2019-06-06 15:21:15 +03:00
|
|
|
/*******************************************************************************
|
|
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
|
|
*
|
|
|
|
* This program and the accompanying materials are made available under the
|
|
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
|
|
* License for the specific language governing permissions and limitations
|
|
|
|
* under the License.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
package org.nd4j.evaluation;
|
|
|
|
|
|
|
|
import org.junit.Test;
|
|
|
|
import org.nd4j.evaluation.classification.EvaluationBinary;
|
|
|
|
import org.nd4j.evaluation.classification.EvaluationCalibration;
|
|
|
|
import org.nd4j.linalg.BaseNd4jTest;
|
|
|
|
import org.nd4j.linalg.api.buffer.DataType;
|
2019-06-15 21:34:34 +10:00
|
|
|
import org.nd4j.linalg.api.iter.NdIndexIterator;
|
2019-06-06 15:21:15 +03:00
|
|
|
import org.nd4j.linalg.api.ndarray.INDArray;
|
|
|
|
import org.nd4j.linalg.api.ops.DynamicCustomOp;
|
|
|
|
import org.nd4j.linalg.factory.Nd4j;
|
|
|
|
import org.nd4j.linalg.factory.Nd4jBackend;
|
2019-06-15 21:34:34 +10:00
|
|
|
import org.nd4j.linalg.indexing.INDArrayIndex;
|
2019-06-06 15:21:15 +03:00
|
|
|
import org.nd4j.linalg.indexing.NDArrayIndex;
|
|
|
|
import org.nd4j.linalg.ops.transforms.Transforms;
|
|
|
|
|
2019-06-15 21:34:34 +10:00
|
|
|
import java.util.ArrayList;
|
|
|
|
import java.util.List;
|
2019-06-06 15:21:15 +03:00
|
|
|
import java.util.Random;
|
|
|
|
|
2020-01-22 22:27:01 +11:00
|
|
|
import static org.junit.Assert.*;
|
2019-06-06 15:21:15 +03:00
|
|
|
|
|
|
|
/**
|
|
|
|
* Created by Alex on 05/07/2017.
|
|
|
|
*/
|
|
|
|
public class EvaluationCalibrationTest extends BaseNd4jTest {
|
|
|
|
|
|
|
|
public EvaluationCalibrationTest(Nd4jBackend backend) {
|
|
|
|
super(backend);
|
|
|
|
}
|
|
|
|
|
|
|
|
@Override
|
|
|
|
public char ordering() {
|
|
|
|
return 'c';
|
|
|
|
}
|
|
|
|
|
|
|
|
@Test
|
|
|
|
public void testReliabilityDiagram() {
|
|
|
|
|
|
|
|
DataType dtypeBefore = Nd4j.defaultFloatingPointType();
|
|
|
|
EvaluationCalibration first = null;
|
|
|
|
String sFirst = null;
|
|
|
|
try {
|
|
|
|
for (DataType globalDtype : new DataType[]{DataType.DOUBLE, DataType.FLOAT, DataType.HALF, DataType.INT}) {
|
|
|
|
Nd4j.setDefaultDataTypes(globalDtype, globalDtype.isFPType() ? globalDtype : DataType.DOUBLE);
|
|
|
|
for (DataType lpDtype : new DataType[]{DataType.DOUBLE, DataType.FLOAT, DataType.HALF}) {
|
|
|
|
|
|
|
|
|
|
|
|
//Test using 5 bins - format: binary softmax-style output
|
|
|
|
//Note: no values fall in fourth bin
|
|
|
|
|
|
|
|
//[0, 0.2)
|
|
|
|
INDArray bin0Probs = Nd4j.create(new double[][]{{1.0, 0.0}, {0.9, 0.1}, {0.85, 0.15}}).castTo(lpDtype);
|
|
|
|
