSameShape(y));
|
|
|
|
ASSERT_TRUE(expBatchMean.isSameShape(batchMean));
|
|
|
|
ASSERT_TRUE(expBatchVar.isSameShape(batchVar));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, confusion_matrix_test1) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<Nd4jLong>('c', {1, 3}, {1, 2, 4});
|
|
|
|
auto predictions = NDArrayFactory::create<Nd4jLong>('c', {1, 3}, {2, 2, 4});
|
|
|
|
auto expected = NDArrayFactory::create<Nd4jLong>('c', {5, 5}, {0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1});
|
|
|
|
|
|
|
|
nd4j::ops::confusion_matrix op;
|
|
|
|
auto results = op.execute({&labels, &predictions}, {}, {});
|
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
|
|
|
|
auto output = results->at(0);
|
|
|
|
output->printIndexedBuffer("CM output");
|
|
|
|
expected.printIndexedBuffer("CM expected");
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(output));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(output));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, confusion_matrix_test2) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<Nd4jLong>('c', {1, 2}, {1, 2});
|
|
|
|
auto predictions = NDArrayFactory::create<Nd4jLong>('c', {1, 2}, {0, 2});
|
|
|
|
auto expected = NDArrayFactory::create<Nd4jLong>('c', {3, 3}, {0, 0, 0, 1, 0, 0, 0, 0, 1});
|
|
|
|
|
|
|
|
nd4j::ops::confusion_matrix op;
|
|
|
|
auto results = op.execute({&labels, &predictions}, {}, {3});
|
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
|
|
|
|
auto output = results->at(0);
|
|
|
|
output->printIndexedBuffer("CM2 output");
|
|
|
|
expected.printIndexedBuffer("CM2 expected");
|
|
|
|
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(output));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(output));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, confusion_matrix_test3) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<Nd4jLong>('c', {1, 2}, {1, 2});
|
|
|
|
auto predictions = NDArrayFactory::create<Nd4jLong>('c', {1, 2}, {0, 2});
|
|
|
|
auto weights = NDArrayFactory::create<Nd4jLong>('c', {1, 2}, {100, 200});
|
|
|
|
auto expected = NDArrayFactory::create<Nd4jLong>('c', {3, 3}, {0, 0, 0, 100, 0, 0, 0, 0, 200});
|
|
|
|
|
|
|
|
nd4j::ops::confusion_matrix op;
|
|
|
|
auto results = op.execute({&labels, &predictions, &weights}, {}, {3});
|
|
|
|
auto output = results->at(0);
|
|
|
|
output->printIndexedBuffer("CM3");
|
|
|
|
|
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(expected.isSameShape(output));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(output));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, confusion_matrix_test4) {
|
|
|
|
|
2019-08-28 10:14:22 +02:00
|
|
|
auto labels = NDArrayFactory::create<int>('c', {1, 2}, {1, 2});
|
|
|
|
auto predictions = NDArrayFactory::create<int>('c', {1, 2}, {0, 2});
|
2019-06-06 14:21:15 +02:00
|
|
|
auto weights = NDArrayFactory::create<double>('c', {1, 2}, {100, 200});
|
|
|
|
auto expected = NDArrayFactory::create<double>('c', {3, 3}, {0, 0, 0, 100, 0, 0, 0, 0, 200});
|
|
|
|
|
|
|
|
nd4j::ops::confusion_matrix op;
|
|
|
|
auto results = op.execute({&labels, &predictions, &weights}, {}, {3, nd4j::DataType::DOUBLE});
|
|
|
|
auto output = results->at(0);
|
|
|
|
output->printIndexedBuffer("CM4");
|
