2019-06-06 14:21:15 +02:00
|
|
|
/*******************************************************************************
|
|
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
|
|
*
|
|
|
|
* This program and the accompanying materials are made available under the
|
|
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
|
|
* License for the specific language governing permissions and limitations
|
|
|
|
* under the License.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
//
|
|
|
|
// Created by raver119 on 23.11.17.
|
|
|
|
//
|
|
|
|
|
|
|
|
|
|
|
|
#include "testlayers.h"
|
|
|
|
#include <Graph.h>
|
|
|
|
#include <Node.h>
|
|
|
|
#include <ops/declarable/CustomOperations.h>
|
|
|
|
|
|
|
|
using namespace nd4j;
|
|
|
|
using namespace nd4j::graph;
|
|
|
|
|
|
|
|
class BroadcastableOpsTests : public testing::Test {
|
|
|
|
public:
|
|
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Add_1) {
|
|
|
|
|
|
|
|
NDArray x('c', {5, 5}, nd4j::DataType::FLOAT32);
|
|
|
|
NDArray y('c', {1, 5}, nd4j::DataType::FLOAT32);
|
|
|
|
NDArray exp('c', {5, 5}, nd4j::DataType::FLOAT32);
|
|
|
|
x.linspace(1);
|
|
|
|
y.linspace(1);
|
|
|
|
exp.linspace(1);
|
|
|
|
|
2019-11-13 15:15:18 +01:00
|
|
|
//exp.printIndexedBuffer("E B");
|
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
exp.applyBroadcast(broadcast::Add, {1}, y, exp);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
nd4j::ops::add op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &y});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
2019-11-13 15:15:18 +01:00
|
|
|
//exp.printIndexedBuffer("E A");
|
|
|
|
//z->printIndexedBuffer("Z");
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Multiply_1) {
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {5, 5});
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {1, 5});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {5, 5});
|
|
|
|
x.linspace(1);
|
|
|
|
y.linspace(1);
|
|
|
|
exp.linspace(1);
|
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
exp.applyBroadcast(broadcast::Multiply, {1}, y, exp);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
nd4j::ops::multiply op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &y});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_SquaredSubtract_1) {
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {5, 5});
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {1, 5});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {5, 5});
|
|
|
|
x.linspace(1);
|
|
|
|
y.linspace(1);
|
|
|
|
exp.linspace(1);
|
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
exp.applyBroadcast(broadcast::SquaredSubtract, {1}, y, exp);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
|
|
|
|
nd4j::ops::squaredsubtract op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &y});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_ScalarBroadcast_1) {
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {1, 1}, {1});
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {1, 3}, {0, 1, 2});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {1,3}, {1, 0, -1});
|
|
|
|
|
|
|
|
nd4j::ops::subtract op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &y});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_ScalarBroadcast_2) {
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {1, 1}, {1});
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {1, 3}, {0, 1, 2});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {1,3}, {1, 2, 3});
|
|
|
|
|
|
|
|
nd4j::ops::add op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &y});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Maximum_1) {
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {2, 3}, {1, 2, 1, 2, 3, 2});
|
|
|
|
