cavis/libnd4j/blas/cuda/NativeOps.cu

3315 lines
129 KiB
Plaintext
Raw Normal View History

2019-06-06 14:21:15 +02:00
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
#include "NativeOpExecutioner.h"
#include "../NativeOps.h"
#include <cuda.h>
#include <buffer.h>
#include <loops/transform_any.h>
#include <loops/reduce_bool.h>
#include <loops/reduce_long.h>
#include <helpers/threshold.h>
#include <ops/specials_cuda.h>
#include <helpers/DebugHelper.h>
#include <exceptions/datatype_exception.h>
#include <helpers/CudaLaunchHelper.h>
// FIXME: we need cuda-specific implementations
#include <GraphExecutioner.h>
#include <graph/GraphHolder.h>
#include <ops/declarable/CustomOperations.h>
#include <PointersManager.h>
//#include <sys/time.h>
#include <curand.h>
#include <Status.h>
#include <helpers/DebugHelper.h>
using namespace nd4j;
#include <loops/special_kernels.h>
#include <performance/benchmarking/FullBenchmarkSuit.h>
#include <performance/benchmarking/LightBenchmarkSuit.h>
2019-06-06 14:21:15 +02:00
cudaDeviceProp *deviceProperties;
cudaFuncAttributes *funcAttributes = new cudaFuncAttributes[64];
int blockLimit = 128;
int maxThreads = 512;
bool allowedP2P = false;
bool supportedP2P = false;
#ifdef __ND4J_EXPERIMENTAL__
bool experimentalSupport = true;
#else
bool experimentalSupport = false;
#endif
int minThreads = 32;
__constant__ char deviceConstantMemory[49152];
typedef struct {
long streamId;
long callId;
} __syncInfo;
typedef __syncInfo SyncInfo;
// this method isn't used, left here for legacy and caution purposes
// TLDR: don't use this way, it sucks
void CUDART_CB syncCallback(cudaStream_t stream, cudaError_t status, void *data){
SyncInfo *sync = reinterpret_cast<SyncInfo *>(data);
//printf("Finished stream: [%i], kernel call: [%i]\n", sync->streamId, sync->callId);
}
// this method just does type conversion in fancy way
int getDeviceId(Nd4jPointer ptrToDeviceId) {
return (int)(Nd4jLong)ptrToDeviceId;
}
/*
* Basic CUDA constants here: number of blocks per MP
*/
int getDeviceBlockThreshold(int deviceId) {
int ccMinor = deviceProperties[deviceId].minor;
int ccMajor = deviceProperties[deviceId].major;
int blockThreshold = 8;
if (ccMajor >= 5)
blockThreshold = 32;
else if (ccMajor == 3)
blockThreshold = 16;
else if (ccMajor < 3)
blockThreshold = 8;
return blockThreshold;
}
/*
* This message returns shared memory threshold value. default overflow ratio is 0.3
*/
int getDeviceSharedThreshold(int deviceId) {
int ccMinor = deviceProperties[deviceId].minor;
int ccMajor = deviceProperties[deviceId].major;
// please note threshold isn't multiple of 32, and that's NOT a mistake
int shmemThreshold;
if (ccMajor == 6 && ccMinor == 0)
shmemThreshold = 65536;
else if (ccMajor == 6 && ccMinor == 1)
shmemThreshold = 49152;
else if (ccMajor == 5 && ccMinor == 2)
shmemThreshold = 98304;
else if (ccMajor == 5)
shmemThreshold = 65536;
else if (ccMajor == 3 && ccMinor == 7)
shmemThreshold = 114688;
else shmemThreshold = 49152;
return shmemThreshold / 0.3;
}
nd4j::buffer::Buffer<Nd4jLong> * createScalarBuffer(cudaStream_t stream) {
Nd4jLong *scalarShapeInfo = shape::createScalarShapeInfo();
nd4j::buffer::Buffer<Nd4jLong> *buff = nd4j::buffer::createBuffer(scalarShapeInfo,shape::shapeInfoLength(2), stream);
nd4j::buffer::copyDataToGpu(&buff, stream);
return buff;
}
class ScalarShapeInformation {
private:
nd4j::buffer::Buffer<Nd4jLong> *scalarDimension;
nd4j::buffer::Buffer<Nd4jLong> *scalarShapeInfo;
// std::thread::id threadId;
public:
ScalarShapeInformation(cudaStream_t stream) {
auto scalarDimensionBuff = reinterpret_cast<Nd4jLong *>(malloc(sizeof(Nd4jLong)));
CHECK_ALLOC(scalarDimensionBuff, "Failed to allocate ShapeInfoBuffer", sizeof(Nd4jLong));
scalarDimensionBuff[0] = MAX_DIMENSION;
scalarDimension = nd4j::buffer::createBuffer(scalarDimensionBuff,1, stream);
scalarShapeInfo = createScalarBuffer(stream);
// threadId = std::this_thread::get_id();
}
~ScalarShapeInformation() {
nd4j::buffer::freeBuffer(&scalarShapeInfo);
nd4j::buffer::freeBuffer(&scalarDimension);
}
Nd4jLong *getShapeInfoHostPointer() {
return scalarShapeInfo->data;
}
Nd4jLong * getShapeInfoGpuPointer() {
return scalarShapeInfo->gData;
}
Nd4jLong * getDimensionHostPointer() {
return scalarDimension->data;
}
Nd4jLong * getDimensionGpuPointer() {
return scalarDimension->gData;
}
};
template <typename T>
class ScalarInfo {
nd4j::buffer::Buffer<T> *scalarData;
ScalarShapeInformation *shapeInfo;
T finalResult;
cudaStream_t streamRef;
public:
ScalarInfo(cudaStream_t stream) {
T *scalarResult = reinterpret_cast<T*>(malloc(sizeof(T)));
CHECK_ALLOC(scalarResult, "Failed to allocate new scalar buffer", sizeof(T));
shapeInfo = new ScalarShapeInformation(stream);
scalarData = nd4j::buffer::createBuffer(scalarResult,1, stream);
streamRef = stream;
nd4j::buffer::copyDataToGpu(&scalarData, stream);
}
T getFinalResultFromDevice() {
nd4j::buffer::copyDataFromGpu(&scalarData, streamRef);
return scalarData->data[0];
}
/**
* Get the device shape information
* representing a scalar
*/
Nd4jLong *getDeviceShapeInfo() {
return shapeInfo->getShapeInfoGpuPointer();
}
/**
* Get the dZ pointers
*/
T *getDevicePointer() {
return scalarData->gData;
}
/**
* Get the infinite dimension device pointer
*/
Nd4jLong *getDimensionDevicePointer() {
return shapeInfo->getDimensionGpuPointer();
}
~ScalarInfo() {
nd4j::buffer::freeBuffer(&scalarData);
delete shapeInfo;
}
};
NativeOps::NativeOps() {
//
}
void NativeOps::execPairwiseTransform( Nd4jPointer *extraPointers,
int opNum,
void *hX, Nd4jLong *hXShapeInfo,
void *dX, Nd4jLong *dXShapeInfo,
void *hY, Nd4jLong *hYShapeInfo,
void *dY, Nd4jLong *dYShapeInfo,
void *hZ, Nd4jLong *hZShapeInfo,
void *dZ, Nd4jLong *dZShapeInfo,
void *extraParams) {
LaunchContext lc(extraPointers[1], extraPointers[4], extraPointers[5], extraPointers[3]);
NativeOpExecutioner::execPairwiseTransform(&lc, opNum, hX, hXShapeInfo, dX, dXShapeInfo, hY, hYShapeInfo, dY, dYShapeInfo, hZ, hZShapeInfo, dZ, dZShapeInfo, extraParams);
}
////////////////////////////////////////////////////////////////////////
void NativeOps::execPairwiseTransformBool(Nd4jPointer *extraPointers,
int opNum,
void *hX, Nd4jLong *hXShapeInfo,
void *dX, Nd4jLong *dXShapeInfo,
void *hY, Nd4jLong *hYShapeInfo,
void *dY, Nd4jLong *dYShapeInfo,
void *hZ, Nd4jLong *hZShapeInfo,
void *dZ, Nd4jLong *dZShapeInfo,
void *extraParams) {
LaunchContext lc(extraPointers[1], extraPointers[4], extraPointers[5], extraPointers[3]);
NativeOpExecutioner::execPairwiseBoolTransform(&lc, opNum, hX, hXShapeInfo, dX, dXShapeInfo, hY, hYShapeInfo, dY, dYShapeInfo, hZ, hZShapeInfo, dZ, dZShapeInfo, extraParams);
}
////////////////////////////////////////////////////////////////////////
void NativeOps::execSummaryStatsScalar(Nd4jPointer *extraPointers,
int opNum,
void *hX, Nd4jLong *hXShapeInfo,
void *dX, Nd4jLong *dXShapeInfo,
void *extraParams,
void *hZ, Nd4jLong *hZShapeInfo,
void *dZ, Nd4jLong *dZShapeInfo,
bool biasCorrected) {
LaunchContext lc(extraPointers[1], extraPointers[4], extraPointers[5], extraPointers[3]);
NativeOpExecutioner::execSummaryStatsScalar(&lc, opNum, hX, hXShapeInfo, dX, dXShapeInfo, extraParams, hZ, hZShapeInfo, dZ, dZShapeInfo, biasCorrected);
}
////////////////////////////////////////////////////////////////////////
void NativeOps::execBroadcastBool(Nd4jPointer *extraPointers,
int opNum,
void *hX, Nd4jLong *hXShapeInfo,
void *dX, Nd4jLong *dXShapeInfo,
void *hY, Nd4jLong *hYShapeInfo,
void *dY, Nd4jLong *dYShapeInfo,
void *hZ, Nd4jLong *hZShapeInfo,
void *dZ, Nd4jLong *dZShapeInfo,
void *hDimension, Nd4jLong *hDimensionShape,
void *dDimension, Nd4jLong *dDimensionShape) {
//Nd4jLong *tadOnlyShapeInfo = reinterpret_cast<Nd4jLong *>(extraPointers[0]);
//Nd4jLong *tadOffsets = reinterpret_cast<Nd4jLong *>(extraPointers[1]);
//Nd4jLong *tadOnlyShapeInfoZ = reinterpret_cast<Nd4jLong *>(extraPointers[2]);
//Nd4jLong *tadOffsetsZ = reinterpret_cast<Nd4jLong *>(extraPointers[3]);
auto dimension = reinterpret_cast<int *>(dDimension);
int dimensionLength = static_cast<int>(shape::length(hDimensionShape));
auto hTADShapeInfo = reinterpret_cast<Nd4jLong *>(extraPointers[9]);
auto tadOnlyShapeInfo = reinterpret_cast<Nd4jLong *>(extraPointers[10]);
auto tadOffsets = reinterpret_cast<Nd4jLong *>(extraPointers[11]);
auto tadOnlyShapeInfoZ = reinterpret_cast<Nd4jLong *>(extraPointers[12]);
auto tadOffsetsZ = reinterpret_cast<Nd4jLong *>(extraPointers[13]);
LaunchContext lc(extraPointers[1], extraPointers[4], extraPointers[5], extraPointers[3]);
NativeOpExecutioner::execBroadcastBool(&lc, opNum, hX, hXShapeInfo, dX, dXShapeInfo, hY, hYShapeInfo, dY, dYShapeInfo, hZ, hZShapeInfo, dZ, dZShapeInfo, dimension, dimensionLength, tadOnlyShapeInfo, tadOffsets, tadOnlyShapeInfoZ, tadOffsetsZ);
}
/**
*
* @param opNum
* @param dX
* @param dXShapeInfo
* @param dY
* @param dYShapeInfo
* @param dZ
* @param dZShapeInfo
* @param dimension
* @param dimensionLength
*/
void NativeOps::execBroadcast(
Nd4jPointer *extraPointers,
int opNum,
void *hX, Nd4jLong *hXShapeInfo,
void *dX, Nd4jLong *dXShapeInfo,
void *hY, Nd4jLong *hYShapeInfo,
void *dY, Nd4jLong *dYShapeInfo,
void *hZ, Nd4jLong *hZShapeInfo,
void *dZ, Nd4jLong *dZShapeInfo,
void *hDimension, Nd4jLong *hDimensionShape,
void *dDimension, Nd4jLong *dDimensionShape) {
/*
cudaEvent_t start;
cudaEventCreateWithFlags(&start, cudaEventDisableTiming);
timespec tsX;
timespec tsY;
clock_gettime(CLOCK_REALTIME, &tsX);
*/
auto dimension = reinterpret_cast<int *>(dDimension);
int dimensionLength = static_cast<int>(shape::length(hDimensionShape));
cudaStream_t *stream = reinterpret_cast<cudaStream_t *>(extraPointers[1]);
auto hTADShapeInfo = reinterpret_cast<Nd4jLong *>(extraPointers[9]);
auto tadOnlyShapeInfo = reinterpret_cast<Nd4jLong *>(extraPointers[10]);
auto tadOffsets = reinterpret_cast<Nd4jLong *>(extraPointers[11]);
auto tadOnlyShapeInfoZ = reinterpret_cast<Nd4jLong *>(extraPointers[12]);
auto tadOffsetsZ = reinterpret_cast<Nd4jLong *>(extraPointers[13]);
auto xType = nd4j::ArrayOptions::dataType(hXShapeInfo);
auto yType = nd4j::ArrayOptions::dataType(hYShapeInfo);
auto zType = nd4j::ArrayOptions::dataType(hZShapeInfo);
if (nd4j::Environment::getInstance()->isDebugAndVerbose())
printf("F3 opNum:[%i]\n", opNum);
//Nd4jLong *tadOnlyShapeInfo = reinterpret_cast<Nd4jLong *>(extraPointers[0]);
//Nd4jLong *tadOffsets = reinterpret_cast<Nd4jLong *>(extraPointers[1]);
//Nd4jLong *tadOnlyShapeInfoZ = reinterpret_cast<Nd4jLong *>(extraPointers[2]);
//Nd4jLong *tadOffsetsZ = reinterpret_cast<Nd4jLong *>(extraPointers[3]);
LaunchContext lc(extraPointers[1], extraPointers[4], extraPointers[5], extraPointers[3]);
NativeOpExecutioner::execBroadcast(&lc, opNum, hX, hXShapeInfo, dX, dXShapeInfo, hY, hYShapeInfo, dY, dYShapeInfo, hZ, hZShapeInfo, dZ, dZShapeInfo, dimension, dimensionLength, tadOnlyShapeInfo, tadOffsets, tadOnlyShapeInfoZ, tadOffsetsZ);
}
/**
*
* @param opNum
* @param dX
* @param dXShapeInfo
* @param extraParams
* @param dZ
* @param dZShapeInfo
*/
////////////////////////////////////////////////////////////////////////
void NativeOps::execReduceFloat(Nd4jPointer *extraPointers,
int opNum,
void *hX, Nd4jLong *hXShapeInfo,
void *dX, Nd4jLong *dXShapeInfo,
void *extraParams,
void *hZ, Nd4jLong *hZShapeInfo,
void *dZ, Nd4jLong *dZShapeInfo) {
LaunchContext lc(extraPointers[1], extraPointers[4], extraPointers[5], extraPointers[3]);
NativeOpExecutioner::execReduceFloatScalar(&lc, opNum, hX, hXShapeInfo, dX, dXShapeInfo, extraParams, hZ, hZShapeInfo, dZ, dZShapeInfo);
}
////////////////////////////////////////////////////////////////////////
void NativeOps::execReduceSame(Nd4jPointer *extraPointers,
int opNum,
void *hX, Nd4jLong *hXShapeInfo,
void *dX, Nd4jLong *dXShapeInfo,
void *extraParams,
void *hZ, Nd4jLong *hZShapeInfo,
void *dZ, Nd4jLong *dZShapeInfo) {
LaunchContext lc(extraPointers[1], extraPointers[4], extraPointers[5], extraPointers[3]);
NativeOpExecutioner::execReduceSameScalar(&lc, opNum, hX, hXShapeInfo, dX, dXShapeInfo, extraParams, hZ, hZShapeInfo, dZ, dZShapeInfo);
}
////////////////////////////////////////////////////////////////////////
void NativeOps::execReduceSame(Nd4jPointer *extraPointers,
int opNum,
void *hX, Nd4jLong *hXShapeInfo,
void *dX, Nd4jLong *dXShapeInfo,
void *extraParams,
void *hZ, Nd4jLong *hZShapeInfo,
void *dZ, Nd4jLong *dZShapeInfo,
void *hDimension, Nd4jLong *hDimensionShape,
void *dDimension, Nd4jLong *dDimensionShape) {
auto dimension = reinterpret_cast<int *>(dDimension);
int dimensionLength = static_cast<int>(shape::length(hDimensionShape));
auto tadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(hXShapeInfo, reinterpret_cast<int*>(hDimension), shape::length(hDimensionShape));
LaunchContext lc(extraPointers[1], extraPointers[4], extraPointers[5], extraPointers[3]);
NativeOpExecutioner::execReduceSame(&lc, opNum, hX, hXShapeInfo, dX, dXShapeInfo, extraParams, hZ, hZShapeInfo, dZ, dZShapeInfo, dimension, dimensionLength, tadPack.specialShapeInfo(), tadPack.specialOffsets());
}
////////////////////////////////////////////////////////////////////////
void NativeOps::execReduceLong(Nd4jPointer *extraPointers,
int opNum,
void *hX, Nd4jLong *hXShapeInfo,
void *dX, Nd4jLong *dXShapeInfo,
void *extraParams,
void *hZ, Nd4jLong *hZShapeInfo,
void *dZ, Nd4jLong *dZShapeInfo,
void *hDimension, Nd4jLong *hDimensionShape,
void *dDimension, Nd4jLong *dDimensionShape) {
auto dimension = reinterpret_cast<int *>(dDimension);
int dimensionLength = static_cast<int>(shape::length(hDimensionShape));
auto tadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(hXShapeInfo, reinterpret_cast<int*>(hDimension), shape::length(hDimensionShape));
LaunchContext lc(extraPointers[1], extraPointers[4], extraPointers[5], extraPointers[3]);
NativeOpExecutioner::execReduceLong(&lc, opNum, hX, hXShapeInfo, dX, dXShapeInfo, extraParams, hZ, hZShapeInfo, dZ, dZShapeInfo, dimension, dimensionLength, tadPack.specialShapeInfo(), tadPack.specialOffsets());
}
////////////////////////////////////////////////////////////////////////
void NativeOps::execReduceLong(Nd4jPointer *extraPointers,
int opNum,
void *hX, Nd4jLong *hXShapeInfo,
void *dX, Nd4jLong *dXShapeInfo,
void *extraParams,
void *hZ, Nd4jLong *hZShapeInfo,
void *dZ, Nd4jLong *dZShapeInfo) {
auto stream = reinterpret_cast<cudaStream_t *>(extraPointers[1]);
auto hTADShapeInfo = reinterpret_cast<Nd4jLong *>(extraPointers[9]);
auto dTADShapeInfo = reinterpret_cast<Nd4jLong *>(extraPointers[10]);
if (nd4j::Environment::getInstance()->isDebugAndVerbose())
printf("LF7 opNum:[%i]\n", opNum);
auto reductionPointer = reinterpret_cast<void *>(extraPointers[4]);
auto xType = nd4j::ArrayOptions::dataType(hXShapeInfo);
auto zType = nd4j::ArrayOptions::dataType(hZShapeInfo);
if (zType != nd4j::DataType::INT64)
throw datatype_exception::build("NativeOps::execReduceLong wrong Z data type", nd4j::DataType::INT64, zType);
auto xLength = shape::length(hXShapeInfo);
auto blockWidth = 256;
auto numBlocks = CudaLaunchHelper::getReductionBlocks(xLength, blockWidth);
dim3 launchDims(numBlocks, blockWidth, 32768);
BUILD_DOUBLE_SELECTOR(xType, zType, functions::reduce::ReduceLongFunction, ::execReduceScalar(launchDims, stream, opNum, dX, dXShapeInfo, extraParams, dZ, dZShapeInfo, nullptr, 0, reductionPointer, dTADShapeInfo), LIBND4J_TYPES, LONG_TYPES);
nd4j::DebugHelper::checkErrorCode(stream, "execReduceLong(...) failed");
}