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(expected.isSameShape(output));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(output));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, ZeroFraction_1) {
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto x = NDArrayFactory::create<double>('c', {3, 4, 2}, {0, 20, 30, 0, 50, 0,
|
2019-06-15 13:34:34 +02:00
|
|
|
70, 0, 90, 0, 11, 12,
|
|
|
|
13, 14, 15, 16, 17, 18,
|
2019-06-06 14:21:15 +02:00
|
|
|
19, 0, 21, 22, 23, 24});
|
|
|
|
|
|
|
|
nd4j::ops::zero_fraction op;
|
|
|
|
auto res = op.execute({&x}, {}, {});
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), res->status());
|
|
|
|
ASSERT_TRUE(res->at(0)->isScalar());
|
|
|
|
ASSERT_EQ(res->at(0)->e<double>(0), 0.25);
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
delete res;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, ZeroFraction_2) {
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto x = NDArrayFactory::create<double>('c', {2, 2, 2}, {5.5, 0., 0.3, 5.5, 8.6, 0., 0., 0.4});
|
|
|
|
|
|
|
|
nd4j::ops::zero_fraction op;
|
|
|
|
auto res = op.execute({&x}, {}, {});
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), res->status());
|
|
|
|
ASSERT_TRUE(res->at(0)->isScalar());
|
|
|
|
ASSERT_EQ(res->at(0)->e<double>(0), 0.375);
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
delete res;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, ZeroFraction_3) {
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto x = NDArrayFactory::create<double>('f', {2, 2, 2}, {5.5, 0., 0.3, 5.5, 8.6, 0., 0., 0.4});
|
|
|
|
|
|
|
|
nd4j::ops::zero_fraction op;
|
|
|
|
auto res = op.execute({&x}, {}, {});
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), res->status());
|
|
|
|
ASSERT_TRUE(res->at(0)->isScalar());
|
|
|
|
ASSERT_EQ(res->at(0)->e<double>(0), 0.375);
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
delete res;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, XWPlusB_1) {
|
|
|
|
|
|
|
|
auto x = NDArrayFactory::create<double>('c', {2,3}, { 1.f, 11.f, 3.f, 14.f, 5.f, 6.f});
|
|
|
|
auto y = NDArrayFactory::create<double>('c', {3,2}, { 11.f, 3.f, 4.f, 5.f, 6.f, 2.f});
|
|
|
|
auto b = NDArrayFactory::create<double>({100.f, 200.f});
|
|
|
|
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', {2,2}, {173.f, 264.f, 310.f, 279.f});
|
|
|
|
|
|
|
|
nd4j::ops::xw_plus_b op;
|
|
|
|
auto result = op.execute({&x, &y, &b}, {}, {});
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto output = result->at(0);
|
|
|
|
|
|
|
|
output->printShapeInfo("Output shape> ");
|
|
|
|
exp.printShapeInfo("Expected shape> ");
|
|
|
|
output->printIndexedBuffer("Output data> ");
|
|
|
|
exp.printIndexedBuffer("Expected res>");
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(output));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(output));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, StopGradient_1) {
|
|
|
|
|
|
|
|
auto x = NDArrayFactory::create<double>('c', {2,3}, { 1.f, 11.f, 3.f, 14.f, 5.f, 6.f});
|
|
|
|
|
|
|
|
nd4j::ops::stop_gradient op;
|
|
|
|
auto result = op.execute({&x}, {}, {}, {}, false, nd4j::DataType::DOUBLE);
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto output = result->at(0);
|
|
|
|
|
|
|
|
// output->printShapeInfo("Output shape> ");
|
|
|
|
// x.printShapeInfo("Expected shape> ");
|
|
|
|
// output->printIndexedBuffer("Output data> ");
|
2019-06-15 13:34:34 +02:00
|
|
|