auto row = NDArrayFactory::create<float>('c', {1, 3}, {2, 2, 2});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {2, 3}, {2, 2, 2, 2, 3, 2});
|
|
|
|
|
|
|
|
nd4j::ops::maximum op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &row});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Minimum_1) {
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {2, 3}, {1, 2, 1, 2, 3, 2});
|
|
|
|
auto col = NDArrayFactory::create<float>('c', {2, 1}, {2, 1});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {2, 3}, {1, 2, 1, 1, 1, 1});
|
|
|
|
|
|
|
|
nd4j::ops::minimum op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &col});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Shape_1) {
|
|
|
|
nd4j::ops::minimum op;
|
|
|
|
|
|
|
|
Nd4jLong shapeX[] = {2, 2, 5, 5, 1, 8192, 1, 99};
|
|
|
|
Nd4jLong shapeY[] = {2, 2, 5, 5, 1, 8192, 1, 99};
|
|
|
|
ShapeList inputShape({shapeX, shapeY});
|
|
|
|
VariableSpace vs;
|
|
|
|
Context ctx(1, &vs, false);
|
|
|
|
|
|
|
|
auto shapes = op.calculateOutputShape(&inputShape, ctx);
|
|
|
|
|
|
|
|
auto shapeZ = shapes->at(0);
|
|
|
|
ASSERT_TRUE(shape::shapeEquals(shapeX, shapeZ));
|
|
|
|
|
|
|
|
delete shapes;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Shape_2) {
|
|
|
|
nd4j::ops::minimum op;
|
|
|
|
|
|
|
|
Nd4jLong shapeX[] = {2, 1, 1, 1, 1, 8192, 1, 99};
|
|
|
|
Nd4jLong shapeY[] = {2, 2, 5, 5, 1, 8192, 1, 99};
|
|
|
|
ShapeList inputShape({shapeX, shapeY});
|
|
|
|
VariableSpace vs;
|
|
|
|
Context ctx(1, &vs, false);
|
|
|
|
|
|
|
|
auto shapes = op.calculateOutputShape(&inputShape, ctx);
|
|
|
|
|
|
|
|
auto shapeZ = shapes->at(0);
|
|
|
|
ASSERT_TRUE(shape::shapeEquals(shapeY, shapeZ));
|
|
|
|
|
|
|
|
delete shapes;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Shape_3) {
|
|
|
|
nd4j::ops::minimum op;
|
|
|
|
|
|
|
|
Nd4jLong shapeX[] = {2, 5, 3, 1, 1, 8192, 1, 99};
|
|
|
|
Nd4jLong shapeY[] = {2, 1, 3, 3, 1, 8192, 1, 99};
|
|
|
|
ShapeList inputShape({shapeX, shapeY});
|
|
|
|
VariableSpace vs;
|
|
|
|
Context ctx(1, &vs, false);
|
|
|
|
|
|
|
|
auto shapes = op.calculateOutputShape(&inputShape, ctx);
|
|
|
|
|
|
|
|
auto shapeZ = shapes->at(0);
|
|
|
|
ASSERT_TRUE(shape::shapeEquals(shapeX, shapeZ));
|
|
|
|
|
|
|
|
delete shapes;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Shape_4) {
|
|
|
|
nd4j::ops::minimum op;
|
|
|
|
|
|
|
|
Nd4jLong shapeX[] = {2, 5, 3, 1, 1, 8192, 1, 99};
|
|
|
|
Nd4jLong shapeY[] = {2, 5, 1, 1, 1, 8192, 1, 99};
|
|
|
|
ShapeList inputShape({shapeX, shapeY});
|
|
|
|
VariableSpace vs;
|
|
|
|
Context ctx(1, &vs, false);
|
|
|
|
|
|
|
|
auto shapes = op.calculateOutputShape(&inputShape, ctx);
|
|
|
|
|
|
|
|
auto shapeZ = shapes->at(0);
|
|
|
|
ASSERT_TRUE(shape::shapeEquals(shapeX, shapeZ));
|
|
|
|
|
|
|
|
delete shapes;
|
|
|
|
}
|
|
|
|
|
|
|
|
// (2,1,3) + (4,3) = (2,4,3)
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Shape_5) {
|
|
|
|
nd4j::ops::minimum op;
|
|
|
|
|
|
|
|
Nd4jLong shapeX[] = {3, 2, 1, 3, 3, 3, 1, 8192, 1, 99};
|
|
|
|
Nd4jLong shapeY[] = {2, 4, 3, 3, 1, 8192, 1, 99};
|
|
|
|
Nd4jLong shapeE[] = {3, 2, 4, 3, 12, 3, 1, 8192, 1, 99};
|
|
|
|
ShapeList inputShape({shapeX, shapeY});
|
|
|
|
VariableSpace vs;
|
|
|
|
Context ctx(1, &vs, false);
|
|
|
|
|
|
|
|
auto shapes = op.calculateOutputShape(&inputShape, ctx);
|
|
|
|
|
|
|
|
auto shapeZ = shapes->at(0);
|
|
|
|
ASSERT_TRUE(shape::shapeEquals(shapeE, shapeZ));
|
|
|
|
|
|
|
|
delete shapes;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Scalar_Add_1) {
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {2, 2}, {1, 2, 3, 4});
|
|
|
|
auto y = NDArrayFactory::create<float>(2.0f);
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {2, 2}, {3, 4, 5, 6});
|
|
|
|
|
|
|
|
nd4j::ops::add op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &y});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Inplace_Output_1) {
