2021-02-01 13:31:45 +01:00
|
|
|
/* ******************************************************************************
|
|
|
|
*
|
2019-06-06 14:21:15 +02:00
|
|
|
*
|
|
|
|
* This program and the accompanying materials are made available under the
|
|
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
|
|
*
|
2021-02-01 13:31:45 +01:00
|
|
|
* See the NOTICE file distributed with this work for additional
|
|
|
|
* information regarding copyright ownership.
|
2019-06-06 14:21:15 +02:00
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
|
|
* License for the specific language governing permissions and limitations
|
|
|
|
* under the License.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
//
|
|
|
|
// @author raver119, created on 29/10/17.
|
|
|
|
// @author Yurii Shyrma (iuriish@yahoo.com), changed on 03.05.2018
|
|
|
|
//
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
#include <system/op_boilerplate.h>
|
2019-06-06 14:21:15 +02:00
|
|
|
#if NOT_EXCLUDED(OP_upsampling2d)
|
|
|
|
|
|
|
|
#include <ops/declarable/CustomOperations.h>
|
|
|
|
#include <ops/declarable/helpers/convolutions.h>
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
namespace sd {
|
2019-06-06 14:21:15 +02:00
|
|
|
namespace ops {
|
|
|
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
CUSTOM_OP_IMPL(upsampling2d, 1, 1, false, 0, 2) {
|
|
|
|
auto input = INPUT_VARIABLE(0); // [bS, iC, iH, iW] (NCHW) or [bS, iH, iW, iC] (NHWC)
|
2020-03-20 06:49:28 +01:00
|
|
|
auto output = OUTPUT_NULLIFIED(0); // [bS, iC, factorH*iH, factorW*iW ] (NCHW) or [bS, factorH*iH, factorW*iW, iC] (NHWC)
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
const int factorH = INT_ARG(0);
|
|
|
|
const int factorW = INT_ARG(1);
|
|
|
|
const int isNCHW = block.getIArguments()->size() > 2 ? INT_ARG(2) : 0; // INT_ARG(2): 0-NCHW, 1-NHWC
|
|
|
|
|
|
|
|
REQUIRE_TRUE(input->rankOf() == 4, 0, "UPSAMPLING2D op: input should be 4D, but got %i instead!", input->rankOf());
|
|
|
|
REQUIRE_TRUE(output->rankOf() == 4, 0, "UPSAMPLING2D op: output should be 4D, but got %i instead!", output->rankOf());
|
|
|
|
|
2019-06-15 13:34:34 +02:00
|
|
|
ConvolutionUtils::upsampling2d(block, *input, *output, factorH, factorW, (bool)isNCHW);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
return Status::OK();
|
|
|
|
}
|
|
|
|
DECLARE_SYN(upsampling, upsampling2d);
|
|
|
|
|
|
|
|
DECLARE_TYPES(upsampling2d) {
|
|
|
|
getOpDescriptor()
|
2020-03-02 10:49:41 +01:00
|
|
|
->setAllowedInputTypes(sd::DataType::ANY)
|
2019-06-06 14:21:15 +02:00
|
|
|
->setAllowedOutputTypes({ALL_FLOATS});
|
|
|
|
}
|
|
|
|
|
|
|
|
DECLARE_SHAPE_FN(upsampling2d) {
|
|
|
|
|
|
|
|
auto inputShapeInfo = inputShape->at(0);
|
|
|
|
|
|
|
|
REQUIRE_TRUE(inputShapeInfo[0] == 4, 0, "UPSAMPLING2D op: input should be 4D, but got %i instead!", inputShapeInfo[0]);
|
|
|
|
|
|
|
|
const int factorH = INT_ARG(0);
|
|
|
|
const int factorW = INT_ARG(1);
|
|
|
|
const int isNCHW = block.getIArguments()->size() > 2 ? INT_ARG(2) : 0; // INT_ARG(2): 0-NCHW, 1-NHWC