INDArray bin0Labels = Nd4j.create(new double[][]{{1.0, 0.0}, {1.0, 0.0}, {0.0, 1.0}}).castTo(lpDtype);
|
|
|
|
|
|
|
|
//[0.2, 0.4)
|
|
|
|
INDArray bin1Probs = Nd4j.create(new double[][]{{0.80, 0.20}, {0.7, 0.3}, {0.65, 0.35}}).castTo(lpDtype);
|
|
|
|
INDArray bin1Labels = Nd4j.create(new double[][]{{1.0, 0.0}, {0.0, 1.0}, {1.0, 0.0}}).castTo(lpDtype);
|
|
|
|
|
|
|
|
//[0.4, 0.6)
|
|
|
|
INDArray bin2Probs = Nd4j.create(new double[][]{{0.59, 0.41}, {0.5, 0.5}, {0.45, 0.55}}).castTo(lpDtype);
|
|
|
|
INDArray bin2Labels = Nd4j.create(new double[][]{{1.0, 0.0}, {0.0, 1.0}, {0.0, 1.0}}).castTo(lpDtype);
|
|
|
|
|
|
|
|
//[0.6, 0.8)
|
|
|
|
//Empty
|
|
|
|
|
|
|
|
//[0.8, 1.0]
|
|
|
|
INDArray bin4Probs = Nd4j.create(new double[][]{{0.0, 1.0}, {0.1, 0.9}}).castTo(lpDtype);
|
|
|
|
INDArray bin4Labels = Nd4j.create(new double[][]{{0.0, 1.0}, {0.0, 1.0}}).castTo(lpDtype);
|
|
|
|
|
|
|
|
|
|
|
|
INDArray probs = Nd4j.vstack(bin0Probs, bin1Probs, bin2Probs, bin4Probs);
|
|
|
|
INDArray labels = Nd4j.vstack(bin0Labels, bin1Labels, bin2Labels, bin4Labels);
|
|
|
|
|
|
|
|
EvaluationCalibration ec = new EvaluationCalibration(5, 5);
|
|
|
|
ec.eval(labels, probs);
|
|
|
|
|
|
|
|
for (int i = 0; i < 1; i++) {
|
|
|
|
double[] avgBinProbsClass;
|
|
|
|
double[] fracPos;
|
|
|
|
if (i == 0) {
|
|
|
|
//Class 0: needs to be handled a little differently, due to threshold/edge cases (0.8, etc)
|
|
|
|
avgBinProbsClass = new double[]{0.05, (0.59 + 0.5 + 0.45) / 3, (0.65 + 0.7) / 2.0,
|
|
|
|
(0.8 + 0.85 + 0.9 + 1.0) / 4};
|
|
|
|
fracPos = new double[]{0.0 / 2.0, 1.0 / 3, 1.0 / 2, 3.0 / 4};
|
|
|
|
} else {
|
|
|
|
avgBinProbsClass = new double[]{bin0Probs.getColumn(i).meanNumber().doubleValue(),
|
|
|
|
bin1Probs.getColumn(i).meanNumber().doubleValue(),
|
|
|
|
bin2Probs.getColumn(i).meanNumber().doubleValue(),
|
|
|
|
bin4Probs.getColumn(i).meanNumber().doubleValue()};
|
|
|
|
|
|
|
|
fracPos = new double[]{bin0Labels.getColumn(i).sumNumber().doubleValue() / bin0Labels.size(0),
|
|
|
|
bin1Labels.getColumn(i).sumNumber().doubleValue() / bin1Labels.size(0),
|
|
|
|
bin2Labels.getColumn(i).sumNumber().doubleValue() / bin2Labels.size(0),
|
|
|
|
bin4Labels.getColumn(i).sumNumber().doubleValue() / bin4Labels.size(0)};
|
|
|
|
}
|
|
|
|
|
|
|
|
org.nd4j.evaluation.curves.ReliabilityDiagram rd = ec.getReliabilityDiagram(i);
|
|
|
|
|
|
|
|
double[] x = rd.getMeanPredictedValueX();
|
|
|
|
double[] y = rd.getFractionPositivesY();
|
|
|
|
|
|
|
|
assertArrayEquals(avgBinProbsClass, x, 1e-3);
|
|
|
|
assertArrayEquals(fracPos, y, 1e-3);
|
|
|
|
|
|
|
|
String s = ec.stats();
|
|
|
|
if(first == null) {
|
|
|
|
first = ec;
|
|
|
|
sFirst = s;
|
|
|
|
} else {
|
|
|
|
// assertEquals(first, ec);
|
|
|
|
assertEquals(sFirst, s);
|
|
|
|