////////////////////////////////////////////////////////////////////////
void NativeOps::execReduceBool(Nd4jPointer *extraPointers,
int opNum,
void *hX, Nd4jLong *hXShapeInfo,
void *dX, Nd4jLong *dXShapeInfo,
void *extraParams,
void *hZ, Nd4jLong *hZShapeInfo,
void *dZ, Nd4jLong *dZShapeInfo,
void *hDimension, Nd4jLong *hDimensionShape,
void *dDimension, Nd4jLong *dDimensionShape) {
auto dimension = reinterpret_cast<int *>(dDimension);
int dimensionLength = static_cast<int>(shape::length(hDimensionShape));
auto tadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(hXShapeInfo, reinterpret_cast<int*>(hDimension), shape::length(hDimensionShape));
LaunchContext lc(extraPointers[1], extraPointers[4], extraPointers[5], extraPointers[3]);
NativeOpExecutioner::execReduceBool(&lc, opNum, hX, hXShapeInfo, dX, dXShapeInfo, extraParams, hZ, hZShapeInfo, dZ, dZShapeInfo, dimension, dimensionLength, tadPack.specialShapeInfo(), tadPack.specialOffsets());
}
////////////////////////////////////////////////////////////////////////
void NativeOps::execReduceBool(Nd4jPointer *extraPointers,
int opNum,
void *hX, Nd4jLong *hXShapeInfo,
void *dX, Nd4jLong *dXShapeInfo,
void *extraParams,
void *hZ, Nd4jLong *hZShapeInfo,
void *dZ, Nd4jLong *dZShapeInfo) {
auto stream = reinterpret_cast<cudaStream_t *>(extraPointers[1]);
auto hTADShapeInfo = reinterpret_cast<Nd4jLong *>(extraPointers[9]);
auto dTADShapeInfo = reinterpret_cast<Nd4jLong *>(extraPointers[10]);
if (nd4j::Environment::getInstance()->isDebugAndVerbose())
printf("BF7 opNum:[%i]\n", opNum);
auto reductionPointer = reinterpret_cast<void *>(extraPointers[4]);
auto xType = nd4j::ArrayOptions::dataType(hXShapeInfo);
auto zType = nd4j::ArrayOptions::dataType(hZShapeInfo);
if (zType != nd4j::DataType::BOOL)
throw std::runtime_error("NativeOps::execReduceBool requires Z operand to have BOOL type");
auto xLength = shape::length(hXShapeInfo);
auto blockWidth = 256;
auto numBlocks = CudaLaunchHelper::getReductionBlocks(xLength, blockWidth);
dim3 launchDims(numBlocks, blockWidth, 32768);
BUILD_DOUBLE_SELECTOR(xType, zType, functions::reduce::ReduceBoolFunction, ::execReduceScalar(launchDims, stream, opNum, dX, dXShapeInfo, extraParams, dZ, dZShapeInfo, nullptr, 0, reductionPointer, dTADShapeInfo), LIBND4J_TYPES, BOOL_TYPES);
nd4j::DebugHelper::checkErrorCode(stream, "execReduceBool(...) failed");
}
/**
*
* @param opNum
* @param dX
* @param dXShapeInfo
* @param extraParams
* @param dZ
* @param dZShapeInfo
* @param dimension
* @param dimensionLength
*/
////////////////////////////////////////////////////////////////////////
void NativeOps::execIndexReduce(Nd4jPointer *extraPointers,
int opNum,
void *hX, Nd4jLong *hXShapeInfo,
void *dX, Nd4jLong *dXShapeInfo,
void *extraParams,
void *hZ, Nd4jLong *hZShapeInfo,
void *dZ, Nd4jLong *dZShapeInfo,
void *hDimension, Nd4jLong *hDimensionShape,
void *dDimension, Nd4jLong *dDimensionShape) {
auto dimension = reinterpret_cast<int *>(dDimension);
int dimensionLength = static_cast<int>(shape::length(hDimensionShape));
auto tadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(hXShapeInfo, reinterpret_cast<int*>(hDimension), shape::length(hDimensionShape));
LaunchContext lc(extraPointers[1], extraPointers[4], extraPointers[5], extraPointers[3]);
NativeOpExecutioner::execIndexReduce(&lc, opNum, hX, hXShapeInfo, dX, dXShapeInfo, extraParams, hZ, hZShapeInfo, dZ, dZShapeInfo, dimension, dimensionLength, tadPack.specialShapeInfo(), tadPack.specialOffsets());
}
/**
*
* @param opNum
* @param dX
* @param dXShapeInfo
* @param extraParams
* @param dZ
* @param dZShapeInfo
*/
////////////////////////////////////////////////////////////////////////
void NativeOps::execReduceFloat(Nd4jPointer *extraPointers,
int opNum,
void *hX, Nd4jLong *hXShapeInfo,
void *dX, Nd4jLong *dXShapeInfo,
void *extraParams,
void *hZ, Nd4jLong *hZShapeInfo,
void *dZ, Nd4jLong *dZShapeInfo,
void *hDimension, Nd4jLong *hDimensionShape,
void *dDimension, Nd4jLong *dDimensionShape) {
auto dimension = reinterpret_cast<int *>(dDimension);
int dimensionLength = static_cast<int>(shape::length(hDimensionShape));
auto tadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(hXShapeInfo, reinterpret_cast<int*>(hDimension), shape::length(hDimensionShape));
LaunchContext lc(extraPointers[1], extraPointers[4], extraPointers[5], extraPointers[3]);
NativeOpExecutioner::execReduceFloat(&lc, opNum, hX, hXShapeInfo, dX, dXShapeInfo, extraParams, hZ, hZShapeInfo, dZ, dZShapeInfo, dimension, dimensionLength, tadPack.specialShapeInfo(), tadPack.specialOffsets());
}
/**
*
* @param opNum
* @param dX
* @param dXShapeInfo
* @param extraParams
*/
////////////////////////////////////////////////////////////////////////
void NativeOps::execIndexReduceScalar(
Nd4jPointer *extraPointers,
int opNum,
void *hX, Nd4jLong *hXShapeInfo,
void *dX, Nd4jLong *dXShapeInfo,
void *extraParams,
void *hZ, Nd4jLong *hZShapeInfo,
void *dZ, Nd4jLong *dZShapeInfo){
LaunchContext lc(extraPointers[1], extraPointers[4], extraPointers[5], extraPointers[3]);
NativeOpExecutioner::execIndexReduceScalar(&lc, opNum, hX, hXShapeInfo, dX, dXShapeInfo, extraParams, hZ, hZShapeInfo, dZ, dZShapeInfo);
}
////////////////////////////////////////////////////////////////////////
void NativeOps::execTransformSame(Nd4jPointer *extraPointers,int opNum,
void *hX, Nd4jLong *hXShapeInfo,
void *dX, Nd4jLong *dXShapeInfo,
void *hZ, Nd4jLong *hZShapeInfo,
void *dZ, Nd4jLong *dZShapeInfo,
void *extraParams) {
auto tadShapeInfo = reinterpret_cast<Nd4jLong *>(extraPointers != nullptr ? extraPointers[0] : nullptr);
auto tadOffsets = reinterpret_cast<Nd4jLong *>(extraPointers != nullptr ? extraPointers[1] : nullptr);
LaunchContext lc(extraPointers[1], extraPointers[4], extraPointers[5], extraPointers[3]);
NativeOpExecutioner::execTransformSame(&lc, opNum, hX, hXShapeInfo, dX, dXShapeInfo, hZ, hZShapeInfo, dZ, dZShapeInfo, extraParams, tadShapeInfo, tadOffsets);
}
////////////////////////////////////////////////////////////////////////
void NativeOps::execTransformBool(Nd4jPointer *extraPointers,int opNum,
void *hX, Nd4jLong *hXShapeInfo,
void *dX, Nd4jLong *dXShapeInfo,
void *hZ, Nd4jLong *hZShapeInfo,
void *dZ, Nd4jLong *dZShapeInfo,
void *extraParams) {
auto tadShapeInfo = reinterpret_cast<Nd4jLong *>(extraPointers != nullptr ? extraPointers[0] : nullptr);
auto tadOffsets = reinterpret_cast<Nd4jLong *>(extraPointers != nullptr ? extraPointers[1] : nullptr);
LaunchContext lc(extraPointers[1], extraPointers[4], extraPointers[5], extraPointers[3]);
NativeOpExecutioner::execTransformBool(&lc, opNum, hX, hXShapeInfo, dX, dXShapeInfo, hZ, hZShapeInfo, dZ, dZShapeInfo, extraParams, tadShapeInfo, tadOffsets);
}
////////////////////////////////////////////////////////////////////////
void NativeOps::execTransformAny(Nd4jPointer *extraPointers,int opNum,
void *hX, Nd4jLong *hXShapeInfo,
void *dX, Nd4jLong *dXShapeInfo,
void *hZ, Nd4jLong *hZShapeInfo,
void *dZ, Nd4jLong *dZShapeInfo,
void *extraParams) {
auto stream = reinterpret_cast<cudaStream_t*>(extraPointers[1]);
LaunchContext lc(stream, extraPointers[4], extraPointers[5], extraPointers[3]);
// FIXME: remove this once all operations are enabled
if (opNum == nd4j::transform::IsMax && extraParams != nullptr) {
auto hostYShapeInfo = reinterpret_cast<Nd4jLong *>(extraPointers[7]);
auto hostTShapeInfo = reinterpret_cast<Nd4jLong *>(extraPointers[19]);
auto tadMaxShapeInfo = reinterpret_cast<Nd4jLong *> (extraPointers[10]);
auto tadMaxOffsets = reinterpret_cast<Nd4jLong *> (extraPointers[11]);
int *dimension = reinterpret_cast<int *> (extraPointers[15]);
int *hDimension = reinterpret_cast<int *> (extraPointers[16]);
int dimensionLength = getDeviceId(extraPointers[18]);
auto special = reinterpret_cast<double *>(extraPointers[17]);
auto cshape = ShapeBuilders::createVectorShapeInfo(nd4j::DataType::INT32, dimensionLength);
// we call for IMax on specified dimension
execIndexReduce(extraPointers, indexreduce::IndexMax, nullptr, hXShapeInfo, dX, dXShapeInfo, extraParams, nullptr, hostTShapeInfo, special, hostYShapeInfo, hDimension, cshape, dimension, nullptr);
DEBUG_KERNEL(stream, opNum);
dim3 launchDims(256, 256, 16384);
auto zType = ArrayOptions::dataType(hZShapeInfo);
// at this point, all IMax indexes are gathered, and we execute filler
BUILD_SINGLE_SELECTOR(zType, fillDimensionalIsMaxGeneric, (launchDims, stream, special, dZ, dZShapeInfo, tadMaxShapeInfo, dimension, dimensionLength, tadMaxOffsets), LIBND4J_TYPES);
nd4j::DebugHelper::checkErrorCode(stream, "Legacy IsMax(...) failed");
delete[] cshape;
} else {
NativeOpExecutioner::execTransformAny(&lc, opNum, hX, hXShapeInfo, dX, dXShapeInfo, hZ, hZShapeInfo, dZ, dZShapeInfo, extraParams, nullptr, nullptr);
}
}
////////////////////////////////////////////////////////////////////////
void NativeOps::execTransformStrict(Nd4jPointer *extraPointers,int opNum,
void *hX, Nd4jLong *hXShapeInfo,
void *dX, Nd4jLong *dXShapeInfo,
void *hZ, Nd4jLong *hZShapeInfo,
void *dZ, Nd4jLong *dZShapeInfo,
void *extraParams) {
auto tadShapeInfo = reinterpret_cast<Nd4jLong *>(extraPointers != nullptr ? extraPointers[10] : nullptr);
auto tadOffsets = reinterpret_cast<Nd4jLong *>(extraPointers != nullptr ? extraPointers[11] : nullptr);
LaunchContext lc(extraPointers[1], extraPointers[4], extraPointers[5], extraPointers[3]);
NativeOpExecutioner::execTransformStrict(&lc, opNum, hX, hXShapeInfo, dX, dXShapeInfo, hZ, hZShapeInfo, dZ, dZShapeInfo, extraParams, tadShapeInfo, tadOffsets);
}
////////////////////////////////////////////////////////////////////////
void NativeOps::execTransformFloat(Nd4jPointer *extraPointers,int opNum,
void *hX, Nd4jLong *hXShapeInfo,
void *dX, Nd4jLong *dXShapeInfo,
void *hZ, Nd4jLong *hZShapeInfo,
void *dZ, Nd4jLong *dZShapeInfo,
void *extraParams) {
auto tadShapeInfo = reinterpret_cast<Nd4jLong *>(extraPointers != nullptr ? extraPointers[10] : nullptr);
auto tadOffsets = reinterpret_cast<Nd4jLong *>(extraPointers != nullptr ? extraPointers[11] : nullptr);
LaunchContext lc(extraPointers[1], extraPointers[4], extraPointers[5], extraPointers[3]);
NativeOpExecutioner::execTransformFloat(&lc, opNum, hX, hXShapeInfo, dZ, dXShapeInfo, hZ, hZShapeInfo, dZ, dZShapeInfo, extraParams, tadShapeInfo, tadOffsets);
}
/**
* Append an input array
* to the end of a flat array
* in a particular order
* @param offset the offset of the array to start at
* @param order the order
* @param dZ the dZ array
* @param dZShapeInfo the shape info for te array
* @param input the input for the array
* @param inputShapeInfo the shape information for that array
*/
void NativeOps::flatten(Nd4jPointer *extraPointers,
int offset,
char order,
void *hZ, Nd4jLong *hZShapeInfo,
void *dZ, Nd4jLong *dZShapeInfo,
void *hInput, Nd4jLong *hInputShapeInfo,
void *dInput, Nd4jLong *dInputShapeInfo) {
cudaStream_t *stream = reinterpret_cast<cudaStream_t *>(extraPointers[1]);
auto hYShapeInfo = reinterpret_cast<Nd4jLong *>(extraPointers[7]);
if (nd4j::Environment::getInstance()->isDebugAndVerbose())
printf("F22 opNum:[7]\n");
// int *allocPointer = reinterpret_cast<int *>(extraPointers[3]);
dim3 launchDims(256, 256, 2048);
if (nd4j::Environment::getInstance()->isVerbose() && launchDims.x == 1)
printf("AF222 opNum:[7]\n");
auto type = nd4j::ArrayOptions::dataType(hInputShapeInfo);
BUILD_SINGLE_SELECTOR(type, flattenKernelGeneric, (launchDims, stream, extraPointers, offset, order, dZ, dZShapeInfo, dInput, dInputShapeInfo), LIBND4J_TYPES);
DEBUG_KERNEL(stream, -1);
}
void NativeOps::checkP2P() {
int curDevice = 0;
cudaGetDevice(&curDevice);
int devCnt = 0;
cudaGetDeviceCount(&devCnt);
if (curDevice < 0 && curDevice > devCnt)
curDevice = 0;
bool tempSupport = true;
if (devCnt > 1) {
for (int dX = 0; dX < devCnt; dX++) {
for (int dY = 0; dY < devCnt; dY++) {
if (dX == dY)
continue;
int canAccess = 0;
cudaSetDevice(dX);
cudaDeviceCanAccessPeer(&canAccess, dX , dY);
if (!canAccess) {
tempSupport = false;
break;
}
}
}
supportedP2P = tempSupport;
cudaSetDevice(curDevice);
} else {
// if we have only 1 device - we say that we support P2P, since all data will be on 1 device
supportedP2P = true;
}
}
void NativeOps::enableP2P(bool enable) {
if (enable == allowedP2P)
return;
int curDevice = 0;
cudaGetDevice(&curDevice);
int devCnt = 0;
cudaGetDeviceCount(&devCnt);
if (curDevice < 0 && curDevice > devCnt)
curDevice = 0;
if (devCnt > 1) {
for (int dX = 0; dX < devCnt; dX++) {
for (int dY = 0; dY < devCnt; dY++) {
if (dX == dY)
continue;
int canAccess = 0;
cudaSetDevice(dX);
cudaDeviceCanAccessPeer(&canAccess, dX , dY);
if (canAccess) {
if (enable) {
cudaDeviceEnablePeerAccess(dY, 0);
} else {
cudaDeviceDisablePeerAccess(dY);
}
} else {
if (nd4j::Environment::getInstance()->isVerbose()) printf("Peer access [%i] -> [%i] isn't possible\n", dX, dY);
}
}
}
cudaSetDevice(curDevice);
}
allowedP2P = enable;
cudaSetDevice(curDevice);
}
bool NativeOps::isP2PAvailable() {
return supportedP2P;
}
void NativeOps::initializeDevicesAndFunctions() {
int devCnt = 0;
cudaGetDeviceCount(&devCnt);
deviceProperties = new cudaDeviceProp[devCnt];
for (int i = 0; i < devCnt; i++) {
cudaSetDevice(i);
cudaGetDeviceProperties(&deviceProperties[i], i);
cudaDeviceSetLimit(cudaLimitStackSize, 4096);
}
cudaSetDevice(0);
checkP2P();
// enabling p2p gpu access if it's supported
if (supportedP2P && devCnt > 1)
enableP2P(allowedP2P);
}
void NativeOps::initializeFunctions(Nd4jPointer *functions) {
nd4j::BlasHelper::getInstance()->initializeDeviceFunctions(functions);
/*
this->cublasSgemv = (CublasSgemv)functions[0];
this->cublasDgemv = (CublasDgemv)functions[1];
this->cublasHgemm = (CublasHgemm)functions[2];
this->cublasSgemm = (CublasSgemm)functions[3];
this->cublasDgemm = (CublasDgemm)functions[4];
this->cublasSgemmEx = (CublasSgemmEx)functions[5];
this->cublasHgemmBatched = (CublasHgemmBatched)functions[6];
this->cublasSgemmBatched = (CublasSgemmBatched)functions[7];
this->cublasDgemmBatched = (CublasDgemmBatched)functions[8];
*/
}
/**
* This method acquires memory chunk of requested size on host side
*
* @param pointer pointer that'll be used for allocation
* @param memorySize memory size, in bytes
* @param flags optional parameter
*/
Nd4jPointer NativeOps::mallocHost(Nd4jLong memorySize, int flags) {
Nd4jPointer pointer;
// cudaHostAllocMapped |cudaHostAllocPortable
cudaError_t res = cudaHostAlloc(reinterpret_cast<void **>(&pointer), memorySize, cudaHostAllocDefault);
if (res != 0)
pointer = 0L;
return pointer;
}
/**
* This method acquires memory chunk of requested size on specified device
*
* @param pointer pointer that'll be used for allocation
* @param memorySize memory size, in bytes
* @param ptrToDeviceId pointer to deviceId. For cuda that's just and int, for OpenCL that's pointer to device_id, etc
* @param flags optional parameter
*/
Nd4jPointer NativeOps::mallocDevice(Nd4jLong memorySize, int deviceId, int flags) {
Nd4jPointer pointer;
auto res = cudaMalloc(reinterpret_cast<void **>(&pointer), memorySize);
if (res != 0)
pointer = 0L;
return pointer;
}
/**
* This method releases previously allocated host memory space
*
* @param pointer pointer that'll be freed
*/
int NativeOps::freeHost(Nd4jPointer pointer) {
cudaError_t res = cudaFreeHost(reinterpret_cast<void *>(pointer));
if (res != 0)
pointer = 0L;
return 1L;
}
/**
* This method releases previously allocated memory space on device
*
* @param pointer pointer that'll be freed
* @param ptrToDeviceId pointer to deviceId.