|
|
|
|
|
|
|
|
Nd4jLong *outputShapeInfo = nullptr;
|
|
|
|
ALLOCATE(outputShapeInfo, block.getWorkspace(), shape::shapeInfoLength(inputShapeInfo[0]), Nd4jLong);
|
|
|
|
|
|
|
|
outputShapeInfo[0] = inputShapeInfo[0];
|
|
|
|
outputShapeInfo[1] = inputShapeInfo[1];
|
|
|
|
|
|
|
|
if(isNCHW) {
|
|
|
|
outputShapeInfo[2] = inputShapeInfo[2];
|
|
|
|
outputShapeInfo[3] = inputShapeInfo[3] * factorH;
|
|
|
|
outputShapeInfo[4] = inputShapeInfo[4] * factorW;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
outputShapeInfo[2] = inputShapeInfo[2] * factorH;
|
|
|
|
outputShapeInfo[3] = inputShapeInfo[3] * factorW;
|
|
|
|
outputShapeInfo[4] = inputShapeInfo[4];
|
|
|
|
}
|
|
|
|
|
|
|
|
ShapeUtils::updateStridesAndType(outputShapeInfo, inputShapeInfo, shape::order(inputShapeInfo));
|
|
|
|
|
|
|
|
return SHAPELIST(CONSTANT(outputShapeInfo));
|
|
|
|
}
|
|
|
|
|
|
|
|
DECLARE_TYPES(upsampling2d_bp) {
|
|
|
|
getOpDescriptor()
|
2020-03-02 10:49:41 +01:00
|
|
|
->setAllowedInputTypes(sd::DataType::ANY)
|
2019-06-06 14:21:15 +02:00
|
|
|
->setAllowedOutputTypes({ALL_FLOATS});
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
CUSTOM_OP_IMPL(upsampling2d_bp, 2, 1, false, 0, 0) {
|
|
|
|
|
|
|
|
// NDArray<T>* input = INPUT_VARIABLE(0); // [bS, iC, iH, iW] (NCHW) or [bS, iH, iW, iC] (NHWC)
|
|
|
|
auto gradO = INPUT_VARIABLE(1); // [bS, iC, factorH*iH, factorW*iW ] (NCHW) or [bS, factorH*iH, factorW*iW, iC] (NHWC)
|
2020-03-20 06:49:28 +01:00
|
|
|
auto gradI = OUTPUT_NULLIFIED(0); // [bS, iC, iH, iW] (NCHW) or [bS, iH, iW, iC] (NHWC)
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
const int isNCHW = block.getIArguments()->size() > 0 ? INT_ARG(0) : 0; // INT_ARG(0): 0-NCHW, 1-NHWC
|
|
|
|
|
|
|
|
// REQUIRE_TRUE(input->rankOf() == 4, 0, "UPSAMPLING2D_BP op: input array must be 4D, but got %i instead!", input->rankOf());
|
|
|
|
REQUIRE_TRUE(gradO->rankOf() == 4, 0, "UPSAMPLING2D_BP op: output's gradient array must be 4D, but got %i instead!", gradO->rankOf());
|
|
|
|
REQUIRE_TRUE(gradI->rankOf() == 4, 0, "UPSAMPLING2D_BP op: input's gradient array must be 4D, but got %i instead!", gradI->rankOf());
|
|
|
|
|
2019-06-15 13:34:34 +02:00
|
|
|
ConvolutionUtils::upsampling2dBP(block, *gradO, *gradI, (bool)isNCHW);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
return Status::OK();
|
|
|
|
}
|
|
|
|
DECLARE_SYN(upsampling_bp, upsampling2d_bp);
|
|
|
|
|
|
|
|
|
|
|
|
DECLARE_SHAPE_FN(upsampling2d_bp) {
|
|
|
|
|
|
|
|
REQUIRE_TRUE(inputShape->at(0)[0] == 4, 0, "UPSAMPLING2D_BP op: input array must be 4D, but got %i instead!", inputShape->at(0)[0]);
|
|
|
|
REQUIRE_TRUE(inputShape->at(1)[0] == 4, 0, "UPSAMPLING2D_BP op: output's gradient array must be 4D, but got %i instead!", inputShape->at(1)[0]);
|
|
|
|
|
|
|
|
auto gradIShapeInfo = ShapeBuilders::copyShapeInfoAndType(inputShape->at(0), inputShape->at(1), false, block.getWorkspace());
|
|
|
|
|
|
|
|
return SHAPELIST(CONSTANT(gradIShapeInfo));
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|