2019-06-06 14:21:15 +02:00
|
|
|
/*******************************************************************************
|
|
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
|
|
*
|
|
|
|
* This program and the accompanying materials are made available under the
|
|
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
|
|
* License for the specific language governing permissions and limitations
|
|
|
|
* under the License.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
//
|
2019-09-11 19:12:09 +02:00
|
|
|
// @author Yurii Shyrma (iuriish@yahoo.com)
|
2019-06-06 14:21:15 +02:00
|
|
|
//
|
|
|
|
|
|
|
|
#ifndef LIBND4J_SHAPEUTILS_H
|
|
|
|
#define LIBND4J_SHAPEUTILS_H
|
|
|
|
|
|
|
|
#include <vector>
|
|
|
|
#include <NDArray.h>
|
|
|
|
|
|
|
|
namespace nd4j {
|
|
|
|
|
2019-12-02 19:37:21 +01:00
|
|
|
class ND4J_EXPORT ShapeUtils {
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
public:
|
|
|
|
|
|
|
|
// evaluate shape for array resulting from tensorDot operation, also evaluate shapes and permutation dimensions for transposition of two input arrays
|
|
|
|
static std::vector<Nd4jLong> evalShapeForTensorDot(const Nd4jLong* aShapeInfo, const Nd4jLong* bShapeInfo, std::vector<int> axesA, std::vector<int> axesB, std::vector<int>& permutAt, std::vector<int>& permutBt, std::vector<Nd4jLong>& shapeAt, std::vector<Nd4jLong>& shapeBt);
|
|
|
|
static std::vector<Nd4jLong> evalShapeForTensorDot(const NDArray* a, const NDArray* b, const std::vector<int>& axesA, const std::vector<int>& axesB, std::vector<int>& permutAt, std::vector<int>& permutBt, std::vector<Nd4jLong>& shapeAt, std::vector<Nd4jLong>& shapeBt);
|
|
|
|
|
|
|
|
// evaluate resulting shape after reduce operation
|
|
|
|
static Nd4jLong* evalReduceShapeInfo(const char order, std::vector<int>& dimensions, const NDArray& arr, const nd4j::DataType dataType, const bool keepDims = false, const bool supportOldShapes = false, nd4j::memory::Workspace* workspace = nullptr);
|
|
|
|
static Nd4jLong* evalReduceShapeInfo(const char order, std::vector<int>& dimensions, const Nd4jLong* shapeInfo, const nd4j::DataType dataType, const bool keepDims = false, const bool supportOldShapes = false, nd4j::memory::Workspace* workspace = nullptr);
|
|
|
|
static Nd4jLong* evalReduceShapeInfo(const char order, std::vector<int>& dimensions, const NDArray& arr, const bool keepDims = false, const bool supportOldShapes = false, nd4j::memory::Workspace* workspace = nullptr);
|
|
|
|
static Nd4jLong* evalReduceShapeInfo(const char order, std::vector<int>& dimensions, const Nd4jLong* shapeInfo, const bool keepDims = false, const bool supportOldShapes = false, nd4j::memory::Workspace* workspace = nullptr);
|
|
|
|
|
2019-06-15 13:34:34 +02:00
|
|
|
/**
|
|
|
|
* evaluate output shape for reduce operation when input shape is empty
|
|
|
|
* behavior is analogous to tf
|
|
|
|
*/
|
|
|
|
static Nd4jLong* evalReduceShapeInfoEmpty(const char order, std::vector<int>& dimensions, const Nd4jLong *shapeInfo, const nd4j::DataType dataType, const bool keepDims, nd4j::memory::Workspace* workspace);
|
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
// evaluate shape for array which is result of repeat operation applied to arr
|
2019-08-21 20:10:29 +02:00
|
|
|
static std::vector<Nd4jLong> evalRepeatShape(int axis, const std::vector<int>& repeats, const NDArray& arr);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
// evaluate shapeInfo of permuted array
|
|
|
|
static Nd4jLong* evalPermShapeInfo(const int* dimensions, const int rank, const NDArray& arr, nd4j::memory::Workspace* workspace);
|
|
|
|
static Nd4jLong* evalPermShapeInfo(const Nd4jLong* dimensions, const int rank, const NDArray& arr, nd4j::memory::Workspace* workspace);
|
|
|
|
|
|
|
|
// evaluate shapeInfo of transposed array
|
|
|
|
static Nd4jLong* evalTranspShapeInfo(const NDArray& arr, nd4j::memory::Workspace* workspace);
|
|
|
|
|
|
|
|
static bool copyVectorPart(std::vector<int>& target, std::vector<int>& source, int rank, int offset);
|
|
|
|
|
|
|
|
// return new (shorter) sorted dimensions array without dimensions that are present in input vector
|
|
|
|
static std::vector<int> evalDimsToExclude(const int rank, const int dimsLen, const int* dimensions);
|
|
|
|
static std::vector<int> evalDimsToExclude(const int rank, const std::vector<int>& dimensions);
|
|
|
|
|
|
|
|
// check whether 2 arrays have mutually broadcastable shapes
|
|
|
|
// shape comparison starts from the end
|
|
|
|
static bool areShapesBroadcastable(const NDArray &arr1, const NDArray &arr2);
|
|
|
|