*/
int NativeOps::freeDevice(Nd4jPointer pointer, int deviceId) {
cudaError_t res = cudaFree(reinterpret_cast<void *>(pointer));
if (res != 0)
pointer = 0L;
return 1L;
}
Nd4jPointer NativeOps::createContext() {
return 0L;
}
Nd4jPointer NativeOps::createStream() {
/*
Nd4jPointer nativeStream = (Nd4jPointer) malloc(sizeof(cudaStream_t));
CHECK_ALLOC(nativeStream, "Failed to allocate memory for new CUDA stream", sizeof(cudaStream_t));
cudaError_t dZ = cudaStreamCreate(reinterpret_cast<cudaStream_t *>(&nativeStream));
checkCudaErrors(dZ);
if (dZ != 0)
throw std::runtime_error("cudaStreamCreate(...) failed");
return nativeStream;
*/
auto stream = new cudaStream_t();
auto dZ = cudaStreamCreate(stream);
if (dZ != 0)
throw std::runtime_error("cudaStreamCreate(...) failed");
return stream;
}
Nd4jPointer NativeOps::createEvent() {
Nd4jPointer nativeEvent= (Nd4jPointer) malloc(sizeof(cudaEvent_t));
CHECK_ALLOC(nativeEvent, "Failed to allocate new CUDA event buffer", sizeof(cudaEvent_t));
cudaError_t dZ = cudaEventCreateWithFlags(reinterpret_cast<cudaEvent_t *>(&nativeEvent), cudaEventDisableTiming);
checkCudaErrors(dZ);
if (dZ != 0)
throw std::runtime_error("cudaEventCreateWithFlags(...) failed");
return nativeEvent;
}
int NativeOps::registerEvent(Nd4jPointer event, Nd4jPointer stream) {
cudaEvent_t *pEvent = reinterpret_cast<cudaEvent_t *>(&event);
cudaStream_t *pStream = reinterpret_cast<cudaStream_t *>(stream);
cudaError_t dZ = cudaEventRecord(*pEvent, *pStream);
checkCudaErrors(dZ);
if (dZ != 0)
throw std::runtime_error("cudaEventRecord(...) failed");
return 1;
}
int NativeOps::setDevice(int deviceId) {
auto dZ = cudaSetDevice(deviceId);
checkCudaErrors(dZ);
if (dZ != 0)
throw std::runtime_error("cudaSetDevice(...) failed");
return 1;
}
Nd4jLong NativeOps::getDeviceFreeMemory() {
size_t memFree = 0;
size_t memTotal = 0;
cudaMemGetInfo(&memFree, &memTotal);
return (Nd4jLong) memFree;
}
Nd4jLong NativeOps::getDeviceFreeMemory(int device) {
int orig = -1;
cudaGetDevice(&orig);
if (device >= 0 && device != orig) {
cudaSetDevice(device);
}
size_t memFree = 0;
size_t memTotal = 0;
cudaMemGetInfo(&memFree, &memTotal);
if (device >= 0 && device != orig) {
cudaSetDevice(orig);
}
return (Nd4jLong) memFree;
}
Nd4jLong NativeOps::getDeviceTotalMemory(int device) {
int orig = -1;
cudaGetDevice(&orig);
if (device >= 0 && device != orig) {
cudaSetDevice(device);
}
size_t memFree = 0;
size_t memTotal = 0;
cudaMemGetInfo(&memFree, &memTotal);
if (device >= 0 && device != orig) {
cudaSetDevice(orig);
}
return (Nd4jLong) memTotal;
}
int NativeOps::memcpy(Nd4jPointer dst, Nd4jPointer src, Nd4jLong size, int flags, Nd4jPointer reserved) {
return memcpyAsync(dst, src, size, flags, reserved);
}
int NativeOps::memcpyAsync(Nd4jPointer dst, Nd4jPointer src, Nd4jLong size, int flags, Nd4jPointer reserved) {
cudaStream_t *pStream = reinterpret_cast<cudaStream_t *>(reserved);
cudaMemcpyKind kind;
DEBUG_KERNEL(pStream, 0);
switch (flags) {
case 0: {
kind = cudaMemcpyHostToHost;
}
break;
case 1: {
kind = cudaMemcpyHostToDevice;
}
break;
case 2: {
kind = cudaMemcpyDeviceToHost;
}
case 3: {
kind = cudaMemcpyDeviceToDevice;
}
break;
default: {
printf("UNDEFINED MEMCPY!\n");
break;
}
}
cudaError_t dZ = cudaMemcpyAsync(reinterpret_cast<void *>(dst), const_cast<const void *>(reinterpret_cast<void *>(src)), static_cast<size_t>(size), kind, *pStream);
if (dZ != 0) {
checkCudaErrors(dZ);
printf("Failed on [%lu] -> [%lu], size: [%i], direction: [%i], dZ: [%i]\n", src, dst, size, flags, static_cast<int>(dZ));
fflush(stdout);
fflush(stderr);
throw std::runtime_error("cudaMemcpyAsync(...) failed");
//return 0L;
}
return 1;
}
int NativeOps::memset(Nd4jPointer dst, int value, Nd4jLong size, int flags, Nd4jPointer reserved) {
cudaError_t dZ = cudaMemset(reinterpret_cast<void *>(dst), value, static_cast<size_t>(size));
checkCudaErrors(dZ);
if (dZ != 0)
throw std::runtime_error("cudaMemset(...) failed");
return 1;
}
int NativeOps::memsetAsync(Nd4jPointer dst, int value, Nd4jLong size, int flags, Nd4jPointer reserved) {
cudaStream_t *pStream = reinterpret_cast<cudaStream_t *>(reserved);
cudaError_t dZ = cudaMemsetAsync(reinterpret_cast<void *>(dst), value, static_cast<size_t>(size), *pStream);
checkCudaErrors(dZ);
if (dZ != 0)
throw std::runtime_error("cudaMemsetAsync(...) failed");
return 1;
}
int NativeOps::destroyEvent(Nd4jPointer event) {
cudaEvent_t *pEvent = reinterpret_cast<cudaEvent_t *>(&event);
cudaError_t dZ = cudaEventDestroy(*pEvent);
checkCudaErrors(dZ);
if (dZ != 0)
throw std::runtime_error("cudaEvenDestroy(...) failed");
return 1;
}
int NativeOps::streamSynchronize(Nd4jPointer stream) {
cudaStream_t *pStream = reinterpret_cast<cudaStream_t *>(stream);
cudaError_t dZ = cudaStreamSynchronize(*pStream);
checkCudaErrors(dZ);
if (dZ != 0)
throw std::runtime_error("cudaStreamSynchronize(...) failed");
return 1L;
}
int NativeOps::eventSynchronize(Nd4jPointer event) {
cudaEvent_t *pEvent = reinterpret_cast<cudaEvent_t *>(&event);
cudaError_t dZ = cudaEventSynchronize(*pEvent);
checkCudaErrors(dZ);
if (dZ != 0)
throw std::runtime_error("cudaEventSynchronize(...) failed");
return 1L;
}
int NativeOps::getAvailableDevices() {
int devCnt = 0;
cudaGetDeviceCount(&devCnt);
return devCnt;
}
void NativeOps::enableDebugMode(bool reallyEnable) {
nd4j::Environment::getInstance()->setDebug(reallyEnable);
}
void NativeOps::setGridLimit(int gridSize) {
if (gridSize > 8192)
gridSize = 8192;
if (gridSize < 1)
gridSize = 1;
blockLimit = gridSize;
}
int NativeOps::ompGetMaxThreads() {
return maxThreads;
}
int NativeOps::ompGetNumThreads() {
return maxThreads;
}
void NativeOps::setOmpNumThreads(int threads) {
if (threads > 1024)
threads = 1024;
if (threads < 32)
threads = 32;
maxThreads = threads;
}
void NativeOps::enableVerboseMode(bool reallyEnable) {
nd4j::Environment::getInstance()->setVerbose(reallyEnable);
}
int NativeOps::getDeviceMajor(int device) {
return deviceProperties[device].major;
}
int NativeOps::getDeviceMinor(int device) {
return deviceProperties[device].minor;
}
const char * NativeOps::getDeviceName(int device) {
return deviceProperties[device].name;
}
///////////////////////////////////////////////////////////////////
template<typename T>
__global__ static void concatCuda(const int numOfArrs, void* pVx, void* pxShapeInfo, void* pVz, void* pzShapeInfo) {
__shared__ int arrIdx, blocksPerArr;
__shared__ T *x, *z;
__shared__ Nd4jLong *zShapeInfo, *xShapeInfo, arrLen, arrLenZ, arrLenPerBlock, start, end;
if (threadIdx.x == 0) {
blocksPerArr = (gridDim.x - gridDim.x % numOfArrs) / numOfArrs; // floor
arrIdx = blockIdx.x / blocksPerArr;
if (arrIdx >= numOfArrs)
arrIdx = numOfArrs - 1;
x = reinterpret_cast<T*>(reinterpret_cast<void**>(pVx)[arrIdx]);
z = reinterpret_cast<T*>(reinterpret_cast<void**>(pVz)[arrIdx]);
xShapeInfo = reinterpret_cast<Nd4jLong**>(pxShapeInfo)[arrIdx];
zShapeInfo = reinterpret_cast<Nd4jLong**>(pzShapeInfo)[arrIdx];
arrLen = shape::length(xShapeInfo);
arrLenZ = shape::length(zShapeInfo);
arrLenPerBlock = (arrLen + blocksPerArr - arrLen % blocksPerArr) / blocksPerArr; // ceil
start = arrLenPerBlock * (blockIdx.x % blocksPerArr);
end = (start + arrLenPerBlock) > arrLen ? arrLen : (start + arrLenPerBlock);
}
__syncthreads();
for (Nd4jLong i = threadIdx.x + start; i < end; i += blockDim.x) {
auto zOffset = shape::getIndexOffset(i, zShapeInfo, arrLenZ);
auto xOffset = shape::getIndexOffset(i, xShapeInfo, arrLen);
//printf("z[%i][%lld] = x[%i][%lld]\n", arrIdx, zOffset, arrIdx, xOffset);
z[zOffset] = x[xOffset];
}
}
template<typename T>
__host__ static void concatCudaLauncher(const int numOfArrs, cudaStream_t *stream, void* pVx, void* pxShapeInfo, void* pVz, void* pzShapeInfo) {
//int blocks = numOfArrs * 16; // >> 1 << 2);
//nd4j_printf("gridDim.x is %i\n", blocks);
//if (blocks > 8192)
// blocks = 8192; // restrict grid dims to 8K max
concatCuda<T><<<numOfArrs, 128, 512, *stream>>>(numOfArrs, pVx, pxShapeInfo, pVz, pzShapeInfo);
nd4j::DebugHelper::checkErrorCode(stream, "concat(...) failed");
}
BUILD_SINGLE_TEMPLATE(template void concatCudaLauncher, (const int numOfArrs, cudaStream_t *stream, void* pVx, void* pxShapeInfo, void* pVz, void* pzShapeInfo), LIBND4J_TYPES);
static void
specialBufferAndShapeWithOffset(void* vZ, Nd4jLong* hZShapeInfo, Nd4jLong* dZShapeInfo, std::vector<Nd4jLong> const& idx, void*& outBuffer, Nd4jLong*& outShape) {
auto zType = nd4j::ArrayOptions::dataType(hZShapeInfo);
const int rank = shape::rank(hZShapeInfo);
Nd4jLong* newShape = new Nd4jLong[shape::shapeInfoLength(rank)];
//ALLOCATE(newShape, nullptr, , Nd4jLong)
auto shapeSize = shape::shapeInfoByteLength(rank);
memcpy(newShape, hZShapeInfo, shapeSize);
auto shapeOf = shape::shapeOf(newShape);
auto stridesOf = shape::stride(newShape);
Nd4jLong offset(0), subArrLen(1);
int n(2), first, last, stride;
for (int d = rank - 1; d >= 0; --d) {
if (idx[n * d] != idx[n * d + 1]) {
auto axeDim = shape::sizeAt(hZShapeInfo, d);
first = idx[n * d] >= 0 ? idx[n * d] : idx[n * d] + axeDim + 1;
last = idx[n * d + 1] >= 0 ? idx[n * d + 1] : idx[n * d + 1] + axeDim + 1;
stride = 1;
shapeOf[d] = (last - first + stride - 1) / stride; // ceil (last - first) / stride;
offset += first * stridesOf[d];
if(shapeOf[d] != 1)
stridesOf[d] *= stride;
}
subArrLen *= shapeOf[d];
}
// check if there is possibility to set ews = 1
//shape::setEws(newShape, subArrLen);
//makeBothBuffersActual();
outBuffer = (void*)((int8_t*)vZ + offset * DataTypeUtils::sizeOfElement(zType));
cudaError_t err = cudaMalloc(&outShape, shapeSize);
if (err != 0) {
printf("Cannot allocate memory with error %d\n", err);
throw std::runtime_error("Cannot allocate memory for shape");
}
cudaMemcpy(outShape, newShape, shapeSize, cudaMemcpyHostToDevice);
delete [] newShape;
}
/**
* Concatneate multi array of the same shape together
* along a particular dimension
*/
void NativeOps::concat(
Nd4jPointer *extraPointers,
int dimension,
int numArrays,
Nd4jPointer *data, Nd4jPointer *inputShapeInfo,
Nd4jPointer *ddata, Nd4jPointer *dinputShapeInfo,
void *hZ, Nd4jLong *hZShapeInfo,
void *dZ, Nd4jLong *dZShapeInfo,
Nd4jPointer *tadPointers, Nd4jPointer *offsetPointers) {
auto stream = reinterpret_cast<cudaStream_t *>(extraPointers[1]);
auto hXShapeInfo = hZShapeInfo;
auto hShapePointers = reinterpret_cast<Nd4jLong **>(inputShapeInfo);
auto dShapePointers = reinterpret_cast<Nd4jLong **>(dinputShapeInfo);
// numArrays will be used as number of TADs, so each block process 1 input
auto zType = nd4j::ArrayOptions::dataType(hZShapeInfo);
auto axis = dimension;
const int rank = shape::rank(hZShapeInfo); //reinterpret_cast<Nd4jLong*>(inputShapeInfo[0]));
const int rank2 = 2 * rank;
std::vector<std::vector<Nd4jLong>> indices(numArrays, std::vector<Nd4jLong>(rank2,0));
// take into account indices for first array
auto axisSize = shape::sizeAt(reinterpret_cast<Nd4jLong*>(inputShapeInfo[0]), axis);
indices[0][2 * axis + 1] = axisSize;
//printf("The axe size is %lld\n", axisSize);
2019-06-06 14:21:15 +02:00
// loop through the rest of input arrays
for(int i = 1; i < numArrays; ++i) {
indices[i][2 * axis] = indices[i-1][2 * axis + 1]; // index start from
indices[i][2 * axis + 1] = indices[i-1][2 * axis + 1] + shape::sizeAt(reinterpret_cast<Nd4jLong*>(inputShapeInfo[i]), axis); // index end with (excluding)
}
std::vector<void*> outSubArrsBuffs(numArrays);
std::vector<Nd4jLong*> outSubArrsShapes(numArrays);
for(int i = 0; i < numArrays; ++i) {
specialBufferAndShapeWithOffset(dZ, hZShapeInfo, dZShapeInfo, indices[i], outSubArrsBuffs[i], outSubArrsShapes[i]);
}
// prepare arrays of pointers on buffers and shapes
std::vector<void*> hOutBuffers(numArrays), hInBuffers(numArrays);
std::vector<Nd4jLong*> hOutShapeInfo(numArrays), hInShapeInfo(numArrays);
for(int i = 0; i < numArrays; ++i) {
hOutBuffers[i] = outSubArrsBuffs[i];
hInBuffers[i] = ddata[i];//->getSpecialBuffer();
hOutShapeInfo[i] = outSubArrsShapes[i];
hInShapeInfo[i] = (Nd4jLong*)(dShapePointers[i]);//->getSpecialShapeInfo();
// nd4j_printf("X_%i shape ptr: %p; data ptr: %p;\n", i, hInShapeInfo[i], hInBuffers[i]);
}
// nd4j_printf(" done\n", "");
LaunchContext context(stream);
// allocate and copy all buffers and shapes arrays to global memory
PointersManager manager(&context, "NativeOps::concat");
void* dOutBuffers = manager.replicatePointer(hOutBuffers.data(), hOutBuffers.size() * sizeof(void*));
void* dInBuffers = manager.replicatePointer(hInBuffers.data(), hInBuffers.size() * sizeof(void*));
void* dInShapeInfo = manager.replicatePointer(hInShapeInfo.data(), hInShapeInfo.size() * sizeof(Nd4jLong*));
void* dOutShapeInfo = manager.replicatePointer(hOutShapeInfo.data(), hOutShapeInfo.size() * sizeof(Nd4jLong*));
BUILD_SINGLE_SELECTOR(zType, concatCudaLauncher, (numArrays, stream, dInBuffers, dInShapeInfo, dOutBuffers, dOutShapeInfo), LIBND4J_TYPES);
manager.synchronize();
cudaError_t err;
for(int i = 0; i < numArrays; ++i) {
err = cudaFree(outSubArrsShapes[i]);
if (err != 0) {
printf("Error %d occured when shape %i was deallocating.\n", err, i);
throw std::runtime_error("Cannot deallocate memory for shapes.");
}
}
}
/**
* Concatneate multi array of the same shape together
* along a particular dimension
*/
// void NativeOps::concat(
// Nd4jPointer *extraPointers,
// int dimension,
// int numArrays,
// Nd4jPointer *data, Nd4jPointer *inputShapeInfo,
// Nd4jPointer *ddata, Nd4jPointer *dinputShapeInfo,
// void *hZ, Nd4jLong *hZShapeInfo,
// void *dZ, Nd4jLong *dZShapeInfo,
// Nd4jPointer *tadPointers, Nd4jPointer *offsetPointers) {
//
// cudaStream_t *stream = reinterpret_cast<cudaStream_t *>(extraPointers[1]);
// auto hXShapeInfo = hZShapeInfo;
// auto hShapePointers = reinterpret_cast<Nd4jLong **>(inputShapeInfo);
// // numArrays will be used as number of TADs, so each block process 1 input
//
// int smem = 8192;
// bool isVstack = false;
// bool isScalar = true;
// bool isHstack = false;
//
// for (int i = 0; i < numArrays; i++) {
// if (!shape::isScalar(hShapePointers[i])) {
// isScalar = false;
// break;
// }
// }
//
// if (!isScalar && dimension == 0 && shape::rank(hZShapeInfo) == 2 && shape::order(hZShapeInfo) == 'c' ) {
// isVstack = true;
// for (int i = 0; i < numArrays; i++) {
// if (!shape::isVector(hShapePointers[i]) || shape::elementWiseStride(hShapePointers[i]) <= 0 ||
// shape::order(hShapePointers[i]) != 'c') {
// isVstack = false;
// break;
// }
// }
// }
//
// // let's try to fit N-dimensional vstack
// if (!isVstack && !isScalar && dimension == 0 && shape::order(hXShapeInfo) == 'c') {
// auto length0 = shape::length(hShapePointers[0]);
// isVstack = true;
// for (int i = 0; i < numArrays; i++) {
// if (shape::elementWiseStride(hShapePointers[i]) <= 0 || shape::order(hShapePointers[i]) != 'c' || length0 != shape::length(hShapePointers[i])) {
// isVstack = false;
// break;
// }
// }
// }
//
// if (!isScalar && !isVstack && dimension == 1 && shape::isVector(hZShapeInfo)) {
// isHstack = true;
// for (int i = 0; i < numArrays; i++) {
// if (!shape::isVector(hShapePointers[i]) || shape::elementWiseStride(hShapePointers[i]) <= 0) {
// isHstack = false;
// break;
// }
// }
// }
//
// if (isScalar) {
// if (nd4j::Environment::getInstance()->isDebugAndVerbose())
// printf("Going scalar concat\n");
//
// dim3 launchDims(128, 128, 16384);
// auto zType = nd4j::ArrayOptions::dataType(hZShapeInfo);
// BUILD_SINGLE_SELECTOR(zType, concatKernelScalarGeneric, (launchDims, stream, numArrays, reinterpret_cast<Nd4jPointer *>(ddata[0]), dZ), LIBND4J_TYPES);
//