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {2, 1, 3});
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {4, 3});
|
|
|
|
auto o = NDArrayFactory::create<float>('c', {2, 4, 3});
|
|
|
|
auto e = NDArrayFactory::create<float>('c', {2, 4, 3});
|
|
|
|
auto buffO1 = reinterpret_cast<float *>(o.buffer());
|
|
|
|
y.assign(1.0f);
|
|
|
|
e.assign(1.0f);
|
|
|
|
|
|
|
|
nd4j::ops::add op;
|
|
|
|
auto result = op.execute({&x, &y}, {&o}, {}, {}, {});
|
|
|
|
ASSERT_EQ(Status::OK(), result);
|
|
|
|
|
|
|
|
auto buffO2 = reinterpret_cast<float *>(o.buffer());
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.isSameShape(o));
|
|
|
|
ASSERT_TRUE(e.equalsTo(o));
|
|
|
|
|
|
|
|
ASSERT_TRUE(buffO1 == buffO2);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Subtract_1) {
|
|
|
|
|
|
|
|
auto x = NDArrayFactory::create<float>(1.0f);
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {2}, {0.0f, 1.0f});
|
|
|
|
auto e = NDArrayFactory::create<float>('c', {2}, {1.0f, 0.0f});
|
|
|
|
|
|
|
|
auto z = x - y;
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Subtract_2) {
|
|
|
|
auto x = NDArrayFactory::create<float>(1.0f);
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {2}, {0.0f, 1.0f});
|
|
|
|
auto e = NDArrayFactory::create<float>('c', {2}, {1.0f, 0.0f});
|
|
|
|
|
|
|
|
nd4j::ops::subtract op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &y});
|
2019-06-06 14:21:15 +02:00
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Subtract_3) {
|
|
|
|
auto x = NDArrayFactory::create<float>(1.0f);
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {2}, {0.0f, 1.0f});
|
|
|
|
auto z = NDArrayFactory::create<float>('c', {2}, {0.0f, 0.0f});
|
|
|
|
auto e = NDArrayFactory::create<float>('c', {2}, {1.0f, 0.0f});
|
|
|
|
|
|
|
|
nd4j::ops::subtract op;
|
|
|
|
auto result = op.execute({&x, &y}, {&z}, {}, {}, {});
|
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), result);
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Subtract_4) {
|
|
|
|
auto x = NDArrayFactory::create<float>(1.0f);
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {2}, {0.0f, 1.0f});
|
|
|
|
auto e = NDArrayFactory::create<float>('c', {2}, {1.0f, 0.0f});
|
|
|
|
|
|
|
|
auto z = x.applyTrueBroadcast(BroadcastOpsTuple::Subtract(), y);
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.isSameShape(z));
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Subtract_5) {
|
|
|
|
auto x = NDArrayFactory::create<float>(1.0f);
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {2}, {0.0f, 1.0f});
|
|
|
|
auto e = NDArrayFactory::create<float>('c', {2}, {-1., 0.});
|
|
|
|
|
|
|
|
auto z = y - x;
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Subtract_6) {
|
|
|
|
auto x = NDArrayFactory::create<float>(1.0f);
|
|
|
|
auto y = NDArrayFactory::create<float>(4.f);
|
|
|
|
auto e = NDArrayFactory::create<float>(3.f);
|
|
|
|
|
|
|
|
auto z = y - x;
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Subtract_7) {
|
|
|
|
auto x = NDArrayFactory::create<float>(1.0f);
|
|
|
|
auto y = NDArrayFactory::create<float>(4.f);
|
|
|
|
auto e = NDArrayFactory::create<float>(-3.f);
|
|
|
|
|
|
|
|
auto z = x - y;
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Add_2) {
|
|
|
|
|
|
|
|
auto x = NDArrayFactory::create<float>(1.0f);
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {2}, {0.0f, 1.0f});
|
|
|
|
auto e = NDArrayFactory::create<float>('c', {2}, {1.f, 2.f});
|
|
|
|
|
|
|
|
auto z = x + y;
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Add_3) {
|
|
|
|
|
|
|
|
auto x = NDArrayFactory::create<float>(1.0f);
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {2}, {0.0f, 1.0f});
|
|
|
|
auto e = NDArrayFactory::create<float>('c', {2}, {1.f, 2.f});
|
|
|
|
|
|
|
|
