55 lines
2.2 KiB
C
55 lines
2.2 KiB
C
|
/*******************************************************************************
|
||
|
* Copyright (c) 2021 Deeplearning4j Contributors
|
||
|
*
|
||
|
* This program and the accompanying materials are made available under the
|
||
|
* terms of the Apache License, Version 2.0 which is available at
|
||
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||
|
* License for the specific language governing permissions and limitations
|
||
|
* under the License.
|
||
|
*
|
||
|
* SPDX-License-Identifier: Apache-2.0
|
||
|
*******************************************************************************/
|
||
|
|
||
|
//
|
||
|
// @author AbdelRauf
|
||
|
//
|
||
|
|
||
|
#ifndef LIBND4J_HELPERS_CTCLOSS_H
|
||
|
#define LIBND4J_HELPERS_CTCLOSS_H
|
||
|
|
||
|
#include <ops/declarable/helpers/helpers.h>
|
||
|
#include <graph/Context.h>
|
||
|
|
||
|
namespace sd {
|
||
|
namespace ops {
|
||
|
namespace helpers {
|
||
|
|
||
|
/**
|
||
|
* @brief Implementation of CTC loss function
|
||
|
* References:
|
||
|
Connectionist Temporal Classification - Labeling Unsegmented Sequence Data
|
||
|
with Recurrent Neural Networks:
|
||
|
[Graves et al., 2006](https://dl.acm.org/citation.cfm?id=1143891)
|
||
|
([pdf](http://www.cs.toronto.edu/~graves/icml_2006.pdf))
|
||
|
*
|
||
|
* @param block Context
|
||
|
* @param logits NDArray {BATCH_LEN, FRAME_LEN, CLASS_LEN }. log softmax of rnn output. It should include a blank label as well.
|
||
|
* @param targetLabels NDArray {BATCH_LEN, MAX_TARGET_LEN}
|
||
|
* @param logitsLengths NDArray {BATCH_LEN} Length of input sequence in logits
|
||
|
* @param targetLabelLengths NDArray {BATCH_LEN} Length of label sequence in labels
|
||
|
* @param logLosses NDArray {BATCH_LEN} or EMPTY. if empty it will be skipped. negative log probabilities of loss
|
||
|
* @param gradients NDArray {BATCH_LEN, FRAME_LEN, CLASS_LEN } or EMPTY. gradients
|
||
|
* @param blankIndex index of the blank label in logits
|
||
|
*/
|
||
|
void ctcLoss(graph::Context& block, const NDArray &logitsInput, const NDArray &targetLabels, const NDArray &logitsLengths, const NDArray &targetLabelLengths, NDArray &logLosses, NDArray &gradients, int blankIndex);
|
||
|
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
#endif // LIBND4J_ADDBIAS_H
|