// } else if (isVstack) {
// if (nd4j::Environment::getInstance()->isDebugAndVerbose())
// printf("Going VStack concat\n");
//
// dim3 launchDims(128, 512, 16384);
// auto zType = nd4j::ArrayOptions::dataType(hZShapeInfo);
// BUILD_SINGLE_SELECTOR(zType, concatKernelVStackGeneric, (launchDims, stream, numArrays, reinterpret_cast<Nd4jPointer *>(ddata[0]), reinterpret_cast<Nd4jPointer *>(dinputShapeInfo[0]), dZ, dZShapeInfo), LIBND4J_TYPES);
//
// } else if (isHstack) {
// if (nd4j::Environment::getInstance()->isDebugAndVerbose())
// printf("Going HStack concat\n");
//
// dim3 launchDims(128, 128, 16384);
// auto zType = nd4j::ArrayOptions::dataType(hZShapeInfo);
// BUILD_SINGLE_SELECTOR(zType, concatKernelHStackGeneric, (launchDims, stream, numArrays, reinterpret_cast<Nd4jPointer *>(ddata[0]), reinterpret_cast<Nd4jPointer *>(dinputShapeInfo[0]), dZ, dZShapeInfo), LIBND4J_TYPES);
// } else {
// if (nd4j::Environment::getInstance()->isDebugAndVerbose())
// printf("Going generic concat\n");
//
// auto devZTadShape = reinterpret_cast<Nd4jLong *>(extraPointers[10]);
// auto devZOffsets = reinterpret_cast<Nd4jLong *>(extraPointers[11]);
//
// dim3 launchDims(128, 128, 8192);
// auto zType = nd4j::ArrayOptions::dataType(hZShapeInfo);
// BUILD_SINGLE_SELECTOR(zType, concatKernelGeneric, (launchDims, stream, numArrays, reinterpret_cast<Nd4jPointer *>(ddata[0]), reinterpret_cast<Nd4jPointer *>(dinputShapeInfo[0]), dZ, dZShapeInfo, reinterpret_cast<Nd4jPointer *>(tadPointers[0]), reinterpret_cast<Nd4jPointer *>(offsetPointers[0]), devZTadShape, devZOffsets), LIBND4J_TYPES);
// }
// if (nd4j::Environment::getInstance()->isDebugAndVerbose())
// printf("sharedMemory requested for concatFloat: [%i], registers: [%i]\n", smem, funcAttributes[31].numRegs);
//
// cudaError_t res = cudaStreamSynchronize(*stream);
// checkCudaErrors(res);
// nd4j::DebugHelper::checkErrorCode(stream, "Legacy ConcatFloat(...) failed");
//}
void NativeOps::specialConcat(
Nd4jPointer *extraPointers,
int dimension,
int numArrays,
Nd4jPointer *data,
Nd4jPointer *inputShapeInfo,
void *dZ,
Nd4jLong *dZShapeInfo, Nd4jPointer *tadPointers, Nd4jPointer *offsetPointers) {
[WIP] more CUDA stuff (#57) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * Added gradcheck test for dynamic_partition_bp op. * - implementation of dilation op (cpu and cuda) Signed-off-by: Yurii <yurii@skymind.io> * Fixed broadcast_dynamic_shape 1D case and tests. * Fixed usage of default integer arguments. * Fixed dynamic_partition_bp op and tests. * Eliminated test with grad check for dynamic_partition_bp op. * start working on cuda svd - porting available corresponding api from cuSOLVER library Signed-off-by: Yurii <yurii@skymind.io> * provide prelu_bp Signed-off-by: Yurii <yurii@skymind.io> * - provide gruCell_bp (old version ??) Signed-off-by: Yurii <yurii@skymind.io> * - polishing cumsum_bp and cumprod_bp tests Signed-off-by: Yurii <yurii@skymind.io> * provide sparseSoftmaxCrossEntropyWithLogits and sparseSoftmaxCrossEntropyWithLogits_grad Signed-off-by: Yurii <yurii@skymind.io> * Fixed atomicMul with float input/output * implementation of cuda kernel for triu_bp operation Signed-off-by: Yurii <yurii@skymind.io> * Refactored lup helper to add parrallel computing. * cusolver libraries Signed-off-by: raver119 <raver119@gmail.com> * uncomment cuSolver APIs in svd.cu Signed-off-by: Yurii <yurii@skymind.io> * cusolver var Signed-off-by: raver119 <raver119@gmail.com> * - further work on cuSolver svd Signed-off-by: Yurii <yurii@skymind.io> * Implement usage of cuda solver to LUP decomposition. * - correct naames in lup functions Signed-off-by: Yurii <yurii@skymind.io> * correct svdQR cuda Signed-off-by: Yurii <yurii@skymind.io> * - provide transpositions of input matrices in case of c order in svdCudaQR Signed-off-by: Yurii <yurii@skymind.io> * Fixed implementation issues with LUP usign cuda solver. * Implementation of matrix_determinant helper with cuda kernels. Working revision. * Implemented log_matrix_determinant helper with cuda kernels. * - implementation of batched cuda svd Signed-off-by: Yurii <yurii@skymind.io> * Refactored cholesky helper and implementation of cuda solver cholesky batch. * - implementation of cuda kernel for tile bp Signed-off-by: Yurii <yurii@skymind.io> * Implementation of cholesky and logdet with cuda kernels. * - implementation of cuda kernel for sru_bidirectional Signed-off-by: Yurii <yurii@skymind.io> * Fixed cholesky helper. * Cholesky op helper implementation. Working double-based cublas implementation. * bad import excluded Signed-off-by: raver119 <raver119@gmail.com> * Finished with cuda implementation of cholesky helper and tests. * - implementation of cuda kernel for sru_bidirectional_backprop operation Signed-off-by: Yurii <yurii@skymind.io> * Implementation of matrix_inverse op helper with cuda kernels. The first revision. * - start working on gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * Implementation of matrix_inverse helper. * - further work on new gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * cuBLAS related fixes Signed-off-by: raver119 <raver119@gmail.com> * calculateOutputShapes() now passes device buffers as well Signed-off-by: raver119 <raver119@gmail.com> * special concat/average/accumulate init host pointers now Signed-off-by: raver119 <raver119@gmail.com> * few more tweaks Signed-off-by: raver119 <raver119@gmail.com> * additional CudaDataBufferFactory signatures certain for data types Signed-off-by: raver119 <raver119@gmail.com> * cuSolver host buffer Signed-off-by: raver119 <raver119@gmail.com> * buffer to buffer memcpy host ptr allocation Signed-off-by: raver119 <raver119@gmail.com>
2019-07-12 10:51:51 +02:00
BUILD_SINGLE_SELECTOR(ArrayOptions::dataType(dZShapeInfo), nd4j::SpecialMethods ,::concatCpuGeneric(dimension, numArrays, data, inputShapeInfo, dZ, dZShapeInfo), LIBND4J_TYPES);
2019-06-06 14:21:15 +02:00
}
/**
* This method saves
*/
nd4j::TadPack* NativeOps::tadOnlyShapeInfo(Nd4jLong *dXShapeInfo, int *dimension, int dimensionLength) {
auto pack = new TadPack();
*pack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(dXShapeInfo, dimension, dimensionLength);
return pack;
}
int NativeOps::memcpyConstantAsync(Nd4jLong dst, Nd4jPointer src, Nd4jLong size, int flags, Nd4jPointer reserved) {
cudaStream_t *pStream = reinterpret_cast<cudaStream_t *>(reserved);
cudaMemcpyKind kind;
DEBUG_KERNEL(pStream, -1);
switch (flags) {
case 0: {
kind = cudaMemcpyHostToHost;
}
break;
case 1: {
kind = cudaMemcpyHostToDevice;
}
break;
case 2: {
kind = cudaMemcpyDeviceToHost;
}
case 3: {
kind = cudaMemcpyDeviceToDevice;
}
break;
}
//cudaError_t dZ = cudaMemcpyAsync((void *) dst, (const void *) src, (size_t) size, kind, *pStream);
cudaError_t dZ = cudaMemcpyToSymbolAsync(deviceConstantMemory, const_cast<const void *>(src), size, dst, kind, *pStream);
checkCudaErrors(dZ);
if (dZ != 0)
throw std::runtime_error("cudaMemcpyToSymbolAsync(...) failed");
return 1;
}
Nd4jPointer NativeOps::getConstantSpace() {
Nd4jPointer dConstAddr;
cudaError_t dZ = cudaGetSymbolAddress(reinterpret_cast<void **>(&dConstAddr), deviceConstantMemory);
if (dZ != 0)
throw std::runtime_error("cudaGetSymbolAddress(...) failed");
return dConstAddr;
}
void NativeOps::pullRows(Nd4jPointer *extraPointers,
void *x, Nd4jLong *xShapeInfo,
void *dX, Nd4jLong *dXShapeInfo,
void *z, Nd4jLong *zShapeInfo,
void *dZ, Nd4jLong *dZShapeInfo,
Nd4jLong n,
Nd4jLong *indexes,
Nd4jLong *tadShapeInfo,
Nd4jLong *tadOffsets,
Nd4jLong *zTadShapeInfo,
Nd4jLong *zTadOffsets) {
cudaStream_t *stream = reinterpret_cast<cudaStream_t *>(extraPointers[1]);
dim3 launchDims(64, 256, 1024);
auto xType = nd4j::ArrayOptions::dataType(xShapeInfo);
BUILD_SINGLE_SELECTOR(xType, pullRowsKernelGeneric, (launchDims, stream, dX, dZ, n, indexes, tadShapeInfo, tadOffsets, zTadShapeInfo, zTadOffsets), LIBND4J_TYPES);
DEBUG_KERNEL(stream, -1);
}
void NativeOps::average(Nd4jPointer *extras,
Nd4jPointer *x, Nd4jLong *xShapeInfo,
Nd4jPointer *dx, Nd4jLong *dXShapeInfo,
void *z, Nd4jLong *zShapeInfo,
void *dz, Nd4jLong *dzShapeInfo,
int n,
Nd4jLong length,
bool propagate) {
cudaStream_t * stream = reinterpret_cast<cudaStream_t *>(extras[1]);
int mode = getDeviceId(extras[3]);
auto dX = reinterpret_cast<void **>(dx);
if (nd4j::Environment::getInstance()->isDebugAndVerbose())
printf("averageFloat called\n");
auto xType = nd4j::ArrayOptions::dataType(xShapeInfo);
// launching on gpu
if (mode == 0) {
dim3 launchDims(256, 256, 4096);
BUILD_SINGLE_SELECTOR(xType, averagingKernelGeneric, (launchDims, stream, dX, dz, n, length, propagate), LIBND4J_TYPES);
nd4j::DebugHelper::checkErrorCode(stream, "AverageFloat(...) failed");
} else {
// launching on host memory
BUILD_SINGLE_SELECTOR(xType, nd4j::SpecialMethods, ::averageGeneric(x, z, zShapeInfo, n, length, propagate), LIBND4J_TYPES);
}
}
void NativeOps::accumulate(Nd4jPointer *extras,
Nd4jPointer *x, Nd4jLong *xShapeInfo,
Nd4jPointer *dx, Nd4jLong *dXShapeInfo,
void *z, Nd4jLong *zShapeInfo,
void *dz, Nd4jLong *dzShapeInfo,
int n,
Nd4jLong length) {
auto stream = reinterpret_cast<cudaStream_t *>(extras[1]);
int mode = getDeviceId(extras[3]);
auto dX = reinterpret_cast<void **>(dx);
if (nd4j::Environment::getInstance()->isDebugAndVerbose())
printf("accumulateFloat called\n");
auto xType = nd4j::ArrayOptions::dataType(xShapeInfo);
// launching on gpu
if (mode == 0) {
dim3 launchDims(n, 256, 16384);
BUILD_SINGLE_SELECTOR(xType, accumulateKernelGeneric, (launchDims, stream, dX, dz, n,length), LIBND4J_TYPES);
nd4j::DebugHelper::checkErrorCode(stream, "AccumulateFloat(...) failed");
} else {
// launching on host memory
BUILD_SINGLE_SELECTOR(xType, nd4j::SpecialMethods, ::accumulateGeneric(x, z, zShapeInfo, n, length), LIBND4J_TYPES);
}
}
void NativeOps::shuffle(Nd4jPointer *extras,
Nd4jPointer *x, Nd4jPointer *xShapeInfo,
Nd4jPointer *dx, Nd4jPointer *dXShapeInfo,
Nd4jPointer *z, Nd4jPointer *zShapeInfo,
Nd4jPointer *dz, Nd4jPointer *dZShapeInfo,
int N,
int *shuffleMap,
Nd4jPointer *tadShapeInfo,
Nd4jPointer *tadOffsets) {
cudaStream_t *stream = reinterpret_cast<cudaStream_t *>(extras[1]);
auto dX = reinterpret_cast<void **>(dx);
auto dZ = reinterpret_cast<void **>(dz);
auto xShape = reinterpret_cast<Nd4jLong **>(xShapeInfo);
auto dxShape = reinterpret_cast<Nd4jLong **>(dXShapeInfo);
auto tadOnlyShapeInfo = reinterpret_cast<Nd4jLong **>(tadShapeInfo);
auto tadOffset = reinterpret_cast<Nd4jLong **>(tadOffsets);
auto xType = nd4j::ArrayOptions::dataType(xShape[0]);
dim3 launchDims(256, 512, 8192);
BUILD_SINGLE_SELECTOR(xType, shuffleKernelGeneric, (launchDims, stream, dX, dxShape, dZ, N, shuffleMap, tadOnlyShapeInfo, tadOffset), LIBND4J_TYPES);
nd4j::DebugHelper::checkErrorCode(stream, "shuffle(...) failed");
}
/*
void NativeOps::execMetaPredicateShape(Nd4jPointer *extras,
const int opTypeA,
const int opNumA,
const int opTypeB,
const int opNumB,
Nd4jLong N,
void *hX, Nd4jLong *hXShapeInfo,
void *dX, Nd4jLong *dXShapeInfo,
void *hY, Nd4jLong *hYShapeInfo,
void *dY, Nd4jLong *dYShapeInfo,
void *hZ, Nd4jLong *hZShapeInfo,
void *dZ, Nd4jLong *dZShapeInfo,
void *extraA,
void *extraB,
double scalarA,
double scalarB) {
cudaStream_t *stream = reinterpret_cast<cudaStream_t *>(extras[1]);
auto xType = nd4j::ArrayOptions::dataType(hXShapeInfo);
BUILD_SINGLE_SELECTOR(xType, functions::grid::GRIDShaped, ::execMetaPredicateShaped(stream, extras, opTypeA, opNumA, opTypeB, opNumB, N, dX, dXShapeInfo, dY, dYShapeInfo, dZ, dZShapeInfo, extraA, extraB, scalarA, scalarB), LIBND4J_TYPES);
// functions::grid::GRIDShaped<float>::execMetaPredicateShaped(stream, extras, opTypeA, opNumA, opTypeB, opNumB, N, dX, dXShapeInfo, dy, dYShapeInfo, dz, zShapeInfo, extraA, extraB, scalarA, scalarB);
DEBUG_KERNEL(stream, opNumA);
}
*/
bool NativeOps::isExperimentalEnabled() {
return nd4j::Environment::getInstance()->isExperimentalBuild();
}
void NativeOps::setOmpMinThreads(int threads) {
minThreads = nd4j::math::nd4j_max<int>(32, threads);
minThreads = nd4j::math::nd4j_min<int>(maxThreads, minThreads);
}
int NativeOps::getDevice() {
int curDevice = -1;
cudaGetDevice(&curDevice);
return curDevice;
}
void NativeOps::setElementThreshold(int num) {
// this is no-op for CUDA
}
void NativeOps::setTADThreshold(int num) {
// this is no-op for CUDA
}
////////////////////////////////////////////////////////////////////////
void NativeOps::execSummaryStats(Nd4jPointer *extraPointers,
int opNum,
void *hX, Nd4jLong *hXShapeInfo,
void *dX, Nd4jLong *dXShapeInfo,
void *extraParams,
void *hZ, Nd4jLong *hZShapeInfo,
void *dZ, Nd4jLong *dZShapeInfo,
bool biasCorrected) {
LaunchContext lc(extraPointers[1], extraPointers[4], extraPointers[5], extraPointers[3]);
NativeOpExecutioner::execSummaryStats(&lc, opNum, hX, hXShapeInfo, dX, dXShapeInfo, extraParams, hZ, hZShapeInfo, dZ, dZShapeInfo, biasCorrected);
}
////////////////////////////////////////////////////////////////////////
void NativeOps::execSummaryStats(Nd4jPointer *extraPointers,
int opNum,
void *hX, Nd4jLong *hXShapeInfo,
void *dX, Nd4jLong *dXShapeInfo,
void *extraParams,
void *hZ, Nd4jLong *hZShapeInfo,
void *dZ, Nd4jLong *dZShapeInfo,
void *hDimension, Nd4jLong *hDimensionShape, void *dDimension, Nd4jLong *dDimensionShape,
bool biasCorrected,
Nd4jLong *tadShapeInfo, Nd4jLong *tadOffsets) {
auto dimension = reinterpret_cast<int *>(dDimension);
int dimensionLength = static_cast<int>(shape::length(hDimensionShape));
LaunchContext lc(extraPointers[1], extraPointers[4], extraPointers[5], extraPointers[3]);
NativeOpExecutioner::execSummaryStats(&lc, opNum, hX, hXShapeInfo, dX, dXShapeInfo, extraParams, hZ, hZShapeInfo, dZ, dZShapeInfo, dimension, dimensionLength, tadShapeInfo, tadOffsets, biasCorrected);
}
////////////////////////////////////////////////////////////////////////
void NativeOps::execReduce3(Nd4jPointer *extraPointers,
int opNum,
void *hX, Nd4jLong *hXShapeInfo,
void *dX, Nd4jLong *dXShapeInfo,
void *extraParams,
void *hY, Nd4jLong *hYShapeInfo,
void *dY, Nd4jLong *dYShapeInfo,
void *hZ, Nd4jLong *hZShapeInfo,
void *dZ, Nd4jLong *dZShapeInfo) {
LaunchContext lc(extraPointers[1], extraPointers[4], extraPointers[5], extraPointers[3]);
NativeOpExecutioner::execReduce3(&lc, opNum, hX, hXShapeInfo, dX, dXShapeInfo, extraParams, hY, hYShapeInfo, dY, dYShapeInfo, hZ, hZShapeInfo, dZ, dZShapeInfo);
}
////////////////////////////////////////////////////////////////////////
void NativeOps::execReduce3(Nd4jPointer *extraPointers,
int opNum,
void *hX, Nd4jLong *hXShapeInfo,
void *dX, Nd4jLong *dXShapeInfo,
void *extraParams,
void *hY, Nd4jLong *hYShapeInfo,
void *dY, Nd4jLong *dYShapeInfo,
void *hZ, Nd4jLong *hZShapeInfo,
void *dZ, Nd4jLong *dZShapeInfo,
void *hDimension, Nd4jLong *hDimensionShape, void *dDimension, Nd4jLong *dDimensionShape,
Nd4jLong *tadOnlyShapeInfo, Nd4jLong *tadOffsets,
Nd4jLong *yTadOnlyShapeInfo, Nd4jLong *yTadOffsets) {
auto dimension = reinterpret_cast<int *>(dDimension);
int dimensionLength = static_cast<int>(shape::length(hDimensionShape));
// if (extraPointers == nullptr || extraPointers[2] == 0)
// NativeOpExecutioner::execReduce3(nullptr, opNum, hX, hXShapeInfo, dX, dXShapeInfo, extraParams, hY, hYShapeInfo, dY, dYShapeInfo, hZ, hZShapeInfo, dZ, dZShapeInfo, dimension, dimensionLength, tadOnlyShapeInfo, tadOffsets, yTadOnlyShapeInfo, yTadOffsets);
// else {
// // going tad-ways
// auto tadShapeInfo = reinterpret_cast<Nd4jLong *> (extraPointers[0]);
// auto tadOffsets = reinterpret_cast<Nd4jLong *>(extraPointers[1]);