// x.printIndexedBuffer("Expected res>");
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_TRUE(x.isSameShape(output));
|
|
|
|
ASSERT_TRUE(x.equalsTo(output));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, StopGradient_2) {
|
|
|
|
|
|
|
|
auto x = NDArrayFactory::create<double>('f', {2,3}, { 1.f, 11.f, 3.f, 14.f, 5.f, 6.f});
|
|
|
|
|
|
|
|
nd4j::ops::stop_gradient op;
|
|
|
|
auto result = op.execute({&x}, {}, {}, {}, false, nd4j::DataType::DOUBLE);
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto output = result->at(0);
|
|
|
|
|
|
|
|
// output->printShapeInfo("Output shape> ");
|
|
|
|
// x.printShapeInfo("Expected shape> ");
|
|
|
|
// output->printIndexedBuffer("Output data> ");
|
2019-06-15 13:34:34 +02:00
|
|
|
// x.printIndexedBuffer("Expected res>");
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_TRUE(x.isSameShape(output));
|
|
|
|
ASSERT_TRUE(x.equalsTo(output));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, log_softmax_test1) {
|
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<double>('c', {3, 3, 3}, {-1, 1, -2, 2, -3, 3, -4, 4, -5,5 ,-6,6, -7,7, -8,8, -9,9, -10,10, -11,11, -12,12, -13,13, 14});
|
|
|
|
auto expOutput = NDArrayFactory::create<double>('c', {3, 3, 3}, {-2.16985e+00,-1.69846e-01,-3.16985e+00, -1.31507e+00,-6.31507e+00,-3.15072e-01, -8.00046e+00,-4.58767e-04,-9.00046e+00, -1.31327e+00,-1.23133e+01,-3.13266e-01, -1.40000e+01,-1.13743e-06,-1.50000e+01, -1.31326e+00,-1.83133e+01,-3.13262e-01, -2.00000e+01,-2.81941e-09,-2.10000e+01, -1.31326e+00,-2.43133e+01,-3.13262e-01, -2.73133e+01,-1.31326e+00,-3.13262e-01});
|
|
|
|
|
|
|
|
nd4j::ops::log_softmax op;
|
|
|
|
auto results = op.execute({&input}, {}, {}, {}, false, nd4j::DataType::DOUBLE);
|
|
|
|
auto z = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(expOutput.isSameShape(z));
|
2019-06-15 13:34:34 +02:00
|
|
|
ASSERT_TRUE(expOutput.equalsTo(z));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, log_softmax_test2) {
|
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<double>('c', {3, 3, 3}, {-1, 1, -2, 2, -3, 3, -4, 4, -5,5 ,-6,6, -7,7, -8,8, -9,9, -10,10, -11,11, -12,12, -13,13, 14});
|
|
|
|
auto expOutput = NDArrayFactory::create<double>('c', {3, 3, 3}, {-3.05095e+00,-3.04946e+00,-5.00705e+00, -5.09458e-02,-7.04946e+00,-7.04851e-03, -6.05095e+00,-4.94556e-02,-8.00705e+00, -3.04859e+00,-1.30000e+01,-3.04859e+00, -1.50486e+01,-2.37286e-06,-1.70486e+01, -4.85876e-02,-1.60000e+01,-4.85874e-02, -2.10000e+01,-3.04859e+00,-2.51269e+01, -7.96007e-10,-2.50486e+01,-2.12693e+00, -2.40000e+01,-4.85874e-02,-1.26928e-01});
|
|
|
|
|
|
|
|
nd4j::ops::log_softmax op;
|
|
|
|
auto results = op.execute({&input}, {}, {1}, {}, false, nd4j::DataType::DOUBLE);
|
|
|
|
auto z = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(expOutput.isSameShape(z));
|
2019-06-15 13:34:34 +02:00
|
|
|
ASSERT_TRUE(expOutput.equalsTo(z));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, log_softmax_test3) {
|
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<double>('c', {3, 3, 3}, {-1, 1, -2, 2, -3, 3, -4, 4, -5,5 ,-6,6, -7,7, -8,8, -9,9, -10,10, -11,11, -12,12, -13,13, 14});
|
|
|
|
