2019-08-28 17:20:44 +02:00
|
|
|
/*******************************************************************************
|
|
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
|
|
*
|
|
|
|
* This program and the accompanying materials are made available under the
|
|
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
|
|
* License for the specific language governing permissions and limitations
|
|
|
|
* under the License.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
//
|
|
|
|
// @author raver119@gmail.com
|
|
|
|
//
|
|
|
|
|
|
|
|
#include <ops/declarable/helpers/helpers.h>
|
|
|
|
#include <ops/declarable/helpers/hamming.h>
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
namespace sd {
|
2019-08-28 17:20:44 +02:00
|
|
|
namespace ops {
|
|
|
|
namespace helpers {
|
|
|
|
template <typename X, typename Z>
|
2020-05-09 07:06:14 +02:00
|
|
|
static _CUDA_G void _hammingKernel(const void *vx, const Nd4jLong *xShapeInfo, const void *vy, const Nd4jLong *yShapeInfo, void *vz, void *reductionBuffer, Nd4jLong length) {
|
|
|
|
auto x = reinterpret_cast<const X*>(vx);
|
|
|
|
auto y = reinterpret_cast<const X*>(vy);
|
2019-08-28 17:20:44 +02:00
|
|
|
auto z = reinterpret_cast<Z*>(vz);
|
|
|
|
|
2020-07-26 14:59:27 +02:00
|
|
|
__shared__ Nd4jLong shared[CUDA_BLOCK_SIZE];
|
2019-08-28 17:20:44 +02:00
|
|
|
|
|
|
|
// we want to nullify temporary memory before accumulating intermediate results
|
|
|
|
shared[threadIdx.x] = 0;
|
|
|
|
|
|
|
|
auto tid = threadIdx.x + blockIdx.x * blockDim.x;
|
|
|
|
for (Nd4jLong e = tid; e < length; e += blockDim.x * gridDim.x) {
|
2019-09-11 19:12:09 +02:00
|
|
|
auto _x = static_cast<unsigned long long>(x[shape::getIndexOffset(e, xShapeInfo)]);
|
|
|
|
auto _y = static_cast<unsigned long long>(y[shape::getIndexOffset(e, yShapeInfo)]);
|
2019-08-28 17:20:44 +02:00
|
|
|
|
|
|
|
// we save intermediate result into shared memory
|
|
|
|
shared[threadIdx.x] += __popcll(_x ^ _y);
|
|
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
// now we accumulate values
|
2020-03-02 10:49:41 +01:00
|
|
|
auto numItems = sd::math::nd4j_min<Nd4jLong>(blockDim.x, length);
|
2019-08-28 17:20:44 +02:00
|
|
|
auto floorPow2 = numItems;
|
|
|
|
if (floorPow2 & (floorPow2 - 1)) {
|
|
|
|
|
|
|
|
while (floorPow2 & (floorPow2 - 1))
|
|
|
|
floorPow2 &= floorPow2 - 1;
|
|
|
|
|
|
|
|
if (threadIdx.x >= floorPow2)
|
|
|
|
shared[threadIdx.x - floorPow2] = shared[threadIdx.x - floorPow2] + shared[threadIdx.x];
|
|
|
|
|
|
|
|
__syncthreads();
|
|
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
for (Nd4jLong activeThreads = floorPow2 >> 1; activeThreads; activeThreads >>= 1) {
|
|
|
|
if (threadIdx.x < activeThreads && threadIdx.x + activeThreads < numItems)
|
|
|
|
shared[threadIdx.x] = shared[threadIdx.x] + shared[threadIdx.x + activeThreads];
|
|
|
|
|
|
|
|
__syncthreads();
|
|
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
// FIXME: do we really want atomicAdd on global memory here
|
|
|
|
// and store them to output
|
|
|
|
if (threadIdx.x == 0 && shared[0] > 0)
|
2020-03-02 10:49:41 +01:00
|
|
|
sd::math::atomics::nd4j_atomicAdd<Z>(&z[0], static_cast<Z>(shared[threadIdx.x]));
|
2019-08-28 17:20:44 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
template <typename X, typename Z>
|
|
|
|
static void _hamming(LaunchContext *context, NDArray &x, NDArray &y, NDArray &z) {
|
2020-07-26 14:59:27 +02:00
|
|
|
_hammingKernel<X, Z><<<256, CUDA_BLOCK_SIZE, 1024, *context->getCudaStream()>>>(x.specialBuffer(), x.specialShapeInfo(), y.specialBuffer(), y.specialShapeInfo(), z.specialBuffer(), nullptr, x.lengthOf());
|
2019-08-28 17:20:44 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
void hamming(LaunchContext *context, NDArray &x, NDArray &y, NDArray &output) {
|
|
|
|
NDArray::prepareSpecialUse({&output}, {&x, &y});
|
|
|
|
BUILD_DOUBLE_SELECTOR(x.dataType(), output.dataType(), _hamming, (context, x, y, output), INTEGER_TYPES, INDEXING_TYPES);
|
|
|
|
NDArray::registerSpecialUse({&output}, {&x, &y});
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|