assertTrue(first.getRDiagBinPosCount().equalsWithEps(ec.getRDiagBinPosCount(), lpDtype == DataType.HALF ? 1e-3 : 1e-5)); //Lower precision due to fload
|
|
|
|
assertTrue(first.getRDiagBinTotalCount().equalsWithEps(ec.getRDiagBinTotalCount(), lpDtype == DataType.HALF ? 1e-3 : 1e-5));
|
|
|
|
assertTrue(first.getRDiagBinSumPredictions().equalsWithEps(ec.getRDiagBinSumPredictions(), lpDtype == DataType.HALF ? 1e-3 : 1e-5));
|
|
|
|
assertArrayEquals(first.getLabelCountsEachClass(), ec.getLabelCountsEachClass());
|
|
|
|
assertArrayEquals(first.getPredictionCountsEachClass(), ec.getPredictionCountsEachClass());
|
|
|
|
assertTrue(first.getProbHistogramOverall().equalsWithEps(ec.getProbHistogramOverall(), lpDtype == DataType.HALF ? 1e-3 : 1e-5));
|
|
|
|
assertTrue(first.getProbHistogramByLabelClass().equalsWithEps(ec.getProbHistogramByLabelClass(), lpDtype == DataType.HALF ? 1e-3 : 1e-5));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} finally {
|
|
|
|
Nd4j.setDefaultDataTypes(dtypeBefore, dtypeBefore);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
@Test
|
|
|
|
public void testLabelAndPredictionCounts() {
|
|
|
|
|
|
|
|
int minibatch = 50;
|
|
|
|
int nClasses = 3;
|
|
|
|
|
|
|
|
INDArray arr = Nd4j.rand(minibatch, nClasses);
|
|
|
|
arr.diviColumnVector(arr.sum(1));
|
|
|
|
INDArray labels = Nd4j.zeros(minibatch, nClasses);
|
|
|
|
Random r = new Random(12345);
|
|
|
|
for (int i = 0; i < minibatch; i++) {
|
|
|
|
labels.putScalar(i, r.nextInt(nClasses), 1.0);
|
|
|
|
}
|
|
|
|
|
|
|
|
EvaluationCalibration ec = new EvaluationCalibration(5, 5);
|
|
|
|
ec.eval(labels, arr);
|
|
|
|
|
|
|
|
int[] expLabelCounts = labels.sum(0).data().asInt();
|
|
|
|
int[] expPredictionCount = new int[(int) labels.size(1)];
|
|
|
|
INDArray argmax = Nd4j.argMax(arr, 1);
|
|
|
|
for (int i = 0; i < argmax.length(); i++) {
|
|
|
|
expPredictionCount[argmax.getInt(i)]++;
|
|
|
|
}
|
|
|
|
|
|
|
|
assertArrayEquals(expLabelCounts, ec.getLabelCountsEachClass());
|
|
|
|
assertArrayEquals(expPredictionCount, ec.getPredictionCountsEachClass());
|
|
|
|
}
|
|
|
|
|
|
|
|
@Test
|
|
|
|
public void testResidualPlots() {
|
|
|
|
|
|
|
|
int minibatch = 50;
|
|
|
|
int nClasses = 3;
|
|
|
|
|
|
|
|
INDArray arr = Nd4j.rand(minibatch, nClasses);
|
|
|
|
arr.diviColumnVector(arr.sum(1));
|
|
|
|
INDArray labels = Nd4j.zeros(minibatch, nClasses);
|
|
|
|
Random r = new Random(12345);
|
|
|
|
for (int i = 0; i < minibatch; i++) {
|
|
|
|
labels.putScalar(i, r.nextInt(nClasses), 1.0);
|
|
|
|
}
|
|
|
|
|
|
|
|
int numBins = 5;
|
|
|
|
EvaluationCalibration ec = new EvaluationCalibration(numBins, numBins);
|
|
|
|
ec.eval(labels, arr);
|
|
|
|
|
|
|
|
INDArray absLabelSubProb = Transforms.abs(labels.sub(arr));
|
|
|
|
INDArray argmaxLabels = Nd4j.argMax(labels, 1);
|
|
|
|
|
|
|
|