auto expOutput = NDArrayFactory::create<double>('c', {3, 3, 3}, {-2.16985e+00,-1.69846e-01,-3.16985e+00, -1.31507e+00,-6.31507e+00,-3.15072e-01, -8.00046e+00,-4.58767e-04,-9.00046e+00, -1.31327e+00,-1.23133e+01,-3.13266e-01, -1.40000e+01,-1.13743e-06,-1.50000e+01, -1.31326e+00,-1.83133e+01,-3.13262e-01, -2.00000e+01,-2.81941e-09,-2.10000e+01, -1.31326e+00,-2.43133e+01,-3.13262e-01, -2.73133e+01,-1.31326e+00,-3.13262e-01});
|
|
|
|
|
|
|
|
nd4j::ops::log_softmax op;
|
|
|
|
auto results = op.execute({&input}, {}, {2}, {}, false, nd4j::DataType::DOUBLE);
|
|
|
|
auto z = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(expOutput.isSameShape(z));
|
2019-06-15 13:34:34 +02:00
|
|
|
ASSERT_TRUE(expOutput.equalsTo(z));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
delete results;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, log_softmax_test5) {
|
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<double>('c', {3, 3}, {-1, 1, -2, 2, -3, 3, -4, 4, 5});
|
|
|
|
auto expOutput = NDArrayFactory::create<double>('c', {3, 3}, {-2.16985, -0.16985, -3.16985, -1.31507, -6.31507, -0.31507, -9.31335, -1.31335, -0.31335});
|
|
|
|
|
|
|
|
nd4j::ops::log_softmax op;
|
|
|
|
auto results = op.execute({&input}, {}, {}, {}, false, nd4j::DataType::DOUBLE);
|
|
|
|
auto z = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(expOutput.isSameShape(z));
|
2019-06-15 13:34:34 +02:00
|
|
|
ASSERT_TRUE(expOutput.equalsTo(z));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, log_softmax_test6) {
|
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<double>('c', {3, 3}, {-1, 1, -2, 2, -3, 3, -4, 4, 5});
|
|
|
|
auto expOutput = NDArrayFactory::create<double>('c', {3, 3}, {-3.05095,-3.04946,-7.12773, -0.05095,-7.04946,-2.12773, -6.05095,-0.04946,-0.12773});
|
|
|
|
|
|
|
|
nd4j::ops::log_softmax op;
|
|
|
|
auto results = op.execute({&input}, {}, {0}, {}, false, nd4j::DataType::DOUBLE);
|
|
|
|
auto z = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(expOutput.isSameShape(z));
|
2019-06-15 13:34:34 +02:00
|
|
|
ASSERT_TRUE(expOutput.equalsTo(z));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, log_softmax_test7) {
|
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<double>('c', {1, 5}, {-1, 1, -2, 2, 3});
|
|
|
|
auto expOutput = NDArrayFactory::create<double>('c', {1, 5}, {-4.42414, -2.42414, -5.42414, -1.42414, -0.42414});
|
|
|
|
|
|
|
|
nd4j::ops::log_softmax op;
|
|
|
|
auto results = op.execute({&input}, {}, {}, {}, false, nd4j::DataType::DOUBLE);
|
|
|
|
auto z = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(expOutput.isSameShape(z));
|
2019-06-15 13:34:34 +02:00
|
|
|
ASSERT_TRUE(expOutput.equalsTo(z));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, log_softmax_test8) {
|
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<double>('c', {1, 5}, {-1, 1, -2, 2, 3});
|
|
|
|
auto expOutput = NDArrayFactory::create<double>('c', {1, 5}, {0, 0, 0, 0, 0});
|
|
|
|
|
|
|
|
nd4j::ops::log_softmax op;
|
|
|
|
auto results = op.execute({&input}, {}, {0}, {}, false, nd4j::DataType::DOUBLE);
|
|
|
|
auto z = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(expOutput.isSameShape(z));
|
2019-06-15 13:34:34 +02:00
|
|
|
ASSERT_TRUE(expOutput.equalsTo(z));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, log_softmax_test9) {
|
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<double>('c', {5, 1}, {-1, 1, -2, 2, 3});
|
|
|
|
auto expOutput = NDArrayFactory::create<double>('c', {5, 1}, {0, 0, 0, 0, 0});
|
|
|
|
|
|
|
|
nd4j::ops::log_softmax op;
|
|
|
|
