cavis/libnd4j/include/loops/cuda/transform/transform_float.cu

148 lines
5.8 KiB
Plaintext
Raw Normal View History

2019-06-06 14:21:15 +02:00
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include <Environment.h>
#include <loops/transform_float.h>
#include <types/types.h>
#include <op_boilerplate.h>
#include <loops/legacy_ops.h>
#include <helpers/DebugHelper.h>
using namespace simdOps;
template <typename X, typename Z, typename OpType>
__global__ void transformFloatSimple(void *x, Nd4jLong *xShapeInfo, int xRank,
void *params,
void *z, Nd4jLong *zShapeInfo, int zRank,
int *allocationPointer,
void *reductionPointer,
Nd4jLong *tadShapeInfo, Nd4jLong *tadOffsets) {
2019-06-06 14:21:15 +02:00
functions::transform::TransformFloat<X,Z>::template transformCuda<OpType>(
x, xShapeInfo,
params,
z, zShapeInfo,
allocationPointer, reductionPointer,
tadShapeInfo, tadOffsets);
}
namespace functions {
namespace transform {
template<typename X, typename Y>
_CUDA_H void TransformFloat<X,Y>::executeTransformShaped(dim3 launchDims, cudaStream_t *stream, int opNum, void *x, Nd4jLong *xShape, int xRank, void *extraParams, void *z, Nd4jLong *zShape, int zRank, int *allocationPointer, void *reductionPointer, Nd4jLong *tadShapeInfo, Nd4jLong *tadOffsets) {
DISPATCH_BY_OPNUM_TT(intermediateShaped, PARAMS(launchDims, stream, x, xShape, xRank, extraParams, z, zShape, zRank, allocationPointer, reductionPointer, tadShapeInfo, tadOffsets), TRANSFORM_FLOAT_OPS);
DEBUG_KERNEL(stream, opNum);
}
template<typename X, typename Z>
template <typename OpType>
__device__ void TransformFloat<X,Z>::transformCuda(
void *vx,
Nd4jLong *xShapeInfo,
void *vparams,
void *vz,
Nd4jLong *zShapeInfo,
int *allocationPointer, void *vreductionPointer,
2019-06-06 14:21:15 +02:00
Nd4jLong *tadShapeInfo, Nd4jLong *tadOffsets) {
auto x = reinterpret_cast<X*>(vx);
auto z = reinterpret_cast<Z*>(vz);
auto params = reinterpret_cast<Z*>(vparams);
auto reductionPointer = reinterpret_cast<Z*>(vreductionPointer);
if(OpType::requiresSpecial) {
OpType::execSpecialCuda(x,xShapeInfo,z,zShapeInfo,params, allocationPointer, reductionPointer, tadShapeInfo, tadOffsets);
return;
}
2019-06-06 14:21:15 +02:00
else {
__shared__ Nd4jLong xEws;
__shared__ Nd4jLong zEws;
__shared__ char xOrder;
__shared__ char zOrder;
__shared__ Nd4jLong length;
2019-06-06 14:21:15 +02:00
if (threadIdx.x == 0) {
2019-06-06 14:21:15 +02:00
xEws = shape::elementWiseStride(xShapeInfo);
zEws = shape::elementWiseStride(zShapeInfo);
xOrder = shape::order(xShapeInfo);
zOrder = shape::order(zShapeInfo);
length = shape::length(xShapeInfo);
}
__syncthreads();
auto tid = blockIdx.x * blockDim.x + threadIdx.x;
int totalThreads = gridDim.x * blockDim.x;
if(xEws > 0 && zEws > 0 && xOrder == zOrder) {
2019-06-06 14:21:15 +02:00
for (Nd4jLong i = tid; i < length; i += totalThreads)
z[i * zEws] = OpType::op(x[i * xEws], params);
2019-06-06 14:21:15 +02:00
}
else {
2019-06-06 14:21:15 +02:00
if(vx == vz) {
for (Nd4jLong i = tid; i < length; i+= totalThreads) {
auto xOffset = shape::getIndexOffset(i, xShapeInfo);
2019-06-06 14:21:15 +02:00
z[xOffset] = OpType::op(x[xOffset], params);
}
2019-06-06 14:21:15 +02:00
}
else {
for (Nd4jLong i = tid; i < length; i+= totalThreads) {
auto xOffset = shape::getIndexOffset(i, xShapeInfo);
auto zOffset = shape::getIndexOffset(i, zShapeInfo);
2019-06-06 14:21:15 +02:00
z[zOffset] = OpType::op(x[xOffset], params);
}
}
}
}
};
template<typename X, typename Y>
__device__ void TransformFloat<X,Y>::transformCudaLegacy(
int opNum,
void *x,
Nd4jLong *xShapeInfo,
void *params,
void *z,
Nd4jLong *zShapeInfo,
int *allocationPointer,
void *reductionPointer,
Nd4jLong *tadShapeInfo,
Nd4jLong *tadOffsets) {
DISPATCH_BY_OPNUM_TT(transformCuda, PARAMS(x, xShapeInfo, params, z, zShapeInfo, allocationPointer, reductionPointer, tadShapeInfo, tadOffsets), TRANSFORM_FLOAT_OPS);
}
template<typename X, typename Z>
template <typename OpType>
_CUDA_H void TransformFloat<X,Z>::intermediateShaped(dim3 launchDims, cudaStream_t *stream, void *x, Nd4jLong *xShape, int xRank, void *extraParams, void *z, Nd4jLong *zShape, int zRank, int *allocationPointer, void *reductionPointer, Nd4jLong *tadShapeInfo, Nd4jLong *tadOffsets) {
transformFloatSimple<X, Z, OpType><<<launchDims.x, launchDims.y, launchDims.z, *stream>>>(x, xShape, xRank, extraParams, z, zShape, zRank, allocationPointer, reductionPointer, tadShapeInfo, tadOffsets);
nd4j::DebugHelper::checkErrorCode(stream, "transformFloat(...) failed");
}
BUILD_DOUBLE_TEMPLATE(template class ND4J_EXPORT TransformFloat, , LIBND4J_TYPES, FLOAT_TYPES);
}
}