int[] countsAllClasses = new int[numBins];
|
|
|
|
int[][] countsByClass = new int[nClasses][numBins]; //Histogram count of |label[x] - p(x)|; rows x are over classes
|
|
|
|
double binSize = 1.0 / numBins;
|
|
|
|
|
|
|
|
for (int i = 0; i < minibatch; i++) {
|
|
|
|
int actualClassIdx = argmaxLabels.getInt(i);
|
|
|
|
for (int j = 0; j < nClasses; j++) {
|
|
|
|
double labelSubProb = absLabelSubProb.getDouble(i, j);
|
|
|
|
for (int k = 0; k < numBins; k++) {
|
|
|
|
double binLower = k * binSize;
|
|
|
|
double binUpper = (k + 1) * binSize;
|
|
|
|
if (k == numBins - 1)
|
|
|
|
binUpper = 1.0;
|
|
|
|
|
|
|
|
if (labelSubProb >= binLower && labelSubProb < binUpper) {
|
|
|
|
countsAllClasses[k]++;
|
|
|
|
if (j == actualClassIdx) {
|
|
|
|
countsByClass[j][k]++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//Check residual plot - all classes/predictions
|
|
|
|
org.nd4j.evaluation.curves.Histogram rpAllClasses = ec.getResidualPlotAllClasses();
|
|
|
|
int[] rpAllClassesBinCounts = rpAllClasses.getBinCounts();
|
|
|
|
assertArrayEquals(countsAllClasses, rpAllClassesBinCounts);
|
|
|
|
|
|
|
|
//Check residual plot - split by labels for each class
|
|
|
|
// i.e., histogram of |label[x] - p(x)| only for those examples where label[x] == 1
|
|
|
|
for (int i = 0; i < nClasses; i++) {
|
|
|
|
org.nd4j.evaluation.curves.Histogram rpCurrClass = ec.getResidualPlot(i);
|
|
|
|
int[] rpCurrClassCounts = rpCurrClass.getBinCounts();
|
|
|
|
|
|
|
|
// System.out.println(Arrays.toString(countsByClass[i]));
|
|
|
|
// System.out.println(Arrays.toString(rpCurrClassCounts));
|
|
|
|
|
|
|
|
assertArrayEquals("Class: " + i, countsByClass[i], rpCurrClassCounts);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//Check overall probability distribution
|
|
|
|
int[] probCountsAllClasses = new int[numBins];
|
|
|
|
int[][] probCountsByClass = new int[nClasses][numBins]; //Histogram count of |label[x] - p(x)|; rows x are over classes
|
|
|
|
for (int i = 0; i < minibatch; i++) {
|
|
|
|
int actualClassIdx = argmaxLabels.getInt(i);
|
|
|
|
for (int j = 0; j < nClasses; j++) {
|
|
|
|
double prob = arr.getDouble(i, j);
|
|
|
|
for (int k = 0; k < numBins; k++) {
|
|
|
|
double binLower = k * binSize;
|
|
|
|
double binUpper = (k + 1) * binSize;
|
|
|
|
if (k == numBins - 1)
|
|
|
|
binUpper = 1.0;
|
|
|
|
|
|
|
|
if (prob >= binLower && prob < binUpper) {
|
|
|
|
probCountsAllClasses[k]++;
|
|
|
|
if (j == actualClassIdx) {
|
|
|
|
probCountsByClass[j][k]++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
org.nd4j.evaluation.curves.Histogram allProb = ec.getProbabilityHistogramAllClasses();
|
|
|
|
int[] actProbCountsAllClasses = allProb.getBinCounts();
|
|
|
|
|
|
|
|
assertArrayEquals(probCountsAllClasses, actProbCountsAllClasses);
|
|
|
|
|
|
|