// NativeOpExecutioner::execReduce3TAD(nullptr, opNum, hX, hXShapeInfo, dX, dXShapeInfo, extraParams, hY, hYShapeInfo, dY, dYShapeInfo, hZ, hZShapeInfo, dZ, dZShapeInfo, dimension, dimensionLength, tadShapeInfo, tadOffsets);
// }
nd4j_printf("Starting...\n","");
auto tadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(hXShapeInfo, reinterpret_cast<int*>(hDimension), shape::length(hDimensionShape));
auto tadLength = shape::length(tadPack.primaryShapeInfo());
auto yLength = shape::length(hYShapeInfo);
auto xLength = shape::length(hXShapeInfo);
LaunchContext lc(extraPointers[1], extraPointers[4], extraPointers[5], extraPointers[3]);
if (tadLength == yLength || tadLength == xLength) {
nd4j_printf("== way\n","");
NativeOpExecutioner::execReduce3(&lc, opNum, hX, hXShapeInfo, dX, dXShapeInfo, extraParams, hY, hYShapeInfo, dY,
dYShapeInfo, hZ, hZShapeInfo, dZ, dZShapeInfo, dimension, dimensionLength,
tadOnlyShapeInfo, tadOffsets, yTadOnlyShapeInfo, yTadOffsets);
} else
NativeOpExecutioner::execReduce3TAD(&lc, opNum, hX, hXShapeInfo, dX, dXShapeInfo, extraParams, hY, hYShapeInfo, dY, dYShapeInfo, hZ, hZShapeInfo, dZ, dZShapeInfo, dimension, dimensionLength, tadOnlyShapeInfo, yTadOffsets, yTadOnlyShapeInfo, yTadOffsets);
}
////////////////////////////////////////////////////////////////////////
void NativeOps::execReduce3Scalar(Nd4jPointer *extraPointers,int opNum,
void *hX, Nd4jLong *hXShapeInfo,
void *dX, Nd4jLong *dXShapeInfo,
void *extraParams,
void *hY, Nd4jLong *hYShapeInfo,
void *dY, Nd4jLong *dYShapeInfo,
void *hZ, Nd4jLong *hZShapeInfo,
void *dZ, Nd4jLong *dZShapeInfo) {
LaunchContext lc(extraPointers[1], extraPointers[4], extraPointers[5], extraPointers[3]);
NativeOpExecutioner::execReduce3Scalar(&lc, opNum,hX,hXShapeInfo,dX, dXShapeInfo,extraParams,hY,hYShapeInfo,dY,dYShapeInfo, hZ, hZShapeInfo, dZ, dZShapeInfo);
}
////////////////////////////////////////////////////////////////////////
void NativeOps::execScalarBool(Nd4jPointer *extraPointers,
int opNum,
void *hX, Nd4jLong *hXShapeInfo,
void *dX, Nd4jLong *dXShapeInfo,
void *hZ, Nd4jLong *hZShapeInfo,
void *dZ, Nd4jLong *dZShapeInfo,
void *hScalar, Nd4jLong *hScalarShapeInfo,
void *dScalar, Nd4jLong *dScalarShapeInfo,
void *extraParams) {
LaunchContext lc(extraPointers[1], extraPointers[4], extraPointers[5], extraPointers[3]);
NativeOpExecutioner::execScalarBool(&lc, opNum, hX, hXShapeInfo, dX, dXShapeInfo, hZ, hZShapeInfo, dZ, dZShapeInfo, hScalar, hScalarShapeInfo, dScalar, dScalarShapeInfo, extraParams);
}
////////////////////////////////////////////////////////////////////////
void NativeOps::execScalarBool(Nd4jPointer *extraPointers,
int opNum,
void *hX, Nd4jLong *hXShapeInfo,
void *dX, Nd4jLong *dXShapeInfo,
void *hZ, Nd4jLong *hZShapeInfo,
void *dZ, Nd4jLong *dZShapeInfo,
void *hScalars, Nd4jLong *hScalarShapeInfo,
void *dScalars, Nd4jLong *dScalarShapeInfo,
void *extraParams,
void *hDimension, Nd4jLong *hDimensionShape, void *dDimension, Nd4jLong *dDimensionShape,
Nd4jLong *tadShapeInfo, Nd4jLong *tadOffsets,
Nd4jLong *tadShapeInfoZ, Nd4jLong *tadOffsetsZ) {
auto dimension = reinterpret_cast<int *>(dDimension);
int dimensionLength = static_cast<int>(shape::length(hDimensionShape));
LaunchContext lc(extraPointers[1], extraPointers[4], extraPointers[5], extraPointers[3]);
NativeOpExecutioner::execScalarBool(&lc, opNum, hX, hXShapeInfo, dX, dXShapeInfo, extraParams, hZ, hZShapeInfo, dZ, dZShapeInfo, hScalars, hScalarShapeInfo, dScalars, dScalarShapeInfo, dimension, dimensionLength, tadShapeInfo, tadOffsets, tadShapeInfoZ, tadOffsetsZ);
}
////////////////////////////////////////////////////////////////////////
void NativeOps::execScalar(Nd4jPointer *extraPointers,
int opNum,
void *hX, Nd4jLong *hXShapeInfo,
void *dX, Nd4jLong *dXShapeInfo,
void *hZ, Nd4jLong *hZShapeInfo,
void *dZ, Nd4jLong *dZShapeInfo,
void *hScalar, Nd4jLong *hScalarShapeInfo,
void *dScalar, Nd4jLong *dScalarShapeInfo,
void *extraParams) {
LaunchContext lc(extraPointers[1], extraPointers[4], extraPointers[5], extraPointers[3]);
NativeOpExecutioner::execScalar(&lc, opNum, hX, hXShapeInfo, dX, dXShapeInfo, hZ, hZShapeInfo, dZ, dZShapeInfo, hScalar, hScalarShapeInfo, dScalar, dScalarShapeInfo, extraParams);
}
////////////////////////////////////////////////////////////////////////
void NativeOps::execScalar(Nd4jPointer *extraPointers,
int opNum,
void *hX, Nd4jLong *hXShapeInfo,
void *dX, Nd4jLong *dXShapeInfo,
void *hZ, Nd4jLong *hZShapeInfo,
void *dZ, Nd4jLong *dZShapeInfo,
void *hScalars, Nd4jLong *hScalarShapeInfo,
void *dScalars, Nd4jLong *dScalarShapeInfo,
void *extraParams,
void *hDimension, Nd4jLong *hDimensionShape,
void *dDimension, Nd4jLong *dDimensionShape,
Nd4jLong *tadShapeInfo, Nd4jLong *tadOffsets,
Nd4jLong *tadShapeInfoZ, Nd4jLong *tadOffsetsZ) {
auto dimension = reinterpret_cast<int *>(dDimension);
int dimensionLength = static_cast<int>(shape::length(hDimensionShape));
cudaStream_t *stream = reinterpret_cast<cudaStream_t *>(extraPointers[1]);
auto xType = nd4j::ArrayOptions::dataType(hXShapeInfo);
auto yType = nd4j::ArrayOptions::dataType(hScalarShapeInfo);
auto zType = nd4j::ArrayOptions::dataType(hZShapeInfo);
if (yType != xType && yType != nd4j::DataType::BOOL && !this->isExperimentalEnabled())
throw nd4j::datatype_exception::build("NativeOps::execScalar both operands must have same data type", xType, yType);
dim3 launchDims(256, 256, 16384);
#ifdef __ND4J_EXPERIMENTAL__
BUILD_PAIRWISE_SELECTOR(xType, yType, zType, functions::scalar::ScalarTransform, ::executeCudaAlongDimension(launchDims, stream, opNum, dX, dXShapeInfo, dZ, dZShapeInfo, dScalars, extraParams, dimension, dimensionLength, tadShapeInfo, tadOffsets, tadShapeInfoZ, tadOffsetsZ), LIBND4J_TYPES, LIBND4J_TYPES);
#else
BUILD_SINGLE_SELECTOR_THRICE(xType, functions::scalar::ScalarTransform, ::executeCudaAlongDimension(launchDims, stream, opNum, dX, dXShapeInfo, dZ, dZShapeInfo, dScalars, extraParams, dimension, dimensionLength, tadShapeInfo, tadOffsets, tadShapeInfoZ, tadOffsetsZ), LIBND4J_TYPES);
#endif
DEBUG_KERNEL(stream, opNum);
}
void NativeOps::execAggregate(Nd4jPointer *extraPointers,
int opNum,
void **arguments,
int numArguments,
Nd4jLong **shapes,
int numShapes,
int *indexArguments,
int numIndexArguments,
int **intArrays,
int numIntArrays,
void *realArguments,
int numRealArguments,
nd4j::DataType dtype) {
cudaStream_t *stream = reinterpret_cast<cudaStream_t *>(extraPointers[1]);
int numBlocks = getDeviceId(extraPointers[2]);
int numThreads = getDeviceId(extraPointers[3]);
int shmem = getDeviceId(extraPointers[4]);
dim3 launchDims = dim3(numBlocks, numThreads, shmem);
BUILD_SINGLE_SELECTOR(dtype, functions::aggregate::AggregatedFunction, ::aggregateKernelGeneric(launchDims, stream, opNum, arguments, numArguments, shapes, numShapes, indexArguments, numIndexArguments, intArrays, numIntArrays, realArguments, numRealArguments), FLOAT_TYPES);
nd4j::DebugHelper::checkErrorCode(stream, "execAggregateFloat(...) failed");
}
void NativeOps::execAggregateBatch(Nd4jPointer *extraPointers,
int numAggregates, int opNum,
int maxArgs, int maxShapes,
int maxIntArrays, int maxIntArraySize,
int maxIdx, int maxReals,
void *ptrToArguments, nd4j::DataType dtype) {
// not implemented yet
cudaStream_t *stream = reinterpret_cast<cudaStream_t *>(extraPointers[1]);
int numBlocks = getDeviceId(extraPointers[2]);
int numThreads = getDeviceId(extraPointers[3]);
int shmem = getDeviceId(extraPointers[4]);
dim3 launchDims = dim3(numAggregates, numThreads, shmem);
BUILD_SINGLE_SELECTOR(dtype, functions::aggregate::AggregatedFunction, ::aggregateBatchKernelGeneric(launchDims, stream, opNum, numAggregates, maxArgs, maxShapes, maxIntArrays, maxIntArraySize, maxIdx, maxReals, ptrToArguments), FLOAT_TYPES);
DEBUG_KERNEL(stream, opNum);
}
////////////////////////////////////////////////////////////////////////
void NativeOps::execRandom(Nd4jPointer *extraPointers,
int opNum,
Nd4jPointer stateHost,
void *hZ, Nd4jLong *hZShapeInfo,
void *dZ, Nd4jLong *dZShapeInfo,
void *extraArguments) {
LaunchContext lc(extraPointers[1], extraPointers[4], extraPointers[5], extraPointers[3]);
NativeOpExecutioner::execRandom(&lc, opNum, stateHost, hZ, hZShapeInfo, dZ, dZShapeInfo, extraArguments);
2019-06-06 14:21:15 +02:00
}
////////////////////////////////////////////////////////////////////////
void NativeOps::execRandom(Nd4jPointer *extraPointers, int opNum, Nd4jPointer stateHost,
void *hX, Nd4jLong *hXShapeInfo,
void *dX, Nd4jLong *dXShapeInfo,
void *hZ, Nd4jLong *hZShapeInfo,
void *dZ, Nd4jLong *dZShapeInfo,
void *extraArguments) {
LaunchContext lc(extraPointers[1], extraPointers[4], extraPointers[5], extraPointers[3]);
NativeOpExecutioner::execRandom(&lc, opNum, stateHost, hX, hXShapeInfo, dX, dXShapeInfo, hZ, hZShapeInfo, dZ, dZShapeInfo, extraArguments);
2019-06-06 14:21:15 +02:00
}
////////////////////////////////////////////////////////////////////////
void NativeOps::execRandom(Nd4jPointer *extraPointers, int opNum, Nd4jPointer stateHost,
void *hX, Nd4jLong *hXShapeInfo,
void *dX, Nd4jLong *dXShapeInfo,
void *hY, Nd4jLong *hYShapeInfo,
void *dY, Nd4jLong *dYShapeInfo,
void *hZ, Nd4jLong *hZShapeInfo,
void *dZ, Nd4jLong *dZShapeInfo,
void *extraArguments) {
LaunchContext lc(extraPointers[1], extraPointers[4], extraPointers[5], extraPointers[3]);
NativeOpExecutioner::execRandom(&lc, opNum, stateHost, hX, hXShapeInfo, dX, dXShapeInfo, hY, hYShapeInfo, dY, dYShapeInfo, hZ, hZShapeInfo, dZ, dZShapeInfo, extraArguments);
2019-06-06 14:21:15 +02:00
}
Nd4jPointer NativeOps::initRandom(Nd4jPointer *extraPointers, long seed, long bufferSize, Nd4jPointer ptrToBuffer) {
unsigned long long *ptrHost = reinterpret_cast<unsigned long long *>(extraPointers[0]);
cudaStream_t *stream = reinterpret_cast<cudaStream_t *>(extraPointers[1]);
// we don't synchronize at random initialization, it's safe to go unsync here
// cudaStreamSynchronize(*stream);
auto ptrDev = reinterpret_cast<unsigned long long *>(ptrToBuffer);
auto buffer = new nd4j::random::RandomBuffer(seed, bufferSize, reinterpret_cast<uint64_t *>(ptrHost), reinterpret_cast<uint64_t *>(ptrDev));
buffer->propagateToDevice(buffer, *stream);
nd4j::DebugHelper::checkErrorCode(stream, "initRandom(...) failed A");
// we generate sequence in the host memory
nd4j::random::Xoroshiro128 generator(buffer);
generator.refreshBuffer();
// and copy it to gpu
cudaMemcpyAsync(ptrDev, ptrHost, bufferSize * 8, cudaMemcpyHostToDevice, *stream);
nd4j::DebugHelper::checkErrorCode(stream, "initRandom(...) failed B");
return buffer;
}
void NativeOps::destroyRandom(Nd4jPointer ptrBuffer) {
nd4j::random::RandomBuffer *buffer = reinterpret_cast<nd4j::random::RandomBuffer *> (ptrBuffer);
// FIXME: it's bad thing, but we can't know in advance, which stream(s) where using this generator in practice
cudaDeviceSynchronize();
delete buffer;
}
void NativeOps::refreshBuffer(Nd4jPointer *extraPointers, long seed, Nd4jPointer ptrRandom) {
nd4j::random::RandomBuffer *buffer = reinterpret_cast<nd4j::random::RandomBuffer *> (ptrRandom);
unsigned long long *ptrHost = reinterpret_cast<unsigned long long *>(extraPointers[0]);
cudaStream_t *stream = reinterpret_cast<cudaStream_t *>(extraPointers[1]);
cudaStreamSynchronize(*stream);
uint64_t *ptrDev = buffer->getDeviceBuffer();
// update rng state
buffer->setSeed(seed);
buffer->setOffset(0);
buffer->propagateToDevice(buffer, *stream);
// refresh buffer on host size
nd4j::random::Xoroshiro128 generator(buffer);
generator.refreshBuffer();
// copy back to gpu
cudaMemcpyAsync(ptrDev, ptrHost, buffer->getSize() * 8, cudaMemcpyHostToDevice, *stream);
}
void NativeOps::reSeedBuffer(Nd4jPointer *extraPointers, long seed, Nd4jPointer ptrRandom) {
nd4j::random::RandomBuffer *buffer = reinterpret_cast<nd4j::random::RandomBuffer *> (ptrRandom);
cudaStream_t *stream = reinterpret_cast<cudaStream_t *>(extraPointers[1]);
cudaStreamSynchronize(*stream);
// update rng state
buffer->reSeed(seed);
buffer->setOffset(0);
buffer->propagateToDevice(buffer, *stream);
}
/**
* Return the length of a shape buffer
* based on the pointer
* @param buffer the buffer pointer to check
* @return
*/
int NativeOps::lengthForShapeBufferPointer(Nd4jPointer buffer) {
auto shapeBuffer = reinterpret_cast<Nd4jLong *>(buffer);
return shape::shapeInfoLength(shape::rank(shapeBuffer));
}
/**
* The pointer to get the address for
*
* @param address the address to get the pointer
* @return the pointer for the given address
*/
Nd4jPointer NativeOps::pointerForAddress(Nd4jLong address) {
return reinterpret_cast<Nd4jPointer >(address);
}
void NativeOps::tear(Nd4jPointer *extras,
void *x, Nd4jLong *xShapeInfo,
void *dX, Nd4jLong *dXShapeInfo,
Nd4jPointer *targets,
Nd4jLong *zShapeInfo,
Nd4jLong *tadShapeInfo,
Nd4jLong *tadOffsets) {
cudaStream_t *stream = reinterpret_cast<cudaStream_t *>(extras[1]);
dim3 launchDims(512, 512, 512);
auto xType = nd4j::ArrayOptions::dataType(xShapeInfo);
BUILD_SINGLE_SELECTOR(xType, tearKernelGeneric, (launchDims, stream, dX, dXShapeInfo, targets, zShapeInfo, tadShapeInfo, tadOffsets), LIBND4J_TYPES);
nd4j::DebugHelper::checkErrorCode(stream, "tearFloat(...) failed");
}
void prescanArrayRecursive(Nd4jPointer *extras, int *dZ, int *dX, int numElements, int level) {
auto stream = reinterpret_cast<cudaStream_t *>(extras[1]);
auto g_scanBlockSums = reinterpret_cast<int **>(extras[2]);
int blockSize = 512; // max size of the thread blocks
int numBlocks = nd4j::math::nd4j_max<int>(1, static_cast<int>(ceil(static_cast<float>(numElements) / (2.f * blockSize))));
int numThreads;
if (numBlocks > 1)
numThreads = blockSize;
else if (nd4j::isPowerOfTwo(numElements))
numThreads = numElements / 2;
else
numThreads = nd4j::floorPow2(numElements);
int numEltsPerBlock = numThreads * 2;
// if this is a non-power-of-2 array, the last block will be non-full
// compute the smallest power of 2 able to compute its scan.
int numEltsLastBlock =
numElements - (numBlocks-1) * numEltsPerBlock;
int numThreadsLastBlock = nd4j::math::nd4j_max<int>(1, numEltsLastBlock / 2);
int np2LastBlock = 0;
int sharedMemLastBlock = 0;
if (numEltsLastBlock != numEltsPerBlock) {
np2LastBlock = 1;
if(!isPowerOfTwo(numEltsLastBlock))
numThreadsLastBlock = floorPow2(numEltsLastBlock);
unsigned int extraSpace = (2 * numThreadsLastBlock) / NUM_BANKS;
sharedMemLastBlock = sizeof(int) * (2 * numThreadsLastBlock + extraSpace);
}
// padding space is used to avoid shared memory bank conflicts
int extraSpace = numEltsPerBlock / NUM_BANKS;
int sharedMemSize = sizeof(int) * (numEltsPerBlock + extraSpace);
// setup execution parameters
// if NP2, we process the last block separately
dim3 grid(max(1, numBlocks - np2LastBlock), 1, 1);
dim3 threads(numThreads, 1, 1);
dim3 gridOnes(1, 1, 1);
dim3 threadsOnes(numThreadsLastBlock, 1, 1);
if (sharedMemSize < 2048)
sharedMemSize = 2048;
if (sharedMemLastBlock < 2048)
sharedMemLastBlock = 2048;
// execute the scan
if (numBlocks > 1) {
nd4j::prescanLauncher<true, false>(grid, threads, sharedMemSize, stream, dZ, dX, g_scanBlockSums[level], numThreads * 2, 0, 0);
if (np2LastBlock) {
nd4j::prescanLauncher<true, true>(gridOnes, threadsOnes, sharedMemLastBlock, stream, dZ, dX, g_scanBlockSums[level], numEltsLastBlock, numBlocks - 1, numElements - numEltsLastBlock);
}
// After scanning all the sub-blocks, we are mostly done. But now we
// need to take all of the last values of the sub-blocks and scan those.
// This will give us a new value that must be sdded to each block to
// get the final results.