auto results = op.execute({&input}, {}, {}, {}, false, nd4j::DataType::DOUBLE);
|
|
|
|
auto z = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(expOutput.isSameShape(z));
|
2019-06-15 13:34:34 +02:00
|
|
|
ASSERT_TRUE(expOutput.equalsTo(z));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, log_softmax_test10) {
|
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<double>('c', {5, 1}, {-1, 1, -2, 2, 3});
|
|
|
|
auto expOutput = NDArrayFactory::create<double>('c', {5, 1}, {-4.42414, -2.42414, -5.42414, -1.42414, -0.42414});
|
|
|
|
|
|
|
|
nd4j::ops::log_softmax op;
|
|
|
|
auto results = op.execute({&input}, {}, {0}, {}, false, nd4j::DataType::DOUBLE);
|
|
|
|
auto z = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(expOutput.isSameShape(z));
|
2019-06-15 13:34:34 +02:00
|
|
|
ASSERT_TRUE(expOutput.equalsTo(z));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, log_softmax_test11) {
|
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<double>('c', {5}, {-1, 1, -2, 2, 3});
|
|
|
|
auto expOutput = NDArrayFactory::create<double>('c', {5}, {-4.42414, -2.42414, -5.42414, -1.42414, -0.42414});
|
|
|
|
|
|
|
|
nd4j::ops::log_softmax op;
|
|
|
|
auto results = op.execute({&input}, {}, {}, {}, false, nd4j::DataType::DOUBLE);
|
|
|
|
auto z = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(expOutput.isSameShape(z));
|
2019-06-15 13:34:34 +02:00
|
|
|
ASSERT_TRUE(expOutput.equalsTo(z));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
2019-06-15 13:34:34 +02:00
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, log_softmax_test12) {
|
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<double>('c', {1, 4}, {0.1869, -1.4918, -0.6497, -0.8864});
|
|
|
|
auto expOutput = NDArrayFactory::create<double>('c', {1, 4}, {-0.6738, -2.3525, -1.5104, -1.7472});
|
|
|
|
|
|
|
|
for (int i = 0; i < 10; ++i)
|
|
|
|
{
|
|
|
|
nd4j::ops::log_softmax op;
|
|
|
|
auto results = op.execute({&input}, {}, {}, {}, false, nd4j::DataType::DOUBLE);
|
|
|
|
auto z = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(expOutput.isSameShape(z));
|
|
|
|
ASSERT_TRUE(expOutput.equalsTo(z, 1e-4));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, log_softmax_bp_test1) {
|
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<double>('c', {2, 2}, {1,2,3,4});
|
|
|
|
auto epsilon = NDArrayFactory::create<double>('c', {2, 2}, {0.1, 0.2, 0.3, 0.4});
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', {2, 2}, {-0.07311,0.02689, -0.07311,0.02689});
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
nd4j::ops::log_softmax_bp op;
|
|
|
|
auto results = op.execute({&input, &epsilon}, {}, {}, {}, false, nd4j::DataType::DOUBLE);
|
|
|
|
auto output = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(exp.isSameShape(output));
|
2019-06-15 13:34:34 +02:00
|
|
|
ASSERT_TRUE(exp.equalsTo(output));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, log_softmax_bp_test2) {
|
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<double>('c', {2, 2}, {1,2,3,4});
|
|
|
|
auto epsilon = NDArrayFactory::create<double>('c', {2, 2}, {0.1, 0.2, 0.3, 0.4});
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', {2, 2}, {-0.17616, -0.17616, 0.02384, 0.02384});
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
nd4j::ops::log_softmax_bp op;
|
|
|
|
auto results = op.execute({&input, &epsilon}, {}, {0}, {}, false, nd4j::DataType::DOUBLE);