static bool areShapesBroadcastable(Nd4jLong* shapeX, Nd4jLong* shapeY);
|
|
|
|
static bool areShapesBroadcastable(const std::vector<Nd4jLong>& shape1, const std::vector<Nd4jLong>& shape2);
|
|
|
|
|
|
|
|
// check the possibility of broadcast operation, if true then return shapeInfo of resulting array
|
|
|
|
// if evalMinMax == false then array with larger rank has to be passed as first argument
|
|
|
|
static bool evalBroadcastShapeInfo(const NDArray& max, const NDArray& min, const bool evalMinMax, Nd4jLong*& resultShapeInfo, nd4j::memory::Workspace* workspace);
|
|
|
|
static bool evalBroadcastShapeInfo(Nd4jLong *max, Nd4jLong *min, const bool evalMinMax, Nd4jLong*& resultShapeInfo, nd4j::memory::Workspace* workspace);
|
|
|
|
|
|
|
|
// evaluate sorted vector of max axes to create tads along in case of simple broadcast operation
|
|
|
|
// if simple broadcast is not possible then empty vector is returned
|
|
|
|
// PLEASE NOTE: condition (rank_max >= rank_min) should be satisfied !
|
|
|
|
static std::vector<int> tadAxesForSimpleBroadcast(const NDArray& max, const NDArray& min);
|
|
|
|
|
|
|
|
// check the possibility of broadcast operation for set of arrays, if true then return resulting broadcasted shapeInfo
|
|
|
|
static bool evalCommonBroadcastShapeInfo(const std::vector<const NDArray*>& arrays, Nd4jLong*& resultShapeInfo, memory::Workspace* workspace = nullptr);
|
|
|
|
|
2019-10-01 08:10:19 +02:00
|
|
|
// return sorted vector of dimensions common (same) for two arrays, dimensions values corresponds to array with bigger rank
|
|
|
|
// for example if arr1{2,7}, arr2{2,5,4,7} then vector = {0,3}
|
2019-06-06 14:21:15 +02:00
|
|
|
static std::vector<int> getDimsWithSameShape(const NDArray& max, const NDArray& min);
|
|
|
|
|
|
|
|
// evaluate shapeInfo for resulting array of tile operation
|
|
|
|
static Nd4jLong* evalTileShapeInfo(const NDArray& arr, const std::vector<Nd4jLong>& reps, nd4j::memory::Workspace* workspace);
|
|
|
|
|
|
|
|
// returns shape part of shapeInfo as std::vector
|
|
|
|
static std::vector<Nd4jLong> pullShapeFromShapeInfo(Nd4jLong *shapeInfo);
|
|
|
|
|
|
|
|
static std::string shapeAsString(const NDArray* array);
|
|
|
|
static std::string shapeAsString(const std::vector<Nd4jLong>& shape);
|
|
|
|
static std::string shapeAsString(const Nd4jLong* shapeInfo);
|
|
|
|
static std::string shapeAsString(const int rank, const Nd4jLong* shapeInfo);
|
|
|
|
static std::string strideAsString(const NDArray* array);
|
|
|
|
|
2019-11-03 11:37:19 +01:00
|
|
|
static std::vector<Nd4jLong> shapeAsVector(const Nd4jLong* shapeInfo);
|
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
// evaluate shapeInfo for diagonal array which is made using input arr elements as diagonal
|
|
|
|
static Nd4jLong* evalDiagShapeInfo(const Nd4jLong* shapeInfo, nd4j::memory::Workspace* workspace);
|
|
|
|
|
|
|
|
static std::vector<int> evalBroadcastBackwardAxis(const Nd4jLong *operand, const Nd4jLong *result);
|
|
|
|
|
|
|
|
// utility to calculate matrix product shape with give source shapes and additional params
|
|
|
|
// returns ShapeList pointer with result shape
|
|
|
|
static Nd4jLong* matrixProductShape(Nd4jLong* theFirstShape, Nd4jLong* theSecondShape, bool shouldTranspondFirst, bool shouldTranspondSecond, nd4j::DataType dtype, nd4j::memory::Workspace* workspace);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* This method evaluates permutation vector necessary for reducing of shapeFrom to shapeTo
|
|
|
|
* if shapeFrom is identical to shapeTo (permutation is unnecessary) then empty vector is returned
|
|
|
|
* in case of permutation is impossible an exception is thrown
|
|
|
|
*/
|
|
|
|
static std::vector<int> evalPermutFromTo(const std::vector<Nd4jLong>& shapeFrom, const std::vector<Nd4jLong>& shapeTo);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* This method composes shape (shape only, not whole shapeInfo!) using dimensions values and corresponding indexes,
|
|
|
|
* please note: the size of input vector dimsAndIdx must always be even, since the numbers of dimensions and indexes are the same,
|
|
|
|
* for example if dimsAndIdx = {dimC,dimB,dimA, 2,1,0} then output vector = {dimA,dimB,dimC}
|
|
|
|
*/
|
|
|
|
static std::vector<Nd4jLong> composeShapeUsingDimsAndIdx(const std::vector<int>& dimsAndIdx);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* x * y = c, evaluate shape for array resulting from mmul operation
|
|
|
|
* possible cases: dot product (xRank=yRank=1), matrix-vector product (xRank=2, yRank=1), vector-matrix product (xRank=1, yRank=2), matrix-matrix product (xRank=yRank and rank >=2)