// recursive (CPU) call
prescanArrayRecursive(extras, g_scanBlockSums[level], g_scanBlockSums[level], numBlocks, level+1);
nd4j::uniformAdd<<<grid, threads, 1024, *stream>>>(dZ, g_scanBlockSums[level], numElements - numEltsLastBlock, 0, 0);
if (np2LastBlock) {
nd4j::uniformAdd<<<1, numThreadsLastBlock, 1024, *stream>>>(dZ, g_scanBlockSums[level], numEltsLastBlock, numBlocks - 1, numElements - numEltsLastBlock);
}
} else if (isPowerOfTwo(numElements)) {
nd4j::prescanLauncher<false, false>(grid, threads, sharedMemSize, stream, dZ, dX, 0, numThreads * 2, 0, 0);
} else {
nd4j::prescanLauncher<false, true>(grid, threads, sharedMemSize, stream, dZ, dX, 0, numElements, 0, 0);
}
nd4j::DebugHelper::checkErrorCode(stream, "prescanArray(...) failed");
}
void NativeOps::encodeThresholdP1(Nd4jPointer *extras, void *dx, Nd4jLong *hXShapeInfo, Nd4jLong N, int *dz, float threshold) {
cudaStream_t *stream = reinterpret_cast<cudaStream_t *>(extras[1]);
int blockSize = 1024;
int numBlocks = N / blockSize + (N % blockSize ? 1 : 0);
dim3 launchDims(numBlocks, blockSize, 1024);
auto xType = nd4j::ArrayOptions::dataType(hXShapeInfo);
BUILD_SINGLE_SELECTOR(xType, encoderKernelP1Generic, (launchDims, stream, dx, N, dz, threshold), LIBND4J_TYPES);
nd4j::DebugHelper::checkErrorCode(stream, "encodeThresholdP1Float(...) failed");
}
void NativeOps::encodeThresholdP2Int(Nd4jPointer *extraPointers, int *dx, Nd4jLong N, int *dz) {
cudaStream_t *stream = reinterpret_cast<cudaStream_t *>(extraPointers[1]);
//encoderKernelP2Float<<<numBlocks, blockSize , 1024 * sizeof(float), *stream>>>(dx, N, dz);
prescanArrayRecursive(extraPointers, dz, dx + 1, (int) N, 0);
nd4j::DebugHelper::checkErrorCode(stream, "encodeThresholdP2Int(...) failed");
}
void NativeOps::encodeThresholdP3(Nd4jPointer *extraPointers, void *dx, Nd4jLong *hXShapeInfo, int *offsets, Nd4jLong N, int *dz){
cudaStream_t *stream = reinterpret_cast<cudaStream_t *>(extraPointers[1]);
int blockSize = 1024;
int numBlocks = N / blockSize + (N % blockSize ? 1 : 0);
dim3 launchDims(numBlocks, blockSize, 4096);
auto xType = nd4j::ArrayOptions::dataType(hXShapeInfo);
BUILD_SINGLE_SELECTOR(xType, encoderKernelP3Generic, (launchDims, stream, dx, offsets, N, dz), LIBND4J_TYPES);
nd4j::DebugHelper::checkErrorCode(stream, "encodeThresholdP3Float(...) failed");
}
void NativeOps::decodeThreshold(Nd4jPointer *extraPointers, void *dx, Nd4jLong N, void *dz, Nd4jLong *zShapeInfo){
cudaStream_t *stream = reinterpret_cast<cudaStream_t *>(extraPointers[1]);
// we probably want to have smaller blocks here, memory writes are misaligned anyway
int blockSize = 128;
int numBlocks = N / blockSize + (N % blockSize ? 1 : 0);
dim3 launchDims(numBlocks, blockSize, 1024);
auto zType = nd4j::ArrayOptions::dataType(zShapeInfo);
BUILD_SINGLE_SELECTOR(zType, decoderKernelGeneric, (launchDims, stream, dx, N, dz), LIBND4J_TYPES);
nd4j::DebugHelper::checkErrorCode(stream, "decodeThresholdFloat(...) failed");
}
////////////////////////////////////////////////////////////////////////
void NativeOps::execReduce3All(Nd4jPointer *extraPointers,
int opNum,
void *hX, Nd4jLong *hXShapeInfo,
void *dX, Nd4jLong *dXShapeInfo,
void *extraParamsVals,
void *hY, Nd4jLong *hYShapeInfo,
void *dY, Nd4jLong *dYShapeInfo,
void *hZ, Nd4jLong *hZShapeInfo,
void *dZ, Nd4jLong *dZShapeInfo,
void *hDimension, Nd4jLong *hDimensionShape,
void *dDimension, Nd4jLong *dDimensionShape,
Nd4jLong *xTadShapeInfo, Nd4jLong *xOffsets,
Nd4jLong *yTadShapeInfo, Nd4jLong *yOffsets) {
auto dimension = reinterpret_cast<int *>(dDimension);
int dimensionLength = static_cast<int>(shape::length(hDimensionShape));
LaunchContext lc(extraPointers[1], extraPointers[4], extraPointers[5], extraPointers[3]);
NativeOpExecutioner::execReduce3All(&lc, opNum, hX, hXShapeInfo, dX, dXShapeInfo, extraParamsVals, hY, hYShapeInfo, dY, dYShapeInfo, hZ, hZShapeInfo, dZ, dZShapeInfo, dimension, dimensionLength, xTadShapeInfo, xOffsets, yTadShapeInfo, yOffsets);
}
void NativeOps::sort(Nd4jPointer *extraPointers,
void *x, Nd4jLong *xShapeInfo,
void *dX, Nd4jLong *dXShapeInfo,
bool descending) {
cudaStream_t *stream = reinterpret_cast<cudaStream_t *>(extraPointers[1]);
auto xLength = shape::length(xShapeInfo);
auto xEWS = shape::elementWiseStride(xShapeInfo);
auto xType = nd4j::ArrayOptions::dataType(xShapeInfo);
// check if xLength is a power of 2, and use bitonic sort, if that's the case
if ((xLength != 0) && ((xLength & (xLength - 1)) == 0) && (xLength <= 1024 * 1024 * 10)) {
int numThreads = nd4j::math::nd4j_min<int>(512, xLength);
int numBlocks = xLength / numThreads;
if (xLength % numThreads > 0 || numBlocks == 0)
numBlocks++;
dim3 launchDims(numBlocks, numThreads, 32768);
for (int k = 2; k <= xLength; k = 2*k) {
for (int j = k >> 1; j > 0; j = j >> 1) {
BUILD_SINGLE_SELECTOR(xType, bitonicSortStepGeneric, (launchDims, stream, dX, dXShapeInfo, j, k, xLength, descending), LIBND4J_TYPES);
}
}
} else {
int numThreads = nd4j::math::nd4j_min<int>(512, xLength);
int numBlocks = xLength / numThreads;
if (xLength % numThreads > 0 || numBlocks == 0)
numBlocks++;
numBlocks = nd4j::math::nd4j_min<int>(512, numBlocks);
dim3 launchDims(numBlocks, numThreads, 32768);
int max = 2, dg = 0;
while (max < xLength) {
max <<= 1;
dg++;
}
max <<= 1;
for (int window = 2; window < max; window<<=1) {
int n = window;
int rev = 0;
do{
int half = n >> 1;
BUILD_SINGLE_SELECTOR(xType, bitonicArbitraryStepGeneric, (launchDims, stream, dX, dXShapeInfo, n, xLength, rev, descending), LIBND4J_TYPES);
n>>=1;
rev = 1;
} while(n > 1);
}
}
nd4j::DebugHelper::checkErrorCode(stream, "sort(...) failed");
}
Merge master to upstream (#7945) * Shugeo strided slice zeros (#14) * Modified strided_slice op to properly work with empty-like shapes. * Fixed test for reduce_mean with empty-like input. * [WIP] Last merge (#15) * correct logsoftmax looss (#2) * Small SameDiff listener fix (#4) * Various fixes (#6) * #7839 Fix for asXMatrix and tests * #7866 EmbeddingSequenceLayer dtype fix + test * #7856 SameDiff save/load stream methods * #7859 RegressionEvaluation rank 4 fix + tests + axis configuration * EvaluationBinary 3d/4d * More evaluation 3d/4d tests * #7847 Evaluation empty checks * Small test ifx * #7848 Fix median edge case * Improve DL4J samediff layer tests * [WIP] FastText wrapper implemented (#8) * FastText implemented * Some fixes * Fix shapes for wordsNearest * Validation of input vectors * Fixes * Fixed test * Thread tagged * Some tweaks * setContextClassLoader for DeallocatorServiceThread * Numpy format tests (#1) * Various fixes (#11) * #7852 SameDiff gather fix * #7892 SameDiff placeholder to constant conversion * #7890 validate input rank for MLN/CG init methods * Fix broken permute shape calculation * Permute and gather fixes * Tests * #7850 LogSumExp fix + test * Handful of test fixes * Empty arrays with non-scalar shapes (#10) * minor rearrangements for lambdas * empty tensors with non-scalar shapes * numpy empty tensors with non-scalar shapes * few more empty tweaks * Small fixes * conv3d signature update * micro fix in batchnorm mkldnn * Import fixes * Fix * MKL-DNN update * Small fill fix * fill with empty input + test * Fixes * Small error improvement * Fix * one special test * couple of fixes for lstm * Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone * Fixes * FP16 * Unsigned * BFloat16 * Fill op - empty tweaks * - couple of fixes for empty arrays construction - stack updated * strided slice fix * one transform test * provide method for reducing shapeInfo in case of input array is empty * Fixed reduceAlongDimensions to use empty input properly. * couple of broadcast tests * couple of tests broadcast tests + tweak to make them pass * add check of non-empty to methods producing sub-arrays * Fixed reshapeC with zeros in shape. * complete empty check in reduce_... legacy ops * Concat and cumsum/prod * Tweak to empty shape inference on import * add empty check to the rest of reduce legacy ops * one more test * correct typo in evalReduceShapeInfoEmpty * Added tests for reduce_* ops to tests with zero shapes. * few more tests for empty reductions * Fixed strided_slice op with empty case and tests. * one more empty reduction test * Fixed strided_slice test. * add empty check to NDArray::reshapei * infOrMax * empty min/max with infinity tests * made unstack working correctly with empty arrays * few IndexReduce tests + tweaks for empty shapes * add test for empty concat * few tests fixed * Validation fix for reductions on empty shapes * Reverse fix * Reduction shape calc fixes * SameDiff.generateOutputVariable: don't use shape function to determine number of outputs * Range fix * - NDArray constructor updated for scalars/empty arrays - few tests fixed * More fixes * Empty creator fixes * concat fix * concat fix * TF import tests: allow 'both all NaN' and 'both all inf' to pass * Slice, zero fraction, and reshape fixes * transpose, gather * Zero fraction * scalar cast fix * Empty reduction axis support * few more tests fixed * Fixed input checks conforming with TF for concat op and tests. * few tests fixed * matmul scalar shape fix * Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats. * broadcast bool fix * few more tests * few more tests * correct evalReduceShapeInfoEmpty * argmax/argmin + tests * one more empty edge case + one more test * argmax/argmin/realdiv_bp tweaks * empty reshape test + fix * Helper fixes * Small fixes * Gather test fix * Gather test fix * Small fixes * reduce scalar zero values * scalar mean workaround * Remove debug code * along dim mean workaround * one more test * - equalsTo() tweak for empty arrays - one more test * broadcast tweaks * [WIP] Fixing outstanding issues for NLP (#9) * Avoid using not-inited objects * Test fixed. * Redundant method avoided for models like FastText * KMeans++ implementation * KMeans++ implementation * Disable parallel execution * KMeans++ * Tests * Dev branch merge (#16) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Fix some issues on master (#17) * Fix DataVec test issue * Fix issue with dl4j SameDiff output layer * Dtype fix for lambda layers * #7912 BertIterator dtype fix (use float32 not global default) * [WIP] Next set of CUDA stuff (#7) New CUDA implementations and improvements * bad file * Dev branch master merge (#23) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Compatibility of deserialization (#18) Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> * SameDiff: add activation gradient checking support for debugging (#19) * SameDiff gradient checker: first pass on activation gradient checks * Fixes + tests for activation gradient checking * Javadoc * [WIP] Some nd4j data type corrections (#20) * Adjust data type * Set correct Data type. * Size of proper data type. * fix averaged cpu load (#22) * SameDiff ops, TF import and fixes (#24) * CheckNumerics tests + fixes + misc fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fake quant Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * FakeQuantWithMinMaxArgs Signed-off-by: AlexDBlack <blacka101@gmail.com> * CheckNumerics fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix libnd4j ALL_INTS and ALL_FLOATS declaration (uint and bfloat types) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Small fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Javadoc Signed-off-by: AlexDBlack <blacka101@gmail.com> * Exception tweak Signed-off-by: AlexDBlack <blacka101@gmail.com> * fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix for out of scope stack allocated var use Signed-off-by: AlexDBlack <blacka101@gmail.com> * Ignores Signed-off-by: AlexDBlack <blacka101@gmail.com> * Ignore for known failing test (already logged issue) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Merge upstream to fork (#25) * Add thousand-separator commas to TotalParams (#7915) * Add thousand-separator commas to TotalParams The number of parameters can be quite large, and it would help the reading of the summary printout to have the TotalParams column & values at the bottom have thousand-separator-commas in them. * Add thousand-separator commas to MultiLayerNetwork Corresponding change to MultiLayerNetwork Signed-off-by: Jxtps Jxtps <jxtps435@gmail.com> * Update contributing and issue/PR templates (#7934) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix link to AdaDelta paper (#7942) Fix link to AdaDelta paper hosted on matthewzeiler.com Signed-off-by: Jxtps * Fixes, and ignores for known/logged failing issues (#7943) Signed-off-by: AlexDBlack <blacka101@gmail.com> * SameDiff + DL4J/SameDiff: Multiple fixes (#28) * #7919 HDF5 attribute buffer length fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7909 Arbiter constructor exception ux improvements Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7925 RNN output layer length checks Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7939 Add listener for validating inputs are not incorrectly modified Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7939 Integrate NonInplaceValidationListener into tests * #7844 DL4J SameDiff fixes for variable minibatch size * DL4J SameDiff fixes - ensure gradient for input placeholder is available Signed-off-by: AlexDBlack <blacka101@gmail.com> * Tweaks to ExternalErrorsFunction - use placeholders, make more robust * Another fix * More fixes * More SameDiff/DL4J fixes * Scope out scalar array creation in BaseScalarOp * Remove debug code Signed-off-by: AlexDBlack <blacka101@gmail.com> * [WIP] Final dev branch merge (#29) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Compatibility of deserialization (#18) Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> * SameDiff: add activation gradient checking support for debugging (#19) * SameDiff gradient checker: first pass on activation gradient checks * Fixes + tests for activation gradient checking * Javadoc * [WIP] Some nd4j data type corrections (#20) * Adjust data type * Set correct Data type. * Size of proper data type. * fix averaged cpu load (#22) * [WIP] Multiple dataset iterators (#27) * Splitting dataset into arbitrary number * Fixes * Multiple split of iterator * Test * Test * Some fixes * signature change * one more tweak Signed-off-by: raver119 <raver119@gmail.com> * one more test for sequential use of DataSetIteratorSplitter Signed-off-by: raver119 <raver119@gmail.com> * Fixes * Fixes * one more test for Alexander Signed-off-by: raver119 <raver119@gmail.com> * Some fixes * Some fixes * one more test for Alexander Signed-off-by: raver119 <raver119@gmail.com> * minor test fix Signed-off-by: raver119 <raver119@gmail.com> * Some fixes * Some fixes * couple of assertions tweaked Signed-off-by: raver119 <raver119@gmail.com> * MDS splitter test :/ Signed-off-by: raver119 <raver119@gmail.com> * Minor refactoring * Multi dataset * Some fixes * More tests * Small number of test fixes/improvements (failures on CI) (#31) Signed-off-by: AlexDBlack <blacka101@gmail.com> * [WIP] More CUDA stuff (#26) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * LRN BP CUDA Signed-off-by: raver119 <raver119@gmail.com> * less memory Signed-off-by: raver119 <raver119@gmail.com> * Fixed bug with crop_and_resize op helper. * get rid of unnecessary index-calculation dunction Signed-off-by: Yurii <yurii@skymind.io> * Fixed sort with nth_element cuda-based helper. * Refactored nth_element. * Refactored nth_element op and tests. * Modified usage of dim array with sortTad routine. * Refactored main routine of helper for non_max_image_suppression op. * non_max_image_suppression op helper with cuda kernel implementation. Initial revision. * fix vol2col cuda kernel * meh Signed-off-by: raver119 <raver119@gmail.com> * topK concept Signed-off-by: raver119 <raver119@gmail.com> * unsorted topK with scanWitdh of 1 Signed-off-by: raver119 <raver119@gmail.com> * correct vol2col tests * sorted/unsorted topK Signed-off-by: raver119 <raver119@gmail.com> * implementation and fixing col2im/col2vol * Corrected usage flags with input/output with reverse op. * dup is const now Signed-off-by: raver119 <raver119@gmail.com> * percentile op Signed-off-by: raver119 <raver119@gmail.com> * group tests for mapool2d Signed-off-by: Yurii <yurii@skymind.io> * special test for george Signed-off-by: raver119 <raver119@gmail.com> * less threads for sortTad Signed-off-by: raver119 <raver119@gmail.com> * provide conv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * remove auther in sort tad kernel code Signed-off-by: Yurii <yurii@skymind.io> * provide depthwise_conv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * - max_pooling_with_argmax - null check for special use Signed-off-by: raver119 <raver119@gmail.com> * dts cuda Signed-off-by: raver119 <raver119@gmail.com> * provide sconv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * std cuda Signed-off-by: raver119 <raver119@gmail.com> * Refactored non_max_suppression op to conform TF implementation. * Improved suppression helper. * provide pooling3d for cuda Signed-off-by: Yurii <yurii@skymind.io> * minor lstm rearrangements Signed-off-by: raver119 <raver119@gmail.com> * more of minor lstm rearrangements Signed-off-by: raver119 <raver119@gmail.com> * (bi)dynamic_rnn Signed-off-by: raver119 <raver119@gmail.com> * templates init order Signed-off-by: raver119 <raver119@gmail.com> * Refactored non_max_suppression op. * Added cuda kernel for non_max_suppression. * CPU sort by key/value Signed-off-by: raver119 <raver119@gmail.com> * CPU sort TAD by key/value Signed-off-by: raver119 <raver119@gmail.com> * CPU sort TAD by key/value tests Signed-off-by: raver119 <raver119@gmail.com> * Eliminate compiler error with cuda implementation. * - repaired gradCheck in cuda - provide conv2d_bp for cuda Signed-off-by: Yurii <yurii@skymind.io> * missed signature Signed-off-by: raver119 <raver119@gmail.com> * provide depthwise_conv2d_bp for cuda Signed-off-by: Yurii <yurii@skymind.io> * Implementation of lup helper with cuda kernel. Initial commit. * further work on backprops for convolutions Signed-off-by: Yurii <yurii@skymind.io> * CUDA linear sort by key/val Signed-off-by: raver119 <raver119@gmail.com> * CUDA tad sort by key/val Signed-off-by: raver119 <raver119@gmail.com> * start providing of backprop for pooling2d/3d Signed-off-by: Yurii <yurii@skymind.io> * Added atomicAdd for bool datatype. * dynamic partition concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic partition concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic partition scalar CUDA Signed-off-by: raver119 <raver119@gmail.com> * important comment Signed-off-by: raver119 <raver119@gmail.com> * fix pooling2d/3d backprop helpers Signed-off-by: Yurii <yurii@skymind.io> * Added non-linear test with dynamic_partition. * Improved test for dynamic_partition. * dynamic_partition TAD concept Signed-off-by: raver119 <raver119@gmail.com> * - dynamic_partition TAD CUDA impl - dynamic_partition TAD CPU fix Signed-off-by: raver119 <raver119@gmail.com> * - rewrite cpu code for usampling2d/3d - write cuda code for usampling2d/3d Signed-off-by: Yurii <yurii@skymind.io> * dynamic_stitch CUDA vector case Signed-off-by: raver119 <raver119@gmail.com> * dynamic_stitch CUDA TAD case concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic_stitch CUDA TAD case impl Signed-off-by: raver119 <raver119@gmail.com> * Added tests for dynamic_stitch 3D-4D cases. * minor tests tweaks Signed-off-by: raver119 <raver119@gmail.com> * Fixed type check for dynamic stitch. * min/max bp Signed-off-by: raver119 <raver119@gmail.com> * rewrite code for upsampling2d/3d cpu Signed-off-by: Yurii <yurii@skymind.io> * reduce min/max/norm_max bp Signed-off-by: raver119 <raver119@gmail.com> * lup implementation. Additional enhancements. * provide code for upsamling2d/3d backprop Signed-off-by: Yurii <yurii@skymind.io> * weightedCrossEntropyWithLogits Signed-off-by: raver119 <raver119@gmail.com> * Fixed template math atomicMul for 64bit ints. * Refactored dynamic_partition_bp op. * inverseBroadcast fix Signed-off-by: raver119 <raver119@gmail.com> * DynamicPartitionBP test datatype fixed. * - nd4j_atomicMul Windows fix - cpu/NDArrayLambda.hpp excluded from CUDA Signed-off-by: raver119 <raver119@gmail.com>
2019-06-27 17:37:04 +02:00
void NativeOps::sortByKey(Nd4jPointer *extraPointers,
void *x, Nd4jLong *xShapeInfo,
void *dX, Nd4jLong *dXShapeInfo,
void *y, Nd4jLong *yShapeInfo,
void *dy, Nd4jLong *dyShapeInfo,
bool descending) {
auto stream = reinterpret_cast<cudaStream_t *>(extraPointers[1]);
auto xLength = shape::length(xShapeInfo);
auto xEWS = shape::elementWiseStride(xShapeInfo);
auto xType = nd4j::ArrayOptions::dataType(xShapeInfo);
auto yType = nd4j::ArrayOptions::dataType(yShapeInfo);
// check if xLength is a power of 2, and use bitonic sort, if that's the case
if ((xLength != 0) && ((xLength & (xLength - 1)) == 0) && (xLength <= 1024 * 1024 * 10)) {
int numThreads = nd4j::math::nd4j_min<int>(512, xLength);
int numBlocks = xLength / numThreads;
if (xLength % numThreads > 0 || numBlocks == 0)
numBlocks++;
dim3 launchDims(numBlocks, numThreads, 32768);
for (int k = 2; k <= xLength; k = 2*k) {
for (int j = k >> 1; j > 0; j = j >> 1) {
BUILD_DOUBLE_SELECTOR(xType, yType, bitonicSortStepGenericKey, (launchDims, stream, dX, dXShapeInfo, dy, dyShapeInfo, j, k, xLength, descending), LIBND4J_TYPES, LIBND4J_TYPES);
}
}
} else {
int numThreads = nd4j::math::nd4j_min<int>(512, xLength);
int numBlocks = xLength / numThreads;
if (xLength % numThreads > 0 || numBlocks == 0)
numBlocks++;
numBlocks = nd4j::math::nd4j_min<int>(512, numBlocks);
dim3 launchDims(numBlocks, numThreads, 32768);
int max = 2, dg = 0;
while (max < xLength) {
max <<= 1;
dg++;
}
max <<= 1;
for (int window = 2; window < max; window<<=1) {
int n = window;
int rev = 0;
do{
int half = n >> 1;
BUILD_DOUBLE_SELECTOR(xType, yType, bitonicArbitraryStepGenericKey, (launchDims, stream, dX, dXShapeInfo, dy, dyShapeInfo, n, xLength, rev, descending), LIBND4J_TYPES, LIBND4J_TYPES);
n>>=1;
rev = 1;
} while(n > 1);
}
}
}
void NativeOps::sortByValue(Nd4jPointer *extraPointers,
void *x, Nd4jLong *xShapeInfo,
void *dX, Nd4jLong *dXShapeInfo,
void *y, Nd4jLong *yShapeInfo,
void *dy, Nd4jLong *dyShapeInfo,
bool descending) {
auto stream = reinterpret_cast<cudaStream_t *>(extraPointers[1]);
auto xLength = shape::length(xShapeInfo);
auto xEWS = shape::elementWiseStride(xShapeInfo);
auto xType = nd4j::ArrayOptions::dataType(xShapeInfo);
auto yType = nd4j::ArrayOptions::dataType(yShapeInfo);
// check if xLength is a power of 2, and use bitonic sort, if that's the case
if ((xLength != 0) && ((xLength & (xLength - 1)) == 0) && (xLength <= 1024 * 1024 * 10)) {
int numThreads = nd4j::math::nd4j_min<int>(512, xLength);
int numBlocks = xLength / numThreads;
if (xLength % numThreads > 0 || numBlocks == 0)
numBlocks++;
dim3 launchDims(numBlocks, numThreads, 32768);
for (int k = 2; k <= xLength; k = 2*k) {
for (int j = k >> 1; j > 0; j = j >> 1) {