auto z = y + x;
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Add_4) {
|
|
|
|
|
|
|
|
auto x = NDArrayFactory::create<float>(1.0f);
|
|
|
|
auto y = NDArrayFactory::create<float>(4.f);
|
|
|
|
auto e = NDArrayFactory::create<float>(5.f);
|
|
|
|
|
|
|
|
auto z = x + y;
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Add_5) {
|
|
|
|
|
|
|
|
auto x = NDArrayFactory::create<float>(1.0f);
|
|
|
|
auto y = NDArrayFactory::create<float>(4.f);
|
|
|
|
auto e = NDArrayFactory::create<float>(5.f);
|
|
|
|
|
|
|
|
auto z = y + x;
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Multiply_2) {
|
|
|
|
|
|
|
|
auto x = NDArrayFactory::create<float>(2.0f);
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {2}, {3.f, 4.f});
|
|
|
|
auto e = NDArrayFactory::create<float>('c', {2}, {6.f, 8.f});
|
|
|
|
|
|
|
|
auto z = y * x;
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Multiply_3) {
|
|
|
|
|
|
|
|
auto x = NDArrayFactory::create<float>(2.0f);
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {2}, {3.f, 4.f});
|
|
|
|
auto e = NDArrayFactory::create<float>('c', {2}, {6.f, 8.f});
|
|
|
|
|
|
|
|
auto z = x * y;
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Multiply_4) {
|
|
|
|
|
|
|
|
auto x = NDArrayFactory::create<float>(2.0f);
|
|
|
|
auto y = NDArrayFactory::create<float>(4.f);
|
|
|
|
auto e = NDArrayFactory::create<float>(8.f);
|
|
|
|
|
|
|
|
auto z = y * x;
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Multiply_5) {
|
|
|
|
|
|
|
|
auto x = NDArrayFactory::create<float>(2.0f);
|
|
|
|
auto y = NDArrayFactory::create<float>(4.f);
|
|
|
|
auto e = NDArrayFactory::create<float>(8.f);
|
|
|
|
|
|
|
|
auto z = x * y;
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Multiply_6) {
|
|
|
|
auto x = NDArrayFactory::create<float>(2.0f);
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {1}, {4.f});
|
|
|
|
auto e = NDArrayFactory::create<float>('c', {1}, {8.f});
|
|
|
|
|
|
|
|
auto z = x * y;
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Multiply_7) {
|
|
|
|
auto x = NDArrayFactory::create<float>(2.0f);
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {1}, {4.f});
|
|
|
|
auto e = NDArrayFactory::create<float>('c', {1}, {8.f});
|
|
|
|
|
|
|
|
nd4j::ops::multiply op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &y});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Multiply_8) {
|
|
|
|
auto x = NDArrayFactory::create<float>(2.0f);
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {1, 1}, {4.f});
|
|
|
|
auto e = NDArrayFactory::create<float>('c', {1, 1}, {8.f});
|
|
|
|
|
|
|
|
nd4j::ops::multiply op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &y});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(BroadcastableOpsTests, broadcast_add_1) {
|
|
|
|
|
|
|
|
NDArray x('c', {4}, {1,1,1,1});
|
|
|
|
NDArray y('c', {1,4}, {1,2,3,4});
|
|
|
|
NDArray z('c', {1,4}, nd4j::DataType::DOUBLE);
|
|
|
|
NDArray exp('c', {1,4}, {2,3,4,5}, nd4j::DataType::DOUBLE);
|
|
|
|
|
|
|
|
nd4j::ops::add op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto status = op.execute({&x, &y}, {&z});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, status);
|
|
|
|
ASSERT_TRUE(z.equalsTo(exp));
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(BroadcastableOpsTests, broadcast_equals_1) {
|
|
|
|
|
|
|
|
NDArray x('c', {1,4}, {1,2,3,4});
|
|
|
|
NDArray y('c', {3,4}, {0,0,0,0, 1,2,3,4, 1,2,3,4});
|
|
|
|
NDArray z('c', {3,4}, nd4j::DataType::BOOL);
|
|
|
|
NDArray exp('c', {3,4}, {0,0,0,0, 1,1,1,1, 1,1,1,1}, nd4j::DataType::BOOL);
|
|
|
|
|
|
|
|
nd4j::ops::equals op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto status = op.execute({&x, &y}, {&z});
|
2019-06-06 14:21:15 +02:00
|
|
|
// z.printIndexedBuffer();
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, status);
