147 lines
5.0 KiB
Java
147 lines
5.0 KiB
Java
|
/*******************************************************************************
|
||
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
||
|
*
|
||
|
* This program and the accompanying materials are made available under the
|
||
|
* terms of the Apache License, Version 2.0 which is available at
|
||
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||
|
* License for the specific language governing permissions and limitations
|
||
|
* under the License.
|
||
|
*
|
||
|
* SPDX-License-Identifier: Apache-2.0
|
||
|
******************************************************************************/
|
||
|
|
||
|
package org.deeplearning4j.nn.misc;
|
||
|
|
||
|
import org.deeplearning4j.BaseDL4JTest;
|
||
|
import org.deeplearning4j.nn.conf.ConvolutionMode;
|
||
|
import org.deeplearning4j.nn.conf.MultiLayerConfiguration;
|
||
|
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
|
||
|
import org.deeplearning4j.nn.conf.inputs.InputType;
|
||
|
import org.deeplearning4j.nn.conf.layers.*;
|
||
|
import org.deeplearning4j.nn.graph.ComputationGraph;
|
||
|
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
|
||
|
import org.deeplearning4j.nn.weights.WeightInit;
|
||
|
import org.junit.Test;
|
||
|
import org.nd4j.linalg.activations.Activation;
|
||
|
import org.nd4j.linalg.api.ndarray.INDArray;
|
||
|
import org.nd4j.linalg.factory.Nd4j;
|
||
|
import org.nd4j.linalg.learning.config.Sgd;
|
||
|
import org.nd4j.linalg.lossfunctions.LossFunctions;
|
||
|
|
||
|
import static org.junit.Assert.assertEquals;
|
||
|
|
||
|
public class TestNetConversion extends BaseDL4JTest {
|
||
|
|
||
|
@Test
|
||
|
public void testMlnToCompGraph() {
|
||
|
Nd4j.getRandom().setSeed(12345);
|
||
|
|
||
|
for( int i=0; i<3; i++ ){
|
||
|
MultiLayerNetwork n;
|
||
|
switch (i){
|
||
|
case 0:
|
||
|
n = getNet1(false);
|
||
|
break;
|
||
|
case 1:
|
||
|
n = getNet1(true);
|
||
|
break;
|
||
|
case 2:
|
||
|
n = getNet2();
|
||
|
break;
|
||
|
default:
|
||
|
throw new RuntimeException();
|
||
|
}
|
||
|
INDArray in = (i <= 1 ? Nd4j.rand(new int[]{8, 3, 10, 10}) : Nd4j.rand(new int[]{8, 5, 10}));
|
||
|
INDArray labels = (i <= 1 ? Nd4j.rand(new int[]{8, 10}) : Nd4j.rand(new int[]{8, 10, 10}));
|
||
|
|
||
|
ComputationGraph cg = n.toComputationGraph();
|
||
|
|
||
|
INDArray out1 = n.output(in);
|
||
|
INDArray out2 = cg.outputSingle(in);
|
||
|
assertEquals(out1, out2);
|
||
|
|
||
|
|
||
|
n.setInput(in);
|
||
|
n.setLabels(labels);
|
||
|
|
||
|
cg.setInputs(in);
|
||
|
cg.setLabels(labels);
|
||
|
|
||
|
n.computeGradientAndScore();
|
||
|
cg.computeGradientAndScore();
|
||
|
|
||
|
assertEquals(n.score(), cg.score(), 1e-6);
|
||
|
|
||
|
assertEquals(n.gradient().gradient(), cg.gradient().gradient());
|
||
|
|
||
|
n.fit(in, labels);
|
||
|
cg.fit(new INDArray[]{in}, new INDArray[]{labels});
|
||
|
|
||
|
assertEquals(n.params(), cg.params());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
private MultiLayerNetwork getNet1(boolean train) {
|
||
|
|
||
|
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
|
||
|
.convolutionMode(ConvolutionMode.Same)
|
||
|
.activation(Activation.TANH)
|
||
|
.weightInit(WeightInit.XAVIER)
|
||
|
.updater(new Sgd(0.1))
|
||
|
.list()
|
||
|
.layer(new ConvolutionLayer.Builder().nIn(3).nOut(5).kernelSize(2, 2).stride(1, 1).build())
|
||
|
.layer(new SubsamplingLayer.Builder().kernelSize(2, 2).stride(1, 1).build())
|
||
|
.layer(new DenseLayer.Builder().nOut(32).build())
|
||
|
.layer(new OutputLayer.Builder().nOut(10).lossFunction(LossFunctions.LossFunction.MSE).build())
|
||
|
.setInputType(InputType.convolutional(10, 10, 3))
|
||
|
.build();
|
||
|
|
||
|
MultiLayerNetwork net = new MultiLayerNetwork(conf);
|
||
|
net.init();
|
||
|
|
||
|
if(train) {
|
||
|
for (int i = 0; i < 3; i++) {
|
||
|
INDArray f = Nd4j.rand(new int[]{8, 3, 10, 10});
|
||
|
INDArray l = Nd4j.rand(8, 10);
|
||
|
|
||
|
net.fit(f, l);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return net;
|
||
|
}
|
||
|
|
||
|
private MultiLayerNetwork getNet2() {
|
||
|
|
||
|
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
|
||
|
.convolutionMode(ConvolutionMode.Same)
|
||
|
.activation(Activation.TANH)
|
||
|
.weightInit(WeightInit.XAVIER)
|
||
|
.updater(new Sgd(0.1))
|
||
|
.list()
|
||
|
.layer(new GravesLSTM.Builder().nOut(8).build())
|
||
|
.layer(new LSTM.Builder().nOut(8).build())
|
||
|
.layer(new RnnOutputLayer.Builder().nOut(10).lossFunction(LossFunctions.LossFunction.MSE).build())
|
||
|
.setInputType(InputType.recurrent(5))
|
||
|
.build();
|
||
|
|
||
|
MultiLayerNetwork net = new MultiLayerNetwork(conf);
|
||
|
net.init();
|
||
|
|
||
|
for (int i = 0; i < 3; i++) {
|
||
|
INDArray f = Nd4j.rand(new int[]{8, 5, 10});
|
||
|
INDArray l = Nd4j.rand(new int[]{8, 10, 10});
|
||
|
|
||
|
net.fit(f, l);
|
||
|
}
|
||
|
|
||
|
return net;
|
||
|
|
||
|
}
|
||
|
|
||
|
}
|