|
|
|
|
auto output = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(exp.isSameShape(output));
|
2019-06-15 13:34:34 +02:00
|
|
|
ASSERT_TRUE(exp.equalsTo(output));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, ELU_1) {
|
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<double>('c', {2, 2, 2}, { -1., 2. , 1.5, -1.4, 1., 2., 2., 1.});
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', {2, 2, 2}, { -0.63212055, 2. , 1.5, -0.753403, 1., 2., 2., 1.});
|
|
|
|
auto res = NDArrayFactory::create<double>('c', {2, 2, 2});
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-08-31 19:57:39 +02:00
|
|
|
input.applyScalar(nd4j::scalar::ELU, 1.f, &res);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_TRUE(res.equalsTo(&exp));
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, L2_Loss_1) {
|
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<double>('c', {2, 2, 2}, { -1., 2. , 1.5, -1.4, 1., 2., 2., 1.});
|
|
|
|
double exp(9.605);
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
nd4j::ops::l2_loss op;
|
|
|
|
auto results = op.execute({&input}, {}, {});
|
|
|
|
auto output = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(output->isScalar());
|
|
|
|
output->printIndexedBuffer("L2_Loss output");
|
|
|
|
ASSERT_EQ(output->e<double>(0), exp);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(DeclarableOpsTests5, L2_Loss_2) {
|
|
|
|
auto x = NDArrayFactory::create<double>(0.7787855863571167);
|
|
|
|
auto e = NDArrayFactory::create<double>(0.303254);
|
|
|
|
|
|
|
|
nd4j::ops::l2_loss op;
|
|
|
|
auto results = op.execute({&x}, {}, {});
|
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
|
|
|
|
auto z = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_EQ(e, *z);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(DeclarableOpsTests5, L2_Loss_3) {
|
|
|
|
auto x = NDArrayFactory::create<double>(0.7787855863571167);
|
|
|
|
auto e = NDArrayFactory::create<double>(0.303254);
|
|
|
|
auto z = NDArrayFactory::create<double>(0.0);
|
|
|
|
|
|
|
|
nd4j::ops::l2_loss op;
|
|
|
|
auto status = op.execute({&x}, {&z} , {}, {}, {});
|
|
|
|
ASSERT_EQ(Status::OK(), status);
|
|
|
|
|
|
|
|
ASSERT_EQ(e, z);
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, LogPoissonLoss_1) {
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {1, 1}, {1});
|
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<double>('c', {2, 2, 2}, { -1., 2. , 1.5, -1.4, 1., 2., 2., 1.});
|
|
|
|
auto targets = NDArrayFactory::create<double>('c', {2, 2, 2}, {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0});
|
|
|
|
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', {2, 2, 2}, {1.3678794, 5.389056, 2.981689, 1.6465969, 1.7182817, 5.389056, 5.389056, 1.7182817});
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
nd4j::ops::log_poisson_loss op;
|
|
|
|
auto results = op.execute({&input, &weights, &targets}, {}, {0}, {}, false, nd4j::DataType::DOUBLE);
|
|
|
|
auto output = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(exp.isSameShape(output));
|
2019-06-15 13:34:34 +02:00
|
|
|
ASSERT_TRUE(exp.equalsTo(output));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, LogPoissonLoss_2) {
|
|
|
|
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {1, 1}, {1});
|
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<double>('c', {2, 2, 2}, { -1., 2. , 1.5, -1.4, 1., 2., 2., 1.});