|
|
|
|
ASSERT_TRUE(z.equalsTo(exp));
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(BroadcastableOpsTests, broadcast_empty_1) {
|
|
|
|
|
|
|
|
NDArray y('c', {3,4}, {0,0,0,0, 1,2,3,4, 1,2,3,4});
|
|
|
|
NDArray x(nd4j::DataType::DOUBLE, y.getContext(), false);
|
|
|
|
NDArray z(nd4j::DataType::DOUBLE, y.getContext(), false);
|
|
|
|
NDArray zExp(nd4j::DataType::DOUBLE, y.getContext(), false);
|
|
|
|
|
|
|
|
nd4j::ops::multiply op;
|
|
|
|
auto status = op.execute({&x, &y}, {&z}, {}, {}, {});
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, status);
|
|
|
|
ASSERT_TRUE(z.isSameShape(zExp));
|
|
|
|
ASSERT_TRUE(z.equalsTo(zExp));
|
|
|
|
}
|
|
|
|
|
2019-06-15 13:34:34 +02:00
|
|
|
TEST_F(BroadcastableOpsTests, broadcast_empty_2) {
|
|
|
|
|
|
|
|
NDArray y('c', {1,4}, {1,2,3,4});
|
|
|
|
NDArray x = NDArrayFactory::create<double>('c', {0, 4});
|
|
|
|
NDArray e = NDArrayFactory::create<double>('c', {0, 4});;
|
|
|
|
|
|
|
|
nd4j::ops::multiply op;
|
|
|
|
auto status = op.execute({&x, &y}, {&x}, {}, {}, {});
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, status);
|
|
|
|
ASSERT_TRUE(e.isSameShape(x));
|
|
|
|
ASSERT_TRUE(e.equalsTo(x));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, broadcast_empty_3) {
|
|
|
|
|
|
|
|
NDArray x = NDArrayFactory::create<float>('c', {1, 0, 2});
|
Oleh convert (#200)
* StringUtils for utf convertor raw implementation of all possible combinations, need to be add counter of bytes per symbol for any type and add api to call convertors and store data
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* StringUtils for utf convertor more corrections to support convertors
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* StringUtils for utf convertor some corrections and bug fixes, need review to discuss how to add multi-threading
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* StringUtils for utf convertor #8613 some corrections to move to multi-threading, add one test need discussion data inputs/outputs array presentation, need discussion the way of multi-threading
* StringUtils for utf convertor #8613 tests added some corrections to optimize build
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* StringUtils for utf convertor #8613 some corrections and code clean up
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* StringUtils for utf convertor #8613 code clean up and optimize usage, need update ndarray factory before replace std usage
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* StringUtils for utf convertor #8613 some staff to integrate converters into NDArrayFactory, update tests and add some functionality
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* StringUtils for utf convertor #8613 minor corrections and bug fix before discussion
* StringUtils for utf convertor #8613 some fixes and tets
* StringUtils for utf convertor #8613 some more staff to support different unicode
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* StringUtils for utf convertor #8613 fix linking bug
* StringUtils for utf convertor #8613 corrected several tests as defaults for string ndarray changed
* StringUtils for utf convertor #8613 replace some incorrect implementation, revert some test changes, need sync before testing
* StringUtils for utf convertor #8613 fixed several thing that were badly implemented yesterday, need optimization, testing (before testing have to be add support of u32 and u16 buffer visualization)
* StringUtils for utf convertor #8613 fixed to support u16 and u32, and convertor in ndarray, fix buffer print, etc
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* StringUtils for utf convertor #8613 merge master and sync with server