|
//Check probability distribution - for each label class
|
|
|
|
for (int i = 0; i < nClasses; i++) {
|
|
|
|
org.nd4j.evaluation.curves.Histogram probCurrClass = ec.getProbabilityHistogram(i);
|
|
|
|
int[] actProbCurrClass = probCurrClass.getBinCounts();
|
|
|
|
|
|
|
|
assertArrayEquals(probCountsByClass[i], actProbCurrClass);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
@Test
|
|
|
|
public void testSegmentation(){
|
|
|
|
for( int c : new int[]{4, 1}) { //c=1 should be treated as binary classification case
|
|
|
|
Nd4j.getRandom().setSeed(12345);
|
|
|
|
int mb = 3;
|
|
|
|
int h = 3;
|
|
|
|
int w = 2;
|
|
|
|
|
|
|
|
//NCHW
|
|
|
|
INDArray labels = Nd4j.create(DataType.FLOAT, mb, c, h, w);
|
|
|
|
Random r = new Random(12345);
|
|
|
|
for (int i = 0; i < mb; i++) {
|
|
|
|
for (int j = 0; j < h; j++) {
|
|
|
|
for (int k = 0; k < w; k++) {
|
|
|
|
if(c == 1){
|
|
|
|
labels.putScalar(i, 0, j, k, r.nextInt(2));
|
|
|
|
} else {
|
|
|
|
int classIdx = r.nextInt(c);
|
|
|
|
labels.putScalar(i, classIdx, j, k, 1.0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
INDArray predictions = Nd4j.rand(DataType.FLOAT, mb, c, h, w);
|
|
|
|
if(c > 1) {
|
|
|
|
DynamicCustomOp op = DynamicCustomOp.builder("softmax")
|
|
|
|
.addInputs(predictions)
|
|
|
|
.addOutputs(predictions)
|
|
|
|
.callInplace(true)
|
|
|
|
.addIntegerArguments(1) //Axis
|
|
|
|
.build();
|
|
|
|
Nd4j.exec(op);
|
|
|
|
}
|
|
|
|
|
|
|
|
EvaluationCalibration e2d = new EvaluationCalibration();
|
|
|
|
EvaluationCalibration e4d = new EvaluationCalibration();
|
|
|
|
|
|
|
|
e4d.eval(labels, predictions);
|
|
|
|
|
|
|
|
for (int i = 0; i < mb; i++) {
|
|
|
|
for (int j = 0; j < h; j++) {
|
|
|
|
for (int k = 0; k < w; k++) {
|
|
|
|
INDArray rowLabel = labels.get(NDArrayIndex.point(i), NDArrayIndex.all(), NDArrayIndex.point(j), NDArrayIndex.point(k));
|
|
|
|
INDArray rowPredictions = predictions.get(NDArrayIndex.point(i), NDArrayIndex.all(), NDArrayIndex.point(j), NDArrayIndex.point(k));
|
|
|
|
rowLabel = rowLabel.reshape(1, rowLabel.length());
|
|
|
|
rowPredictions = rowPredictions.reshape(1, rowLabel.length());
|
|
|
|
|
|
|
|
e2d.eval(rowLabel, rowPredictions);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
assertEquals(e2d, e4d);
|
|
|
|
|
|
|
|
|
|
|
|
//NHWC, etc
|
|
|
|
INDArray lOrig = labels;
|
|
|
|
INDArray fOrig = predictions;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
|
|
switch (i) {
|
|
|
|
case 0:
|
|
|
|
//CNHW - Never really used
|
|
|
|
labels = lOrig.permute(1, 0, 2, 3).dup();
|
|
|
|
predictions = fOrig.permute(1, 0, 2, 3).dup();
|
|
|
|
break;
|
|
|
|
case 1:
|
|
|
|
//NCHW
|
|
|
|
labels = lOrig;
|
|
|
|
predictions = fOrig;
|
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
//NHCW - Never really used...