|
|
|
|
auto targets = NDArrayFactory::create<double>('c', {2, 2, 2}, {2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0});
|
|
|
|
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', {2, 2, 2}, {3.0196857, 4.0408626, 2.1334953, 3.6984034, 1.3700882, 4.0408626, 4.0408626, 1.3700882});
|
2019-06-15 13:34:34 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
nd4j::ops::log_poisson_loss op;
|
|
|
|
auto results = op.execute({&input, &weights, &targets}, {}, {0, 1}, {}, false, nd4j::DataType::DOUBLE);
|
|
|
|
auto output = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_TRUE(exp.isSameShape(output));
|
2019-06-15 13:34:34 +02:00
|
|
|
ASSERT_TRUE(exp.equalsTo(output));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, NormalizeMoments_1) {
|
|
|
|
|
|
|
|
auto means = NDArrayFactory::create<double>('c', {2, 3, 4}, { 11., 3., 14., 5.,
|
|
|
|
6., 9., 3.5, 7.,
|
|
|
|
21., 3., 14., 15.,
|
|
|
|
6., 9., 3.5, 7.,
|
|
|
|
11., 13., 14., 5.,
|
|
|
|
16., 9., 13.5, 7.});
|
|
|
|
|
|
|
|
auto deviance = NDArrayFactory::create<double>('c', {2, 3, 4}, { 21., 13., 24., 15.,
|
|
|
|
16., 19., 13.5, 17.,
|
|
|
|
31., 13., 24., 25.,
|
|
|
|
16., 19., 13.5, 17.,
|
|
|
|
21., 23., 24., 15.,
|
|
|
|
26., 19., 23.5, 17.});
|
|
|
|
|
|
|
|
auto counts = NDArrayFactory::create<double>(2.0);
|
|
|
|
|
|
|
|
auto expMeans = NDArrayFactory::create<double>('c', {2, 3, 4}, {
|
|
|
|
5.5, 1.5, 7., 2.5,
|
|
|
|
3., 4.5, 1.75, 3.5,
|
|
|
|
10.5, 1.5, 7., 7.5,
|
|
|
|
3., 4.5, 1.75, 3.5,
|
|
|
|
5.5, 6.5, 7., 2.5,
|
|
|
|
8., 4.5, 6.75, 3.5});
|
|
|
|
|
|
|
|
auto expDeviance = NDArrayFactory::create<double>('c', {2, 3, 4}, {
|
|
|
|
-19.75, 4.25, -37., 1.25,
|
|
|
|
-1., -10.75, 3.6875, -3.75,
|
|
|
|
-94.75, 4.25, -37., -43.75,
|
|
|
|
-1., -10.75, 3.6875, -3.75,
|
|
|
|
-19.75, -30.75, -37., 1.25,
|
|
|
|
-51., -10.75, -33.8125, -3.75});
|
|
|
|
|
|
|
|
nd4j::ops::normalize_moments op;
|
|
|
|
auto results = op.execute({&counts, &means, &deviance}, {0.0}, {});
|
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_EQ(results->size(), 2);
|
|
|
|
|
|
|
|
auto outputMeans = results->at(0);
|
|
|
|
auto outputDeviance = results->at(1);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expMeans.isSameShape(outputMeans));
|
2019-06-15 13:34:34 +02:00
|
|
|
ASSERT_TRUE(expMeans.equalsTo(outputMeans));
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(expMeans.isSameShape(outputDeviance));
|
2019-06-15 13:34:34 +02:00
|
|
|
ASSERT_TRUE(expDeviance.equalsTo(outputDeviance));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, NormalizeMoments_2) {
|
|
|
|
|
|
|
|
auto means = NDArrayFactory::create<double>('c', {3, 2, 4}, { 11., 3., 14., 5.,
|
|
|
|
6., 9., 3.5, 7.,
|
|
|
|
21., 3., 14., 15.,
|
|
|
|
6., 9., 3.5, 7.,
|
|
|
|
11., 13., 14., 5.,
|
|
|
|
16., 9., 13.5, 7.});
|
|
|
|
|
|
|
|
auto deviance = NDArrayFactory::create<double>('c', {3, 2, 4}, { 21., 13., 24., 15.,
|
|
|
|
16., 19., 13.5, 17.,
|
|
|
|
31., 13., 24., 25.,
|
|
|
|
16., 19., 13.5, 17.,
|
|
|
|
21., 23., 24., 15.,
|
|
|
|
26., 19., 23.5, 17.});
|
|
|
|
|
|
|
|
auto counts = NDArrayFactory::create<double>(12.0);
|
|
|
|
|
|
|
|
auto expMeans = NDArrayFactory::create<double>('c', {3, 2, 4}, { 0.9166667, 0.25, 1.1666667, 0.4166667,
|
|
|
|
0.5, 0.75, 0.2916667, 0.5833334,
|
|
|
|