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* StringUtils for utf convertor #8613 some correction for string cast, need print check only asci support
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* StringUtils for utf convertor #8613 merge master, remove copies and add cast, need test, refactoring according review and clean up
* StringUtils for utf convertor #8613 fixed cast and copy issues
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* StringUtils for utf convertor #8613 fixed cuda and update tests
* StringUtils for utf convertor #8613 integration into NdArray, fix several tests for build pass, refactoring, etc
* - avoid ambiguity of NDArray ctrs overloading in some tests
Signed-off-by: Yurii <iuriish@yahoo.com>
* StringUtils for utf convertor #8613 NDArray string constructors added, updated NDArrayFactory, refactoring unicode and tests, etc
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* StringUtils for utf convertor #8613 fixed cuda build and test, refactoring and void* added to some functions
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* StringUtils for utf convertor #8613 void* integration, removed copy operation, refactoring, added tests for NDArray string constructors, etc
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* StringUtils for utf convertor #8613 several more fixes, improvements and updates
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* StringUtils for utf convertor #8613 master merge, code clean up and optimization before review
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* StringUtils for utf convertor #8613 minor fixes string element size define
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* StringUtils for utf convertor #8613 revert last changes as mistake
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* StringUtils for utf convertor #8613 fixed NDArray constructor build problem, remove order from string factory, fixed order use for factory via project, added catch of incorrect sync in cast of arrays to data types, fixed e method for strings, etc
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* StringUtils for utf convertor #8613 added javacpp hack, added multi-threading, minor corrections in license agreement
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
* StringUtils for utf convertor #8613 windows builds fix, as "sting" is not treated as utf8
Signed-off-by: Oleg <oleg.semeniv@gmail.com>
Co-authored-by: Yurii Shyrma <iuriish@yahoo.com>
2020-01-31 14:30:49 +01:00
|
|
|
NDArray y('c', {}, std::vector<double>{0.1}, nd4j::DataType::FLOAT32);
|
2019-06-15 13:34:34 +02:00
|
|
|
NDArray e = NDArrayFactory::create<float>('c', {1, 0, 2});;
|
|
|
|
|
|
|
|
nd4j::ops::maximum op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &y});
|
2019-06-15 13:34:34 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.isSameShape(z));
|
|
|
|
ASSERT_TRUE(e.equalsTo(*z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, broadcast_empty_4) {
|
|
|
|
|
|
|
|
NDArray x = NDArrayFactory::create<float>('c', {1, 0, 1});
|
|
|
|
NDArray y = NDArrayFactory::create<float>('c', {1, 0, 2});
|
|
|
|
NDArray e = NDArrayFactory::create<float>('c', {1, 0, 2});;
|
|
|
|
|
|
|
|
nd4j::ops::maximum op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &y});
|
2019-06-15 13:34:34 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.isSameShape(z));
|
|
|
|
ASSERT_TRUE(e.equalsTo(*z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, broadcast_empty_5) {
|
|
|
|
|
|
|
|
NDArray x = NDArrayFactory::create<float>('c', {1, 0, 1});
|
|
|
|
NDArray y = NDArrayFactory::create<float>('c', {1, 0, 2});
|
|
|
|
NDArray e = NDArrayFactory::create<float>('c', {1, 0, 2});;
|
|
|
|
|
|
|
|
nd4j::ops::realdiv op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &y});
|