|
|
|
|
labels = lOrig.permute(0, 2, 1, 3).dup();
|
|
|
|
predictions = fOrig.permute(0, 2, 1, 3).dup();
|
|
|
|
break;
|
|
|
|
case 3:
|
|
|
|
//NHWC
|
|
|
|
labels = lOrig.permute(0, 2, 3, 1).dup();
|
|
|
|
predictions = fOrig.permute(0, 2, 3, 1).dup();
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
throw new RuntimeException();
|
|
|
|
}
|
|
|
|
|
|
|
|
EvaluationCalibration e = new EvaluationCalibration();
|
|
|
|
e.setAxis(i);
|
|
|
|
|
|
|
|
e.eval(labels, predictions);
|
|
|
|
assertEquals(e2d, e);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2019-06-15 21:34:34 +10:00
|
|
|
|
|
|
|
@Test
|
|
|
|
public void testEvaluationCalibration3d() {
|
|
|
|
INDArray prediction = Nd4j.rand(DataType.FLOAT, 2, 5, 10);
|
|
|
|
INDArray label = Nd4j.rand(DataType.FLOAT, 2, 5, 10);
|
|
|
|
|
|
|
|
|
|
|
|
List<INDArray> rowsP = new ArrayList<>();
|
|
|
|
List<INDArray> rowsL = new ArrayList<>();
|
|
|
|
NdIndexIterator iter = new NdIndexIterator(2, 10);
|
|
|
|
while (iter.hasNext()) {
|
|
|
|
long[] idx = iter.next();
|
|
|
|
INDArrayIndex[] idxs = new INDArrayIndex[]{NDArrayIndex.point(idx[0]), NDArrayIndex.all(), NDArrayIndex.point(idx[1])};
|
|
|
|
rowsP.add(prediction.get(idxs));
|
|
|
|
rowsL.add(label.get(idxs));
|
|
|
|
}
|
|
|
|
|
|
|
|
INDArray p2d = Nd4j.vstack(rowsP);
|
|
|
|
INDArray l2d = Nd4j.vstack(rowsL);
|
|
|
|
|
|
|
|
EvaluationCalibration e3d = new EvaluationCalibration();
|
|
|
|
EvaluationCalibration e2d = new EvaluationCalibration();
|
|
|
|
|
|
|
|
e3d.eval(label, prediction);
|
|
|
|
e2d.eval(l2d, p2d);
|
|
|
|
|
|
|
|
System.out.println(e2d.stats());
|
|
|
|
|
|
|
|
assertEquals(e2d, e3d);
|
|
|
|
|
|
|
|
assertEquals(e2d.stats(), e3d.stats());
|
|
|
|
}
|
|
|
|
|
|
|
|
@Test
|
|
|
|
public void testEvaluationCalibration3dMasking() {
|
|
|
|
INDArray prediction = Nd4j.rand(DataType.FLOAT, 2, 3, 10);
|
|
|
|
INDArray label = Nd4j.rand(DataType.FLOAT, 2, 3, 10);
|
|
|
|
|
|
|
|
List<INDArray> rowsP = new ArrayList<>();
|
|
|
|
List<INDArray> rowsL = new ArrayList<>();
|
|
|
|
|
|
|
|
//Check "DL4J-style" 2d per timestep masking [minibatch, seqLength] mask shape
|
|
|
|
INDArray mask2d = Nd4j.randomBernoulli(0.5, 2, 10);
|
|
|
|
NdIndexIterator iter = new NdIndexIterator(2, 10);
|
|
|
|
while (iter.hasNext()) {
|
|
|
|
long[] idx = iter.next();
|
|
|
|
if(mask2d.getDouble(idx[0], idx[1]) != 0.0) {
|
|
|
|
INDArrayIndex[] idxs = new INDArrayIndex[]{NDArrayIndex.point(idx[0]), NDArrayIndex.all(), NDArrayIndex.point(idx[1])};
|
|
|
|
rowsP.add(prediction.get(idxs));
|
|
|
|
rowsL.add(label.get(idxs));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
INDArray p2d = Nd4j.vstack(rowsP);
|
|
|
|
INDArray l2d = Nd4j.vstack(rowsL);
|
|
|
|
|
|
|
|
EvaluationCalibration e3d_m2d = new EvaluationCalibration();
|
|
|
|
EvaluationCalibration e2d_m2d = new EvaluationCalibration();
|
|
|
|
e3d_m2d.eval(label, prediction, mask2d);
|
|
|
|
e2d_m2d.eval(l2d, p2d);
|
|
|
|
|
|
|
|
assertEquals(e3d_m2d, e2d_m2d);
|
|
|
|
}
|
2019-06-06 15:21:15 +03:00
|
|
|
}
|