|
|
|
|
*/
|
|
|
|
static std::vector<Nd4jLong> evalShapeForMatmul(const Nd4jLong* xShapeInfo, const Nd4jLong* yShapeInfo, const bool transX, const bool transY);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* evaluate number of sub-arrays along dimensions stored in dimsToExclude
|
|
|
|
* i.e. if shape is [2,3,4,5] and dimsToExclude={0,2}, then number of sub-arrays = 8
|
|
|
|
*/
|
|
|
|
static Nd4jLong getNumOfSubArrs(const Nd4jLong* shapeInfo, const std::vector<int>& dimsToExclude);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* evaluate indexes ranges that define sub-array of array having shape=shapeInfo
|
|
|
|
* subArrIdx - index of current sub-array
|
|
|
|
* shapeInfo - shapeInfo of array for which to evaluate sub-arrays
|
|
|
|
* dimsToExclude - MUST BE SORTED, dimensions to evaluate sub-arrays along, i.e. when shape is [2,3,4,5] and dimsToExclude={0,2}, then there will be 8 sub-arrays with shape [3,5],
|
|
|
|
* if dimsToExclude is empty then idxRanges containing all zeros (means whole array) will be returned.
|
|
|
|
* idxRanges - where to put result, the length of idxRanges must be equal to 2*shapeInfo[0]
|
|
|
|
*/
|
|
|
|
static void evalIdxRangesForSubArr(const Nd4jLong subArrIdx, const Nd4jLong* shapeInfo, const std::vector<int>& dimsToExclude, Nd4jLong* idxRanges);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* return shape without unities, for example if shape is [1,2,1,3] then [2,3] will be returned
|
|
|
|
* if unities are not present in given shapeInfo then exactly identical shape will be returned, for example [2,3] -> [2,3]
|
|
|
|
* edge case: if given shape is [1,1,1,...,1] (all dims are unities) then output will be empty and means scalar
|
|
|
|
*/
|
|
|
|
static std::vector<Nd4jLong> evalDimsWithoutUnities(const Nd4jLong* shapeInfo);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* method returns false if permut == {0,1,2,...permut.size()-1} - in that case permutation is unnecessary
|
|
|
|
*/
|
|
|
|
FORCEINLINE static bool isPermutNecessary(const std::vector<int>& permut);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* calculates strides using "dest" shape and given "order", also copies data type from "source" to "dest"
|
|
|
|
*/
|
|
|
|
static void updateStridesAndType(Nd4jLong* dest, const Nd4jLong* source, const char order);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* calculates strides using "dest" shape and "order", also set "dtype" into "dest"
|
|
|
|
*/
|
|
|
|
static void updateStridesAndType(Nd4jLong* dest, const DataType dtype, const char order);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* This method retuns number of bytes required for string tensor
|
|
|
|
* @param numStrings
|
|
|
|
* @return
|
|
|
|
*/
|
Oleh convert (#200)
* StringUtils for utf convertor raw implementation of all possible combinations, need to be add counter of bytes per symbol for any type and add api to call convertors and store data
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* StringUtils for utf convertor more corrections to support convertors
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* StringUtils for utf convertor some corrections and bug fixes, need review to discuss how to add multi-threading
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* StringUtils for utf convertor #8613 some corrections to move to multi-threading, add one test need discussion data inputs/outputs array presentation, need discussion the way of multi-threading
* StringUtils for utf convertor #8613 tests added some corrections to optimize build
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* StringUtils for utf convertor #8613 some corrections and code clean up
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* StringUtils for utf convertor #8613 code clean up and optimize usage, need update ndarray factory before replace std usage
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* StringUtils for utf convertor #8613 some staff to integrate converters into NDArrayFactory, update tests and add some functionality
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* StringUtils for utf convertor #8613 minor corrections and bug fix before discussion
* StringUtils for utf convertor #8613 some fixes and tets
* StringUtils for utf convertor #8613 some more staff to support different unicode
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* StringUtils for utf convertor #8613 fix linking bug
* StringUtils for utf convertor #8613 corrected several tests as defaults for string ndarray changed