2019-06-15 13:34:34 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.isSameShape(z));
|
|
|
|
ASSERT_TRUE(e.equalsTo(*z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, broadcast_empty_6) {
|
|
|
|
|
|
|
|
NDArray x = NDArrayFactory::create<float>('c', {1, 0, 1});
|
|
|
|
NDArray y = NDArrayFactory::create<float>('c', {1, 2}, {2, 2});
|
|
|
|
NDArray e = NDArrayFactory::create<float>('c', {1, 0, 2});;
|
|
|
|
|
|
|
|
nd4j::ops::realdiv op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &y});
|
2019-06-15 13:34:34 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.isSameShape(z));
|
|
|
|
ASSERT_TRUE(e.equalsTo(*z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, broadcast_empty_7) {
|
|
|
|
|
|
|
|
NDArray x = NDArrayFactory::create<float>('c', {1, 0, 2, 1});
|
|
|
|
NDArray y = NDArrayFactory::create<float>('c', {1, 2, 0});
|
|
|
|
NDArray e = NDArrayFactory::create<float>('c', {1, 0, 2, 0});;
|
|
|
|
|
|
|
|
nd4j::ops::realdiv op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &y});
|
2019-06-15 13:34:34 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.isSameShape(z));
|
|
|
|
ASSERT_TRUE(e.equalsTo(*z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, broadcast_bool_empty_1) {
|
|
|
|
|
|
|
|
NDArray y('c', {3,4}, {0,0,0,0, 1,2,3,4, 1,2,3,4});
|
|
|
|
NDArray x(nd4j::DataType::DOUBLE, y.getContext(), false);
|
|
|
|
NDArray z(nd4j::DataType::BOOL, y.getContext(), false);
|
|
|
|
NDArray zExp(nd4j::DataType::BOOL, y.getContext(), false);
|
|
|
|
|
|
|
|
nd4j::ops::greater op;
|
|
|
|
auto status = op.execute({&x, &y}, {&z}, {}, {}, {});
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, status);
|
|
|
|
ASSERT_TRUE(z.isSameShape(zExp));
|
|
|
|
ASSERT_TRUE(z.equalsTo(zExp));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, broadcast_bool_empty_2) {
|
|
|
|
|
|
|
|
NDArray y('c', {1,4}, {1,2,3,4});
|
|
|
|
NDArray x = NDArrayFactory::create<double>('c', {0, 4});
|
|
|
|
NDArray e = NDArrayFactory::create<bool>('c', {0, 4});;
|
|
|
|
|
|
|
|
|
|
|
|
nd4j::ops::greater op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &y});
|
2019-06-15 13:34:34 +02:00
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
2019-11-13 15:15:18 +01:00
|
|
|
// z->printShapeInfo("z");
|
2019-06-15 13:34:34 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), result->status());
|
|
|
|
ASSERT_TRUE(e.isSameShape(z));
|
|
|
|
ASSERT_TRUE(e.equalsTo(*z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
TEST_F(BroadcastableOpsTests, broadcast_bool_1) {
|
|
|
|
|
|
|
|
NDArray x('c', {3, 1, 2}, nd4j::DataType::FLOAT32);
|
|
|
|
NDArray y('c', {2, 2}, nd4j::DataType::FLOAT32);
|
|
|
|
NDArray z('c', {3, 2, 2}, nd4j::DataType::BOOL);
|
|
|
|
NDArray e('c', {3, 2, 2}, nd4j::DataType::BOOL);
|
|
|
|
|
|
|
|
x.assign(4.f);
|
|
|
|
y.assign(2.f);
|
|
|
|
e.assign(true);
|
|
|
|
|
|
|
|
nd4j::ops::greater op;
|
|
|
|
|
2020-01-30 08:07:24 +01:00
|
|
|
auto status = op.execute({&x, &y}, {&z});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, status);
|
|
|
|
|
|
|
|
// z.printIndexedBuffer("Z");
|
|
|
|
|
|
|
|
ASSERT_TRUE(z.isSameShape(e));
|
|
|
|
ASSERT_TRUE(z.equalsTo(e));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, broadcast_bool_2) {
|
|
|
|
|
|
|
|
NDArray x('c', {3, 1, 2}, nd4j::DataType::FLOAT32);
|
|
|
|
NDArray y('c', {2, 2}, nd4j::DataType::FLOAT32);
|
|
|
|
NDArray z('c', {3, 2, 2}, nd4j::DataType::BOOL);
|
|
|
|
NDArray e('c', {3, 2, 2}, nd4j::DataType::BOOL);
|
|
|
|
|
|
|
|
x.assign(1.f);
|
|
|
|
y.assign(2.f);
|
|
|
|
e.assign(false);
|
|
|
|
|
|
|
|
nd4j::ops::equals op;
|
|
|
|
|
|
|
|
auto status = op.execute({&x, &y}, {&z}, {}, {}, {});
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, status);
|
|
|
|
|
|
|
|
// z.printIndexedBuffer("Z");
|
|
|
|
|
|
|
|
ASSERT_TRUE(z.isSameShape(e));
|