1.75, 0.25, 1.1666667, 1.25,
|
|
|
|
0.5, 0.75, 0.2916667, 0.5833334,
|
|
|
|
0.9166667, 1.0833334, 1.1666667, 0.4166667,
|
|
|
|
1.3333334, 0.75, 1.125, 0.5833334});
|
|
|
|
|
|
|
|
auto expDeviance = NDArrayFactory::create<double>('c', {3, 2, 4}, {
|
|
|
|
0.9097222, 1.0208334, 0.6388887, 1.0763888,
|
|
|
|
1.0833334, 1.0208334, 1.0399306, 1.076389,
|
|
|
|
-0.4791665, 1.0208334, 0.6388887, 0.5208335,
|
|
|
|
1.0833334, 1.0208334, 1.0399306, 1.076389,
|
|
|
|
0.9097222, 0.7430556, 0.6388887, 1.0763888,
|
|
|
|
0.38888884, 1.0208334, 0.6927084, 1.076389});
|
|
|
|
|
|
|
|
nd4j::ops::normalize_moments op;
|
|
|
|
auto results = op.execute({&counts, &means, &deviance}, {0.0}, {});
|
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_EQ(results->size(), 2);
|
|
|
|
|
|
|
|
auto outputMeans = results->at(0);
|
|
|
|
auto outputDeviance = results->at(1);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expMeans.isSameShape(outputMeans));
|
2019-06-15 13:34:34 +02:00
|
|
|
ASSERT_TRUE(expMeans.equalsTo(outputMeans));
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(expMeans.isSameShape(outputDeviance));
|
2019-06-15 13:34:34 +02:00
|
|
|
ASSERT_TRUE(expDeviance.equalsTo(outputDeviance));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests5, NormalizeMoments_3) {
|
|
|
|
|
|
|
|
auto means = NDArrayFactory::create<double>('c', {3, 2, 4}, { 11., 3., 14., 5.,
|
|
|
|
6., 9., 3.5, 7.,
|
|
|
|
21., 3., 14., 15.,
|
|
|
|
6., 9., 3.5, 7.,
|
|
|
|
11., 13., 14., 5.,
|
|
|
|
16., 9., 13.5, 7.});
|
|
|
|
|
|
|
|
auto deviance = NDArrayFactory::create<double>('c', {3, 2, 4}, { 21., 13., 24., 15.,
|
|
|
|
16., 19., 13.5, 17.,
|
|
|
|
31., 13., 24., 25.,
|
|
|
|
16., 19., 13.5, 17.,
|
|
|
|
21., 23., 24., 15.,
|
|
|
|
26., 19., 23.5, 17.});
|
|
|
|
|
|
|
|
auto counts = NDArrayFactory::create<double>(12.0);
|
|
|
|
double shift = 10.0;
|
|
|
|
auto expMeans = NDArrayFactory::create<double>('c', {3, 2, 4}, { 10.9166667, 10.25, 11.1666667, 10.4166667,
|
|
|
|
10.5, 10.75, 10.2916667, 10.5833334,
|
|
|
|
11.75, 10.25, 11.1666667, 11.25,
|
|
|
|
10.5, 10.75, 10.2916667, 10.5833334,
|
|
|
|
10.9166667, 11.0833334, 11.1666667, 10.4166667,
|
|
|
|
11.3333334, 10.75, 11.125, 10.5833334});
|
|
|
|
|
|
|
|
auto expDeviance = NDArrayFactory::create<double>('c', {3, 2, 4}, {
|
|
|
|
0.9097222, 1.0208334, 0.6388887, 1.0763888,
|
|
|
|
1.0833334, 1.0208334, 1.0399306, 1.076389,
|
|
|
|
-0.4791665, 1.0208334, 0.6388887, 0.5208335,
|
|
|
|
1.0833334, 1.0208334, 1.0399306, 1.076389,
|
|
|
|
0.9097222, 0.7430556, 0.6388887, 1.0763888,
|
|
|
|
0.38888884, 1.0208334, 0.6927084, 1.076389});
|
|
|
|
|
|
|
|
nd4j::ops::normalize_moments op;
|
|
|
|
auto results = op.execute({&counts, &means, &deviance}, {shift}, {});
|
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), results->status());
|
|
|
|
ASSERT_EQ(results->size(), 2);
|
|
|
|
|
|
|
|
auto outputMeans = results->at(0);
|
|
|
|
auto outputDeviance = results->at(1);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expMeans.isSameShape(outputMeans));
|
2019-06-15 13:34:34 +02:00
|
|
|
ASSERT_TRUE(expMeans.equalsTo(outputMeans));
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(expMeans.isSameShape(outputDeviance));
|
2019-06-15 13:34:34 +02:00
|
|
|
ASSERT_TRUE(expDeviance.equalsTo(outputDeviance));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|