* StringUtils for utf convertor #8613 replace some incorrect implementation, revert some test changes, need sync before testing
* StringUtils for utf convertor #8613 fixed several thing that were badly implemented yesterday, need optimization, testing (before testing have to be add support of u32 and u16 buffer visualization)
* StringUtils for utf convertor #8613 fixed to support u16 and u32, and convertor in ndarray, fix buffer print, etc
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* StringUtils for utf convertor #8613 merge master and sync with server
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* StringUtils for utf convertor #8613 some correction for string cast, need print check only asci support
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* StringUtils for utf convertor #8613 merge master, remove copies and add cast, need test, refactoring according review and clean up
* StringUtils for utf convertor #8613 fixed cast and copy issues
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* StringUtils for utf convertor #8613 fixed cuda and update tests
* StringUtils for utf convertor #8613 integration into NdArray, fix several tests for build pass, refactoring, etc
* - avoid ambiguity of NDArray ctrs overloading in some tests
Signed-off-by: Yurii <iuriish@yahoo.com>
* StringUtils for utf convertor #8613 NDArray string constructors added, updated NDArrayFactory, refactoring unicode and tests, etc
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* StringUtils for utf convertor #8613 fixed cuda build and test, refactoring and void* added to some functions
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* StringUtils for utf convertor #8613 void* integration, removed copy operation, refactoring, added tests for NDArray string constructors, etc
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* StringUtils for utf convertor #8613 several more fixes, improvements and updates
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* StringUtils for utf convertor #8613 master merge, code clean up and optimization before review
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* StringUtils for utf convertor #8613 minor fixes string element size define
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* StringUtils for utf convertor #8613 revert last changes as mistake
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* StringUtils for utf convertor #8613 fixed NDArray constructor build problem, remove order from string factory, fixed order use for factory via project, added catch of incorrect sync in cast of arrays to data types, fixed e method for strings, etc
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* StringUtils for utf convertor #8613 added javacpp hack, added multi-threading, minor corrections in license agreement
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* StringUtils for utf convertor #8613 windows builds fix, as "sting" is not treated as utf8
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
Co-authored-by: Yurii Shyrma <iuriish@yahoo.com>
2020-01-31 14:30:49 +01:00
|
|
|
static FORCEINLINE Nd4jLong stringBufferHeaderRequirements(Nd4jLong numStrings) {
|
|
|
|
// we store +1 offset
|
|
|
|
return (numStrings + 1) * sizeof(Nd4jLong);
|
|
|
|
}
|
2019-10-01 08:10:19 +02:00
|
|
|
|
|
|
|
/*
|
|
|
|
* check whether arr1/arr2 is sub-array of arr2/arr1,
|
|
|
|
* this method do not evaluate what array is sub-array, it returns true if arr1 is sub-array of arr2 or arr2 is sub-array of arr1
|
|
|
|
* sameDims is filled (and sorted) with dimensions values that match both in arr1 and arr2 shapes (unities are ignored)
|
|
|
|
* for example:
|
|
|
|
* if arr1{2,3} and arr2{2,4,3,7} then return true and sameDims contains {0,2}
|
|
|
|
* if arr1{1,1,3,1,3,1,1} and arr2{1,2,3,1,3} then return true and sameDims contains {2,4}
|
|
|
|
* if arr1{2,1,4,1,7,5} and arr2{1,1,4,5} then return true and sameDims contains {2,5}
|
|
|
|
|
|
|
|
static bool isSubArrayCase(const NDArray& arr1, const NDArray& arr2, std::vector<int>& sameDims);
|
|
|
|
*/
|
2019-06-06 14:21:15 +02:00
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
///// IMLEMENTATION OF INLINE METHODS /////
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
FORCEINLINE bool ShapeUtils::isPermutNecessary(const std::vector<int>& permut) {
|
|
|
|
|
|
|
|
for(int i=0; i<permut.size(); ++i)
|
|
|
|
if(permut[i] != i)
|
|
|
|
return true;
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif //LIBND4J_SHAPEUTILS_H
|