147 lines
5.0 KiB
Java
Raw Normal View History

2019-06-06 15:21:15 +03:00
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.nn.misc;
import org.deeplearning4j.BaseDL4JTest;
import org.deeplearning4j.nn.conf.ConvolutionMode;
import org.deeplearning4j.nn.conf.MultiLayerConfiguration;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.layers.*;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.nn.weights.WeightInit;
import org.junit.Test;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.learning.config.Sgd;
import org.nd4j.linalg.lossfunctions.LossFunctions;
import static org.junit.Assert.assertEquals;
public class TestNetConversion extends BaseDL4JTest {
@Test
public void testMlnToCompGraph() {
Nd4j.getRandom().setSeed(12345);
for( int i=0; i<3; i++ ){
MultiLayerNetwork n;
switch (i){
case 0:
n = getNet1(false);
break;
case 1:
n = getNet1(true);
break;
case 2:
n = getNet2();
break;
default:
throw new RuntimeException();
}
INDArray in = (i <= 1 ? Nd4j.rand(new int[]{8, 3, 10, 10}) : Nd4j.rand(new int[]{8, 5, 10}));
INDArray labels = (i <= 1 ? Nd4j.rand(new int[]{8, 10}) : Nd4j.rand(new int[]{8, 10, 10}));
ComputationGraph cg = n.toComputationGraph();
INDArray out1 = n.output(in);
INDArray out2 = cg.outputSingle(in);
assertEquals(out1, out2);
n.setInput(in);
n.setLabels(labels);
cg.setInputs(in);
cg.setLabels(labels);
n.computeGradientAndScore();
cg.computeGradientAndScore();
assertEquals(n.score(), cg.score(), 1e-6);
assertEquals(n.gradient().gradient(), cg.gradient().gradient());
n.fit(in, labels);
cg.fit(new INDArray[]{in}, new INDArray[]{labels});
assertEquals(n.params(), cg.params());
}
}
private MultiLayerNetwork getNet1(boolean train) {
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.convolutionMode(ConvolutionMode.Same)
.activation(Activation.TANH)
.weightInit(WeightInit.XAVIER)
.updater(new Sgd(0.1))
.list()
.layer(new ConvolutionLayer.Builder().nIn(3).nOut(5).kernelSize(2, 2).stride(1, 1).build())
.layer(new SubsamplingLayer.Builder().kernelSize(2, 2).stride(1, 1).build())
.layer(new DenseLayer.Builder().nOut(32).build())
.layer(new OutputLayer.Builder().nOut(10).lossFunction(LossFunctions.LossFunction.MSE).build())
.setInputType(InputType.convolutional(10, 10, 3))
.build();
MultiLayerNetwork net = new MultiLayerNetwork(conf);
net.init();
if(train) {
for (int i = 0; i < 3; i++) {
INDArray f = Nd4j.rand(new int[]{8, 3, 10, 10});
INDArray l = Nd4j.rand(8, 10);
net.fit(f, l);
}
}
return net;
}
private MultiLayerNetwork getNet2() {
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.convolutionMode(ConvolutionMode.Same)
.activation(Activation.TANH)
.weightInit(WeightInit.XAVIER)
.updater(new Sgd(0.1))
.list()
.layer(new GravesLSTM.Builder().nOut(8).build())
.layer(new LSTM.Builder().nOut(8).build())
.layer(new RnnOutputLayer.Builder().nOut(10).lossFunction(LossFunctions.LossFunction.MSE).build())
.setInputType(InputType.recurrent(5))
.build();
MultiLayerNetwork net = new MultiLayerNetwork(conf);
net.init();
for (int i = 0; i < 3; i++) {
INDArray f = Nd4j.rand(new int[]{8, 5, 10});
INDArray l = Nd4j.rand(new int[]{8, 10, 10});
net.fit(f, l);
}
return net;
}
}