|
|
|
ASSERT_TRUE(z.equalsTo(e));
|
|
|
|
}
|
|
|
|
|
2019-12-02 19:37:21 +01:00
|
|
|
TEST_F(BroadcastableOpsTests, broadcast_bool_3) {
|
|
|
|
|
|
|
|
auto x = NDArrayFactory::create<int>(0);
|
|
|
|
auto y = NDArrayFactory::create<int>('c', {3}, {2, 1, 2});
|
|
|
|
NDArray z('c', {3}, nd4j::DataType::BOOL);
|
|
|
|
NDArray e('c', {3}, nd4j::DataType::BOOL);
|
|
|
|
|
|
|
|
e.assign(true);
|
|
|
|
|
|
|
|
nd4j::ops::less op;
|
|
|
|
auto status = op.execute({&x, &y}, {&z}, {}, {}, {});
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, status);
|
|
|
|
|
|
|
|
// z.printIndexedBuffer("Z");
|
|
|
|
|
|
|
|
ASSERT_TRUE(z.isSameShape(e));
|
|
|
|
ASSERT_TRUE(z.equalsTo(e));
|
|
|
|
}
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-12-02 19:37:21 +01:00
|
|
|
TEST_F(BroadcastableOpsTests, broadcast_2) {
|
2019-06-06 14:21:15 +02:00
|
|
|
NDArray x('c', {3, 1, 2}, nd4j::DataType::FLOAT32);
|
|
|
|
NDArray y('c', {2, 2}, nd4j::DataType::FLOAT32);
|
|
|
|
NDArray z('c', {3, 2, 2}, nd4j::DataType::FLOAT32);
|
|
|
|
NDArray e('c', {3, 2, 2}, nd4j::DataType::FLOAT32);
|
|
|
|
|
|
|
|
x = 4.f;
|
|
|
|
y = 2.f;
|
|
|
|
e = -2.f;
|
|
|
|
|
|
|
|
nd4j::ops::reversesubtract op; // z = y - x;
|
|
|
|
|
|
|
|
auto status = op.execute({&x, &y}, {&z}, {}, {}, {});
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, status);
|
|
|
|
|
|
|
|
// z.printIndexedBuffer("Z");
|
|
|
|
|
|
|
|
ASSERT_TRUE(z.isSameShape(e));
|
|
|
|
ASSERT_TRUE(z.equalsTo(e));
|
|
|
|
}
|
|
|
|
|
2019-12-02 19:37:21 +01:00
|
|
|
TEST_F(BroadcastableOpsTests, broadcast_3) {
|
|
|
|
auto x = NDArrayFactory::create<int>(0);
|
|
|
|
auto y = NDArrayFactory::create<int>('c', {3}, {2, 1, 2});
|
|
|
|
NDArray z('c', {3}, nd4j::DataType::INT32);
|
|
|
|
auto e = NDArrayFactory::create<int>('c', {3}, {2, 1, 2});
|
|
|
|
|
|
|
|
nd4j::ops::add op;
|
|
|
|
auto status = op.execute({&x, &y}, {&z}, {}, {}, {});
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, status);
|
|
|
|
|
|
|
|
// z.printIndexedBuffer("Z");
|
|
|
|
|
|
|
|
ASSERT_TRUE(z.isSameShape(e));
|
|
|
|
ASSERT_TRUE(z.equalsTo(e));
|
|
|
|
}
|
2019-12-09 06:01:12 +01:00
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, test_bert_multiply_1) {
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {4, 128, 1});
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {4, 1, 128});
|
|
|
|
auto z = NDArrayFactory::create<float>('c', {4, 128, 128});
|
|
|
|
auto e = NDArrayFactory::create<float>('c', {4, 128, 128});
|
|
|
|
|
|
|
|
x.assign(0.f);
|
|
|
|
y.assign(1.f);
|
|
|
|
z.assign(119.f);
|
|
|
|
e.assign(0.f);
|
|
|
|
/*
|
|
|
|
Context ctx(1);
|
|
|
|
ctx.setInputArray(0, &x);
|
|
|
|
ctx.setInputArray(1, &y);
|
|
|
|
ctx.setOutputArray(0, &z);
|
|
|
|
|
|
|
|
nd4j::ops::multiply op;
|
|
|
|
auto status = op.execute(&ctx);
|
|
|
|
ASSERT_EQ(Status::OK(), status);
|
|
|
|
|
|
|
|
z.printIndexedBuffer();
|
|
|
|
*/
|
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
x.applyTrueBroadcast(BroadcastOpsTuple::Multiply(), y, z);
|
2019-12-09 06:01:12 +01:00
|
|
|
|
|
|
|
//z.printIndexedBuffer();
|
|
|
|
|
|
|
|
ASSERT_EQ(e, z);
|
|
|
|
}
|
2019-12-09 09:17:16 +01:00
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, test_bert_multiply_2) {
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {4, 128, 1});
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {768});
|
|
|
|
auto z = NDArrayFactory::create<float>('c', {4, 128, 768});
|
|
|
|
auto e = NDArrayFactory::create<float>('c', {4, 128, 768});
|
|
|
|
|
|
|
|
x.assign(1.f);
|
|
|
|
y.assign(2.f);
|
|
|
|
z.assign(119.f);
|
|
|
|
e.assign(2.f);
|
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
x.applyTrueBroadcast(BroadcastOpsTuple::Multiply(), y, z);
|
2019-12-09 09:17:16 +01:00
|
|
|
|
|
|
|
ASSERT_EQ(e, z);
|
|
|
|
}
|