BUILD_DOUBLE_SELECTOR(xType, yType, bitonicSortStepGenericValue, (launchDims, stream, dX, dXShapeInfo, dy, dyShapeInfo, j, k, xLength, descending), LIBND4J_TYPES, LIBND4J_TYPES);
}
}
} else {
int numThreads = nd4j::math::nd4j_min<int>(512, xLength);
int numBlocks = xLength / numThreads;
if (xLength % numThreads > 0 || numBlocks == 0)
numBlocks++;
numBlocks = nd4j::math::nd4j_min<int>(512, numBlocks);
dim3 launchDims(numBlocks, numThreads, 32768);
int max = 2, dg = 0;
while (max < xLength) {
max <<= 1;
dg++;
}
max <<= 1;
for (int window = 2; window < max; window<<=1) {
int n = window;
int rev = 0;
do{
int half = n >> 1;
BUILD_DOUBLE_SELECTOR(xType, yType, bitonicArbitraryStepGenericValue, (launchDims, stream, dX, dXShapeInfo, dy, dyShapeInfo, n, xLength, rev, descending), LIBND4J_TYPES, LIBND4J_TYPES);
n>>=1;
rev = 1;
} while(n > 1);
}
}
}
void NativeOps::sortTadByKey(Nd4jPointer *extraPointers,
void *x, Nd4jLong *xShapeInfo,
void *dX, Nd4jLong *dXShapeInfo,
void *y, Nd4jLong *yShapeInfo,
void *dy, Nd4jLong *dyShapeInfo,
int *dimension,
int dimensionLength,
bool descending) {
auto stream = reinterpret_cast<cudaStream_t *>(extraPointers[1]);
auto context = extraPointers[0] == 0 ? LaunchContext::defaultContext(): reinterpret_cast<LaunchContext*>(extraPointers[0]);
auto tadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(xShapeInfo, dimension, dimensionLength);
dim3 launchDims((int) tadPack.numberOfTads(), 256, 2048);
auto xType = nd4j::ArrayOptions::dataType(xShapeInfo);
auto yType = nd4j::ArrayOptions::dataType(yShapeInfo);
BUILD_DOUBLE_SELECTOR(xType, yType, oesTadGenericKey, (launchDims, stream, dX, dXShapeInfo, dy, dyShapeInfo, nullptr, dimensionLength, tadPack.platformShapeInfo(), tadPack.platformOffsets(), descending), LIBND4J_TYPES, LIBND4J_TYPES);
nd4j::DebugHelper::checkErrorCode(stream, "sortTadKey(...) failed");
}
void NativeOps::sortTadByValue(Nd4jPointer *extraPointers,
void *x, Nd4jLong *xShapeInfo,
void *dX, Nd4jLong *dXShapeInfo,
void *y, Nd4jLong *yShapeInfo,
void *dy, Nd4jLong *dyShapeInfo,
int *dimension,
int dimensionLength,
bool descending) {
auto stream = reinterpret_cast<cudaStream_t *>(extraPointers[1]);
auto context = extraPointers[0] == 0 ? LaunchContext::defaultContext(): reinterpret_cast<LaunchContext*>(extraPointers[0]);
auto tadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(xShapeInfo, dimension, dimensionLength);
dim3 launchDims((int) tadPack.numberOfTads(), 256, 2048);
auto xType = nd4j::ArrayOptions::dataType(yShapeInfo);
auto yType = nd4j::ArrayOptions::dataType(xShapeInfo);
BUILD_DOUBLE_SELECTOR(xType, yType, oesTadGenericKey, (launchDims, stream, dy, dyShapeInfo, dX, dXShapeInfo, nullptr, dimensionLength, tadPack.platformShapeInfo(), tadPack.platformOffsets(), descending), LIBND4J_TYPES, LIBND4J_TYPES);
nd4j::DebugHelper::checkErrorCode(stream, "sortTadValue(...) failed");
}
2019-06-06 14:21:15 +02:00
void NativeOps::sortTad(Nd4jPointer *extraPointers,
void *x, Nd4jLong *xShapeInfo,
void *dX, Nd4jLong *dXShapeInfo,
int *dimension,
int dimensionLength,
Nd4jLong *tadShapeInfo,
Nd4jLong *tadOffsets,
bool descending) {
// to be implemented
auto stream = reinterpret_cast<cudaStream_t *>(extraPointers[1]);
Merge master to upstream (#7945) * Shugeo strided slice zeros (#14) * Modified strided_slice op to properly work with empty-like shapes. * Fixed test for reduce_mean with empty-like input. * [WIP] Last merge (#15) * correct logsoftmax looss (#2) * Small SameDiff listener fix (#4) * Various fixes (#6) * #7839 Fix for asXMatrix and tests * #7866 EmbeddingSequenceLayer dtype fix + test * #7856 SameDiff save/load stream methods * #7859 RegressionEvaluation rank 4 fix + tests + axis configuration * EvaluationBinary 3d/4d * More evaluation 3d/4d tests * #7847 Evaluation empty checks * Small test ifx * #7848 Fix median edge case * Improve DL4J samediff layer tests * [WIP] FastText wrapper implemented (#8) * FastText implemented * Some fixes * Fix shapes for wordsNearest * Validation of input vectors * Fixes * Fixed test * Thread tagged * Some tweaks * setContextClassLoader for DeallocatorServiceThread * Numpy format tests (#1) * Various fixes (#11) * #7852 SameDiff gather fix * #7892 SameDiff placeholder to constant conversion * #7890 validate input rank for MLN/CG init methods * Fix broken permute shape calculation * Permute and gather fixes * Tests * #7850 LogSumExp fix + test * Handful of test fixes * Empty arrays with non-scalar shapes (#10) * minor rearrangements for lambdas * empty tensors with non-scalar shapes * numpy empty tensors with non-scalar shapes * few more empty tweaks * Small fixes * conv3d signature update * micro fix in batchnorm mkldnn * Import fixes * Fix * MKL-DNN update * Small fill fix * fill with empty input + test * Fixes * Small error improvement * Fix * one special test * couple of fixes for lstm * Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone * Fixes * FP16 * Unsigned * BFloat16 * Fill op - empty tweaks * - couple of fixes for empty arrays construction - stack updated * strided slice fix * one transform test * provide method for reducing shapeInfo in case of input array is empty * Fixed reduceAlongDimensions to use empty input properly. * couple of broadcast tests * couple of tests broadcast tests + tweak to make them pass * add check of non-empty to methods producing sub-arrays * Fixed reshapeC with zeros in shape. * complete empty check in reduce_... legacy ops * Concat and cumsum/prod * Tweak to empty shape inference on import * add empty check to the rest of reduce legacy ops * one more test * correct typo in evalReduceShapeInfoEmpty * Added tests for reduce_* ops to tests with zero shapes. * few more tests for empty reductions * Fixed strided_slice op with empty case and tests. * one more empty reduction test * Fixed strided_slice test. * add empty check to NDArray::reshapei * infOrMax * empty min/max with infinity tests * made unstack working correctly with empty arrays * few IndexReduce tests + tweaks for empty shapes * add test for empty concat * few tests fixed * Validation fix for reductions on empty shapes * Reverse fix * Reduction shape calc fixes * SameDiff.generateOutputVariable: don't use shape function to determine number of outputs * Range fix * - NDArray constructor updated for scalars/empty arrays - few tests fixed * More fixes * Empty creator fixes * concat fix * concat fix * TF import tests: allow 'both all NaN' and 'both all inf' to pass * Slice, zero fraction, and reshape fixes * transpose, gather * Zero fraction * scalar cast fix * Empty reduction axis support * few more tests fixed * Fixed input checks conforming with TF for concat op and tests. * few tests fixed * matmul scalar shape fix * Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats. * broadcast bool fix * few more tests * few more tests * correct evalReduceShapeInfoEmpty * argmax/argmin + tests * one more empty edge case + one more test * argmax/argmin/realdiv_bp tweaks * empty reshape test + fix * Helper fixes * Small fixes * Gather test fix * Gather test fix * Small fixes * reduce scalar zero values * scalar mean workaround * Remove debug code * along dim mean workaround * one more test * - equalsTo() tweak for empty arrays - one more test * broadcast tweaks * [WIP] Fixing outstanding issues for NLP (#9) * Avoid using not-inited objects * Test fixed. * Redundant method avoided for models like FastText * KMeans++ implementation * KMeans++ implementation * Disable parallel execution * KMeans++ * Tests * Dev branch merge (#16) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Fix some issues on master (#17) * Fix DataVec test issue * Fix issue with dl4j SameDiff output layer * Dtype fix for lambda layers * #7912 BertIterator dtype fix (use float32 not global default) * [WIP] Next set of CUDA stuff (#7) New CUDA implementations and improvements * bad file * Dev branch master merge (#23) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Compatibility of deserialization (#18) Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> * SameDiff: add activation gradient checking support for debugging (#19) * SameDiff gradient checker: first pass on activation gradient checks * Fixes + tests for activation gradient checking * Javadoc * [WIP] Some nd4j data type corrections (#20) * Adjust data type * Set correct Data type. * Size of proper data type. * fix averaged cpu load (#22) * SameDiff ops, TF import and fixes (#24) * CheckNumerics tests + fixes + misc fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fake quant Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * FakeQuantWithMinMaxArgs Signed-off-by: AlexDBlack <blacka101@gmail.com> * CheckNumerics fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix libnd4j ALL_INTS and ALL_FLOATS declaration (uint and bfloat types) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Small fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Javadoc Signed-off-by: AlexDBlack <blacka101@gmail.com> * Exception tweak Signed-off-by: AlexDBlack <blacka101@gmail.com> * fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix for out of scope stack allocated var use Signed-off-by: AlexDBlack <blacka101@gmail.com> * Ignores Signed-off-by: AlexDBlack <blacka101@gmail.com> * Ignore for known failing test (already logged issue) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Merge upstream to fork (#25) * Add thousand-separator commas to TotalParams (#7915) * Add thousand-separator commas to TotalParams The number of parameters can be quite large, and it would help the reading of the summary printout to have the TotalParams column & values at the bottom have thousand-separator-commas in them. * Add thousand-separator commas to MultiLayerNetwork Corresponding change to MultiLayerNetwork Signed-off-by: Jxtps Jxtps <jxtps435@gmail.com> * Update contributing and issue/PR templates (#7934) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix link to AdaDelta paper (#7942) Fix link to AdaDelta paper hosted on matthewzeiler.com Signed-off-by: Jxtps * Fixes, and ignores for known/logged failing issues (#7943) Signed-off-by: AlexDBlack <blacka101@gmail.com> * SameDiff + DL4J/SameDiff: Multiple fixes (#28) * #7919 HDF5 attribute buffer length fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7909 Arbiter constructor exception ux improvements Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7925 RNN output layer length checks Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7939 Add listener for validating inputs are not incorrectly modified Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7939 Integrate NonInplaceValidationListener into tests * #7844 DL4J SameDiff fixes for variable minibatch size * DL4J SameDiff fixes - ensure gradient for input placeholder is available Signed-off-by: AlexDBlack <blacka101@gmail.com> * Tweaks to ExternalErrorsFunction - use placeholders, make more robust * Another fix * More fixes * More SameDiff/DL4J fixes * Scope out scalar array creation in BaseScalarOp * Remove debug code Signed-off-by: AlexDBlack <blacka101@gmail.com> * [WIP] Final dev branch merge (#29) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Compatibility of deserialization (#18) Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> * SameDiff: add activation gradient checking support for debugging (#19) * SameDiff gradient checker: first pass on activation gradient checks * Fixes + tests for activation gradient checking * Javadoc * [WIP] Some nd4j data type corrections (#20) * Adjust data type * Set correct Data type. * Size of proper data type. * fix averaged cpu load (#22) * [WIP] Multiple dataset iterators (#27) * Splitting dataset into arbitrary number * Fixes * Multiple split of iterator * Test * Test * Some fixes * signature change * one more tweak Signed-off-by: raver119 <raver119@gmail.com> * one more test for sequential use of DataSetIteratorSplitter Signed-off-by: raver119 <raver119@gmail.com> * Fixes * Fixes * one more test for Alexander Signed-off-by: raver119 <raver119@gmail.com> * Some fixes * Some fixes * one more test for Alexander Signed-off-by: raver119 <raver119@gmail.com> * minor test fix Signed-off-by: raver119 <raver119@gmail.com> * Some fixes * Some fixes * couple of assertions tweaked Signed-off-by: raver119 <raver119@gmail.com> * MDS splitter test :/ Signed-off-by: raver119 <raver119@gmail.com> * Minor refactoring * Multi dataset * Some fixes * More tests * Small number of test fixes/improvements (failures on CI) (#31) Signed-off-by: AlexDBlack <blacka101@gmail.com> * [WIP] More CUDA stuff (#26) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * LRN BP CUDA Signed-off-by: raver119 <raver119@gmail.com> * less memory Signed-off-by: raver119 <raver119@gmail.com> * Fixed bug with crop_and_resize op helper. * get rid of unnecessary index-calculation dunction Signed-off-by: Yurii <yurii@skymind.io> * Fixed sort with nth_element cuda-based helper. * Refactored nth_element. * Refactored nth_element op and tests. * Modified usage of dim array with sortTad routine. * Refactored main routine of helper for non_max_image_suppression op. * non_max_image_suppression op helper with cuda kernel implementation. Initial revision. * fix vol2col cuda kernel * meh Signed-off-by: raver119 <raver119@gmail.com> * topK concept Signed-off-by: raver119 <raver119@gmail.com> * unsorted topK with scanWitdh of 1 Signed-off-by: raver119 <raver119@gmail.com> * correct vol2col tests * sorted/unsorted topK Signed-off-by: raver119 <raver119@gmail.com> * implementation and fixing col2im/col2vol * Corrected usage flags with input/output with reverse op. * dup is const now Signed-off-by: raver119 <raver119@gmail.com> * percentile op Signed-off-by: raver119 <raver119@gmail.com> * group tests for mapool2d Signed-off-by: Yurii <yurii@skymind.io> * special test for george Signed-off-by: raver119 <raver119@gmail.com> * less threads for sortTad Signed-off-by: raver119 <raver119@gmail.com> * provide conv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * remove auther in sort tad kernel code Signed-off-by: Yurii <yurii@skymind.io> * provide depthwise_conv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * - max_pooling_with_argmax - null check for special use Signed-off-by: raver119 <raver119@gmail.com> * dts cuda Signed-off-by: raver119 <raver119@gmail.com> * provide sconv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * std cuda Signed-off-by: raver119 <raver119@gmail.com> * Refactored non_max_suppression op to conform TF implementation. * Improved suppression helper. * provide pooling3d for cuda Signed-off-by: Yurii <yurii@skymind.io> * minor lstm rearrangements Signed-off-by: raver119 <raver119@gmail.com> * more of minor lstm rearrangements Signed-off-by: raver119 <raver119@gmail.com> * (bi)dynamic_rnn Signed-off-by: raver119 <raver119@gmail.com> * templates init order Signed-off-by: raver119 <raver119@gmail.com> * Refactored non_max_suppression op. * Added cuda kernel for non_max_suppression. * CPU sort by key/value Signed-off-by: raver119 <raver119@gmail.com> * CPU sort TAD by key/value Signed-off-by: raver119 <raver119@gmail.com> * CPU sort TAD by key/value tests Signed-off-by: raver119 <raver119@gmail.com> * Eliminate compiler error with cuda implementation. * - repaired gradCheck in cuda - provide conv2d_bp for cuda Signed-off-by: Yurii <yurii@skymind.io> * missed signature Signed-off-by: raver119 <raver119@gmail.com> * provide depthwise_conv2d_bp for cuda Signed-off-by: Yurii <yurii@skymind.io> * Implementation of lup helper with cuda kernel. Initial commit. * further work on backprops for convolutions Signed-off-by: Yurii <yurii@skymind.io> * CUDA linear sort by key/val Signed-off-by: raver119 <raver119@gmail.com> * CUDA tad sort by key/val Signed-off-by: raver119 <raver119@gmail.com> * start providing of backprop for pooling2d/3d Signed-off-by: Yurii <yurii@skymind.io> * Added atomicAdd for bool datatype. * dynamic partition concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic partition concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic partition scalar CUDA Signed-off-by: raver119 <raver119@gmail.com> * important comment Signed-off-by: raver119 <raver119@gmail.com> * fix pooling2d/3d backprop helpers Signed-off-by: Yurii <yurii@skymind.io> * Added non-linear test with dynamic_partition. * Improved test for dynamic_partition. * dynamic_partition TAD concept Signed-off-by: raver119 <raver119@gmail.com> * - dynamic_partition TAD CUDA impl - dynamic_partition TAD CPU fix Signed-off-by: raver119 <raver119@gmail.com> * - rewrite cpu code for usampling2d/3d - write cuda code for usampling2d/3d Signed-off-by: Yurii <yurii@skymind.io> * dynamic_stitch CUDA vector case Signed-off-by: raver119 <raver119@gmail.com> * dynamic_stitch CUDA TAD case concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic_stitch CUDA TAD case impl Signed-off-by: raver119 <raver119@gmail.com> * Added tests for dynamic_stitch 3D-4D cases. * minor tests tweaks Signed-off-by: raver119 <raver119@gmail.com> * Fixed type check for dynamic stitch. * min/max bp Signed-off-by: raver119 <raver119@gmail.com> * rewrite code for upsampling2d/3d cpu Signed-off-by: Yurii <yurii@skymind.io> * reduce min/max/norm_max bp Signed-off-by: raver119 <raver119@gmail.com> * lup implementation. Additional enhancements. * provide code for upsamling2d/3d backprop Signed-off-by: Yurii <yurii@skymind.io> * weightedCrossEntropyWithLogits Signed-off-by: raver119 <raver119@gmail.com> * Fixed template math atomicMul for 64bit ints. * Refactored dynamic_partition_bp op. * inverseBroadcast fix Signed-off-by: raver119 <raver119@gmail.com> * DynamicPartitionBP test datatype fixed. * - nd4j_atomicMul Windows fix - cpu/NDArrayLambda.hpp excluded from CUDA Signed-off-by: raver119 <raver119@gmail.com>
2019-06-27 17:37:04 +02:00
auto context = extraPointers[0] == 0 ? LaunchContext::defaultContext(): reinterpret_cast<LaunchContext*>(extraPointers[0]);
2019-06-06 14:21:15 +02:00
auto tadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(xShapeInfo, dimension, dimensionLength);
Merge master to upstream (#7945) * Shugeo strided slice zeros (#14) * Modified strided_slice op to properly work with empty-like shapes. * Fixed test for reduce_mean with empty-like input. * [WIP] Last merge (#15) * correct logsoftmax looss (#2) * Small SameDiff listener fix (#4) * Various fixes (#6) * #7839 Fix for asXMatrix and tests * #7866 EmbeddingSequenceLayer dtype fix + test * #7856 SameDiff save/load stream methods * #7859 RegressionEvaluation rank 4 fix + tests + axis configuration * EvaluationBinary 3d/4d * More evaluation 3d/4d tests * #7847 Evaluation empty checks * Small test ifx * #7848 Fix median edge case * Improve DL4J samediff layer tests * [WIP] FastText wrapper implemented (#8) * FastText implemented * Some fixes * Fix shapes for wordsNearest * Validation of input vectors * Fixes * Fixed test * Thread tagged * Some tweaks * setContextClassLoader for DeallocatorServiceThread * Numpy format tests (#1) * Various fixes (#11) * #7852 SameDiff gather fix * #7892 SameDiff placeholder to constant conversion * #7890 validate input rank for MLN/CG init methods * Fix broken permute shape calculation * Permute and gather fixes * Tests * #7850 LogSumExp fix + test * Handful of test fixes * Empty arrays with non-scalar shapes (#10) * minor rearrangements for lambdas * empty tensors with non-scalar shapes * numpy empty tensors with non-scalar shapes * few more empty tweaks * Small fixes * conv3d signature update * micro fix in batchnorm mkldnn * Import fixes * Fix * MKL-DNN update * Small fill fix * fill with empty input + test * Fixes * Small error improvement * Fix * one special test * couple of fixes for lstm * Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone * Fixes * FP16 * Unsigned * BFloat16 * Fill op - empty tweaks * - couple of fixes for empty arrays construction - stack updated * strided slice fix * one transform test * provide method for reducing shapeInfo in case of input array is empty * Fixed reduceAlongDimensions to use empty input properly. * couple of broadcast tests * couple of tests broadcast tests + tweak to make them pass * add check of non-empty to methods producing sub-arrays * Fixed reshapeC with zeros in shape. * complete empty check in reduce_... legacy ops * Concat and cumsum/prod * Tweak to empty shape inference on import * add empty check to the rest of reduce legacy ops * one more test * correct typo in evalReduceShapeInfoEmpty * Added tests for reduce_* ops to tests with zero shapes. * few more tests for empty reductions * Fixed strided_slice op with empty case and tests. * one more empty reduction test * Fixed strided_slice test. * add empty check to NDArray::reshapei * infOrMax * empty min/max with infinity tests * made unstack working correctly with empty arrays * few IndexReduce tests + tweaks for empty shapes * add test for empty concat * few tests fixed * Validation fix for reductions on empty shapes * Reverse fix * Reduction shape calc fixes * SameDiff.generateOutputVariable: don't use shape function to determine number of outputs * Range fix * - NDArray constructor updated for scalars/empty arrays - few tests fixed * More fixes * Empty creator fixes * concat fix * concat fix * TF import tests: allow 'both all NaN' and 'both all inf' to pass * Slice, zero fraction, and reshape fixes * transpose, gather * Zero fraction * scalar cast fix * Empty reduction axis support * few more tests fixed * Fixed input checks conforming with TF for concat op and tests. * few tests fixed * matmul scalar shape fix * Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats. * broadcast bool fix * few more tests * few more tests * correct evalReduceShapeInfoEmpty * argmax/argmin + tests * one more empty edge case + one more test * argmax/argmin/realdiv_bp tweaks * empty reshape test + fix * Helper fixes * Small fixes * Gather test fix * Gather test fix * Small fixes * reduce scalar zero values * scalar mean workaround * Remove debug code * along dim mean workaround * one more test * - equalsTo() tweak for empty arrays - one more test * broadcast tweaks * [WIP] Fixing outstanding issues for NLP (#9) * Avoid using not-inited objects * Test fixed. * Redundant method avoided for models like FastText * KMeans++ implementation * KMeans++ implementation * Disable parallel execution * KMeans++ * Tests * Dev branch merge (#16) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Fix some issues on master (#17) * Fix DataVec test issue * Fix issue with dl4j SameDiff output layer * Dtype fix for lambda layers * #7912 BertIterator dtype fix (use float32 not global default) * [WIP] Next set of CUDA stuff (#7) New CUDA implementations and improvements * bad file * Dev branch master merge (#23) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Compatibility of deserialization (#18) Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> * SameDiff: add activation gradient checking support for debugging (#19) * SameDiff gradient checker: first pass on activation gradient checks * Fixes + tests for activation gradient checking * Javadoc * [WIP] Some nd4j data type corrections (#20) * Adjust data type * Set correct Data type. * Size of proper data type. * fix averaged cpu load (#22) * SameDiff ops, TF import and fixes (#24) * CheckNumerics tests + fixes + misc fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fake quant Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * FakeQuantWithMinMaxArgs Signed-off-by: AlexDBlack <blacka101@gmail.com> * CheckNumerics fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix libnd4j ALL_INTS and ALL_FLOATS declaration (uint and bfloat types) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Small fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Javadoc Signed-off-by: AlexDBlack <blacka101@gmail.com> * Exception tweak Signed-off-by: AlexDBlack <blacka101@gmail.com> * fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix for out of scope stack allocated var use Signed-off-by: AlexDBlack <blacka101@gmail.com> * Ignores Signed-off-by: AlexDBlack <blacka101@gmail.com> * Ignore for known failing test (already logged issue) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Merge upstream to fork (#25) * Add thousand-separator commas to TotalParams (#7915) * Add thousand-separator commas to TotalParams The number of parameters can be quite large, and it would help the reading of the summary printout to have the TotalParams column & values at the bottom have thousand-separator-commas in them. * Add thousand-separator commas to MultiLayerNetwork Corresponding change to MultiLayerNetwork Signed-off-by: Jxtps Jxtps <jxtps435@gmail.com> * Update contributing and issue/PR templates (#7934) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix link to AdaDelta paper (#7942) Fix link to AdaDelta paper hosted on matthewzeiler.com Signed-off-by: Jxtps * Fixes, and ignores for known/logged failing issues (#7943) Signed-off-by: AlexDBlack <blacka101@gmail.com> * SameDiff + DL4J/SameDiff: Multiple fixes (#28) * #7919 HDF5 attribute buffer length fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7909 Arbiter constructor exception ux improvements Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7925 RNN output layer length checks Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7939 Add listener for validating inputs are not incorrectly modified Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7939 Integrate NonInplaceValidationListener into tests * #7844 DL4J SameDiff fixes for variable minibatch size * DL4J SameDiff fixes - ensure gradient for input placeholder is available Signed-off-by: AlexDBlack <blacka101@gmail.com> * Tweaks to ExternalErrorsFunction - use placeholders, make more robust * Another fix * More fixes * More SameDiff/DL4J fixes * Scope out scalar array creation in BaseScalarOp * Remove debug code Signed-off-by: AlexDBlack <blacka101@gmail.com> * [WIP] Final dev branch merge (#29) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Compatibility of deserialization (#18) Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> * SameDiff: add activation gradient checking support for debugging (#19) * SameDiff gradient checker: first pass on activation gradient checks * Fixes + tests for activation gradient checking * Javadoc * [WIP] Some nd4j data type corrections (#20) * Adjust data type * Set correct Data type. * Size of proper data type. * fix averaged cpu load (#22) * [WIP] Multiple dataset iterators (#27) * Splitting dataset into arbitrary number * Fixes * Multiple split of iterator * Test * Test * Some fixes * signature change * one more tweak Signed-off-by: raver119 <raver119@gmail.com> * one more test for sequential use of DataSetIteratorSplitter Signed-off-by: raver119 <raver119@gmail.com> * Fixes * Fixes * one more test for Alexander Signed-off-by: raver119 <raver119@gmail.com> * Some fixes * Some fixes * one more test for Alexander Signed-off-by: raver119 <raver119@gmail.com> * minor test fix Signed-off-by: raver119 <raver119@gmail.com> * Some fixes * Some fixes * couple of assertions tweaked Signed-off-by: raver119 <raver119@gmail.com> * MDS splitter test :/ Signed-off-by: raver119 <raver119@gmail.com> * Minor refactoring * Multi dataset * Some fixes * More tests * Small number of test fixes/improvements (failures on CI) (#31) Signed-off-by: AlexDBlack <blacka101@gmail.com> * [WIP] More CUDA stuff (#26) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * LRN BP CUDA Signed-off-by: raver119 <raver119@gmail.com> * less memory Signed-off-by: raver119 <raver119@gmail.com> * Fixed bug with crop_and_resize op helper. * get rid of unnecessary index-calculation dunction Signed-off-by: Yurii <yurii@skymind.io> * Fixed sort with nth_element cuda-based helper. * Refactored nth_element. * Refactored nth_element op and tests. * Modified usage of dim array with sortTad routine. * Refactored main routine of helper for non_max_image_suppression op. * non_max_image_suppression op helper with cuda kernel implementation. Initial revision. * fix vol2col cuda kernel * meh Signed-off-by: raver119 <raver119@gmail.com> * topK concept Signed-off-by: raver119 <raver119@gmail.com> * unsorted topK with scanWitdh of 1 Signed-off-by: raver119 <raver119@gmail.com> * correct vol2col tests * sorted/unsorted topK Signed-off-by: raver119 <raver119@gmail.com> * implementation and fixing col2im/col2vol * Corrected usage flags with input/output with reverse op. * dup is const now Signed-off-by: raver119 <raver119@gmail.com> * percentile op Signed-off-by: raver119 <raver119@gmail.com> * group tests for mapool2d Signed-off-by: Yurii <yurii@skymind.io> * special test for george Signed-off-by: raver119 <raver119@gmail.com> * less threads for sortTad Signed-off-by: raver119 <raver119@gmail.com> * provide conv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * remove auther in sort tad kernel code Signed-off-by: Yurii <yurii@skymind.io> * provide depthwise_conv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * - max_pooling_with_argmax - null check for special use Signed-off-by: raver119 <raver119@gmail.com> * dts cuda Signed-off-by: raver119 <raver119@gmail.com> * provide sconv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * std cuda Signed-off-by: raver119 <raver119@gmail.com> * Refactored non_max_suppression op to conform TF implementation. * Improved suppression helper. * provide pooling3d for cuda Signed-off-by: Yurii <yurii@skymind.io> * minor lstm rearrangements Signed-off-by: raver119 <raver119@gmail.com> * more of minor lstm rearrangements Signed-off-by: raver119 <raver119@gmail.com> * (bi)dynamic_rnn Signed-off-by: raver119 <raver119@gmail.com> * templates init order Signed-off-by: raver119 <raver119@gmail.com> * Refactored non_max_suppression op. * Added cuda kernel for non_max_suppression. * CPU sort by key/value Signed-off-by: raver119 <raver119@gmail.com> * CPU sort TAD by key/value Signed-off-by: raver119 <raver119@gmail.com> * CPU sort TAD by key/value tests Signed-off-by: raver119 <raver119@gmail.com> * Eliminate compiler error with cuda implementation. * - repaired gradCheck in cuda - provide conv2d_bp for cuda Signed-off-by: Yurii <yurii@skymind.io> * missed signature Signed-off-by: raver119 <raver119@gmail.com> * provide depthwise_conv2d_bp for cuda Signed-off-by: Yurii <yurii@skymind.io> * Implementation of lup helper with cuda kernel. Initial commit. * further work on backprops for convolutions Signed-off-by: Yurii <yurii@skymind.io> * CUDA linear sort by key/val Signed-off-by: raver119 <raver119@gmail.com> * CUDA tad sort by key/val Signed-off-by: raver119 <raver119@gmail.com> * start providing of backprop for pooling2d/3d Signed-off-by: Yurii <yurii@skymind.io> * Added atomicAdd for bool datatype. * dynamic partition concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic partition concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic partition scalar CUDA Signed-off-by: raver119 <raver119@gmail.com> * important comment Signed-off-by: raver119 <raver119@gmail.com> * fix pooling2d/3d backprop helpers Signed-off-by: Yurii <yurii@skymind.io> * Added non-linear test with dynamic_partition. * Improved test for dynamic_partition. * dynamic_partition TAD concept Signed-off-by: raver119 <raver119@gmail.com> * - dynamic_partition TAD CUDA impl - dynamic_partition TAD CPU fix Signed-off-by: raver119 <raver119@gmail.com> * - rewrite cpu code for usampling2d/3d - write cuda code for usampling2d/3d Signed-off-by: Yurii <yurii@skymind.io> * dynamic_stitch CUDA vector case Signed-off-by: raver119 <raver119@gmail.com> * dynamic_stitch CUDA TAD case concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic_stitch CUDA TAD case impl Signed-off-by: raver119 <raver119@gmail.com> * Added tests for dynamic_stitch 3D-4D cases. * minor tests tweaks Signed-off-by: raver119 <raver119@gmail.com> * Fixed type check for dynamic stitch. * min/max bp Signed-off-by: raver119 <raver119@gmail.com> * rewrite code for upsampling2d/3d cpu Signed-off-by: Yurii <yurii@skymind.io> * reduce min/max/norm_max bp Signed-off-by: raver119 <raver119@gmail.com> * lup implementation. Additional enhancements. * provide code for upsamling2d/3d backprop Signed-off-by: Yurii <yurii@skymind.io> * weightedCrossEntropyWithLogits Signed-off-by: raver119 <raver119@gmail.com> * Fixed template math atomicMul for 64bit ints. * Refactored dynamic_partition_bp op. * inverseBroadcast fix Signed-off-by: raver119 <raver119@gmail.com> * DynamicPartitionBP test datatype fixed. * - nd4j_atomicMul Windows fix - cpu/NDArrayLambda.hpp excluded from CUDA Signed-off-by: raver119 <raver119@gmail.com>
2019-06-27 17:37:04 +02:00
dim3 launchDims((int) tadPack.numberOfTads(), 512, 33768);
2019-06-06 14:21:15 +02:00
auto xType = nd4j::ArrayOptions::dataType(xShapeInfo);
Merge master to upstream (#7945) * Shugeo strided slice zeros (#14) * Modified strided_slice op to properly work with empty-like shapes. * Fixed test for reduce_mean with empty-like input. * [WIP] Last merge (#15) * correct logsoftmax looss (#2) * Small SameDiff listener fix (#4) * Various fixes (#6) * #7839 Fix for asXMatrix and tests * #7866 EmbeddingSequenceLayer dtype fix + test * #7856 SameDiff save/load stream methods * #7859 RegressionEvaluation rank 4 fix + tests + axis configuration * EvaluationBinary 3d/4d * More evaluation 3d/4d tests * #7847 Evaluation empty checks * Small test ifx * #7848 Fix median edge case * Improve DL4J samediff layer tests * [WIP] FastText wrapper implemented (#8) * FastText implemented * Some fixes * Fix shapes for wordsNearest * Validation of input vectors * Fixes * Fixed test * Thread tagged * Some tweaks * setContextClassLoader for DeallocatorServiceThread * Numpy format tests (#1) * Various fixes (#11) * #7852 SameDiff gather fix * #7892 SameDiff placeholder to constant conversion * #7890 validate input rank for MLN/CG init methods * Fix broken permute shape calculation * Permute and gather fixes * Tests * #7850 LogSumExp fix + test * Handful of test fixes * Empty arrays with non-scalar shapes (#10) * minor rearrangements for lambdas * empty tensors with non-scalar shapes * numpy empty tensors with non-scalar shapes * few more empty tweaks * Small fixes * conv3d signature update * micro fix in batchnorm mkldnn * Import fixes * Fix * MKL-DNN update * Small fill fix * fill with empty input + test * Fixes * Small error improvement * Fix * one special test * couple of fixes for lstm * Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone * Fixes * FP16 * Unsigned * BFloat16 * Fill op - empty tweaks * - couple of fixes for empty arrays construction - stack updated * strided slice fix * one transform test * provide method for reducing shapeInfo in case of input array is empty * Fixed reduceAlongDimensions to use empty input properly. * couple of broadcast tests * couple of tests broadcast tests + tweak to make them pass * add check of non-empty to methods producing sub-arrays * Fixed reshapeC with zeros in shape. * complete empty check in reduce_... legacy ops * Concat and cumsum/prod * Tweak to empty shape inference on import * add empty check to the rest of reduce legacy ops * one more test * correct typo in evalReduceShapeInfoEmpty * Added tests for reduce_* ops to tests with zero shapes. * few more tests for empty reductions * Fixed strided_slice op with empty case and tests. * one more empty reduction test * Fixed strided_slice test. * add empty check to NDArray::reshapei * infOrMax * empty min/max with infinity tests * made unstack working correctly with empty arrays * few IndexReduce tests + tweaks for empty shapes * add test for empty concat * few tests fixed * Validation fix for reductions on empty shapes * Reverse fix * Reduction shape calc fixes * SameDiff.generateOutputVariable: don't use shape function to determine number of outputs * Range fix * - NDArray constructor updated for scalars/empty arrays - few tests fixed * More fixes * Empty creator fixes * concat fix * concat fix * TF import tests: allow 'both all NaN' and 'both all inf' to pass * Slice, zero fraction, and reshape fixes * transpose, gather * Zero fraction * scalar cast fix * Empty reduction axis support * few more tests fixed * Fixed input checks conforming with TF for concat op and tests. * few tests fixed * matmul scalar shape fix * Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats. * broadcast bool fix * few more tests * few more tests * correct evalReduceShapeInfoEmpty * argmax/argmin + tests * one more empty edge case + one more test * argmax/argmin/realdiv_bp tweaks * empty reshape test + fix * Helper fixes * Small fixes * Gather test fix * Gather test fix * Small fixes * reduce scalar zero values * scalar mean workaround * Remove debug code * along dim mean workaround * one more test * - equalsTo() tweak for empty arrays - one more test * broadcast tweaks * [WIP] Fixing outstanding issues for NLP (#9) * Avoid using not-inited objects * Test fixed. * Redundant method avoided for models like FastText * KMeans++ implementation * KMeans++ implementation * Disable parallel execution * KMeans++ * Tests * Dev branch merge (#16) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Fix some issues on master (#17) * Fix DataVec test issue * Fix issue with dl4j SameDiff output layer * Dtype fix for lambda layers * #7912 BertIterator dtype fix (use float32 not global default) * [WIP] Next set of CUDA stuff (#7) New CUDA implementations and improvements * bad file * Dev branch master merge (#23) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Compatibility of deserialization (#18) Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> * SameDiff: add activation gradient checking support for debugging (#19) * SameDiff gradient checker: first pass on activation gradient checks * Fixes + tests for activation gradient checking * Javadoc * [WIP] Some nd4j data type corrections (#20) * Adjust data type * Set correct Data type. * Size of proper data type. * fix averaged cpu load (#22) * SameDiff ops, TF import and fixes (#24) * CheckNumerics tests + fixes + misc fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fake quant Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * FakeQuantWithMinMaxArgs Signed-off-by: AlexDBlack <blacka101@gmail.com> * CheckNumerics fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix libnd4j ALL_INTS and ALL_FLOATS declaration (uint and bfloat types) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Small fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Javadoc Signed-off-by: AlexDBlack <blacka101@gmail.com> * Exception tweak Signed-off-by: AlexDBlack <blacka101@gmail.com> * fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix for out of scope stack allocated var use Signed-off-by: AlexDBlack <blacka101@gmail.com> * Ignores Signed-off-by: AlexDBlack <blacka101@gmail.com> * Ignore for known failing test (already logged issue) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Merge upstream to fork (#25) * Add thousand-separator commas to TotalParams (#7915) * Add thousand-separator commas to TotalParams The number of parameters can be quite large, and it would help the reading of the summary printout to have the TotalParams column & values at the bottom have thousand-separator-commas in them. * Add thousand-separator commas to MultiLayerNetwork Corresponding change to MultiLayerNetwork Signed-off-by: Jxtps Jxtps <jxtps435@gmail.com> * Update contributing and issue/PR templates (#7934) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix link to AdaDelta paper (#7942) Fix link to AdaDelta paper hosted on matthewzeiler.com Signed-off-by: Jxtps * Fixes, and ignores for known/logged failing issues (#7943) Signed-off-by: AlexDBlack <blacka101@gmail.com> * SameDiff + DL4J/SameDiff: Multiple fixes (#28) * #7919 HDF5 attribute buffer length fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7909 Arbiter constructor exception ux improvements Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7925 RNN output layer length checks Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7939 Add listener for validating inputs are not incorrectly modified Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7939 Integrate NonInplaceValidationListener into tests * #7844 DL4J SameDiff fixes for variable minibatch size * DL4J SameDiff fixes - ensure gradient for input placeholder is available Signed-off-by: AlexDBlack <blacka101@gmail.com> * Tweaks to ExternalErrorsFunction - use placeholders, make more robust * Another fix * More fixes * More SameDiff/DL4J fixes * Scope out scalar array creation in BaseScalarOp * Remove debug code Signed-off-by: AlexDBlack <blacka101@gmail.com> * [WIP] Final dev branch merge (#29) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Compatibility of deserialization (#18) Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> * SameDiff: add activation gradient checking support for debugging (#19) * SameDiff gradient checker: first pass on activation gradient checks * Fixes + tests for activation gradient checking * Javadoc * [WIP] Some nd4j data type corrections (#20) * Adjust data type * Set correct Data type. * Size of proper data type. * fix averaged cpu load (#22) * [WIP] Multiple dataset iterators (#27) * Splitting dataset into arbitrary number * Fixes * Multiple split of iterator * Test * Test * Some fixes * signature change * one more tweak Signed-off-by: raver119 <raver119@gmail.com> * one more test for sequential use of DataSetIteratorSplitter Signed-off-by: raver119 <raver119@gmail.com> * Fixes * Fixes * one more test for Alexander Signed-off-by: raver119 <raver119@gmail.com> * Some fixes * Some fixes * one more test for Alexander Signed-off-by: raver119 <raver119@gmail.com> * minor test fix Signed-off-by: raver119 <raver119@gmail.com> * Some fixes * Some fixes * couple of assertions tweaked Signed-off-by: raver119 <raver119@gmail.com> * MDS splitter test :/ Signed-off-by: raver119 <raver119@gmail.com> * Minor refactoring * Multi dataset * Some fixes * More tests * Small number of test fixes/improvements (failures on CI) (#31) Signed-off-by: AlexDBlack <blacka101@gmail.com> * [WIP] More CUDA stuff (#26) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * LRN BP CUDA Signed-off-by: raver119 <raver119@gmail.com> * less memory Signed-off-by: raver119 <raver119@gmail.com> * Fixed bug with crop_and_resize op helper. * get rid of unnecessary index-calculation dunction Signed-off-by: Yurii <yurii@skymind.io> * Fixed sort with nth_element cuda-based helper. * Refactored nth_element. * Refactored nth_element op and tests. * Modified usage of dim array with sortTad routine. * Refactored main routine of helper for non_max_image_suppression op. * non_max_image_suppression op helper with cuda kernel implementation. Initial revision. * fix vol2col cuda kernel * meh Signed-off-by: raver119 <raver119@gmail.com> * topK concept Signed-off-by: raver119 <raver119@gmail.com> * unsorted topK with scanWitdh of 1 Signed-off-by: raver119 <raver119@gmail.com> * correct vol2col tests * sorted/unsorted topK Signed-off-by: raver119 <raver119@gmail.com> * implementation and fixing col2im/col2vol * Corrected usage flags with input/output with reverse op. * dup is const now Signed-off-by: raver119 <raver119@gmail.com> * percentile op Signed-off-by: raver119 <raver119@gmail.com> * group tests for mapool2d Signed-off-by: Yurii <yurii@skymind.io> * special test for george Signed-off-by: raver119 <raver119@gmail.com> * less threads for sortTad Signed-off-by: raver119 <raver119@gmail.com> * provide conv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * remove auther in sort tad kernel code Signed-off-by: Yurii <yurii@skymind.io> * provide depthwise_conv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * - max_pooling_with_argmax - null check for special use Signed-off-by: raver119 <raver119@gmail.com> * dts cuda Signed-off-by: raver119 <raver119@gmail.com> * provide sconv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * std cuda Signed-off-by: raver119 <raver119@gmail.com> * Refactored non_max_suppression op to conform TF implementation. * Improved suppression helper. * provide pooling3d for cuda Signed-off-by: Yurii <yurii@skymind.io> * minor lstm rearrangements Signed-off-by: raver119 <raver119@gmail.com> * more of minor lstm rearrangements Signed-off-by: raver119 <raver119@gmail.com> * (bi)dynamic_rnn Signed-off-by: raver119 <raver119@gmail.com> * templates init order Signed-off-by: raver119 <raver119@gmail.com> * Refactored non_max_suppression op. * Added cuda kernel for non_max_suppression. * CPU sort by key/value Signed-off-by: raver119 <raver119@gmail.com> * CPU sort TAD by key/value Signed-off-by: raver119 <raver119@gmail.com> * CPU sort TAD by key/value tests Signed-off-by: raver119 <raver119@gmail.com> * Eliminate compiler error with cuda implementation. * - repaired gradCheck in cuda - provide conv2d_bp for cuda Signed-off-by: Yurii <yurii@skymind.io> * missed signature Signed-off-by: raver119 <raver119@gmail.com> * provide depthwise_conv2d_bp for cuda Signed-off-by: Yurii <yurii@skymind.io> * Implementation of lup helper with cuda kernel. Initial commit. * further work on backprops for convolutions Signed-off-by: Yurii <yurii@skymind.io> * CUDA linear sort by key/val Signed-off-by: raver119 <raver119@gmail.com> * CUDA tad sort by key/val Signed-off-by: raver119 <raver119@gmail.com> * start providing of backprop for pooling2d/3d Signed-off-by: Yurii <yurii@skymind.io> * Added atomicAdd for bool datatype. * dynamic partition concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic partition concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic partition scalar CUDA Signed-off-by: raver119 <raver119@gmail.com> * important comment Signed-off-by: raver119 <raver119@gmail.com> * fix pooling2d/3d backprop helpers Signed-off-by: Yurii <yurii@skymind.io> * Added non-linear test with dynamic_partition. * Improved test for dynamic_partition. * dynamic_partition TAD concept Signed-off-by: raver119 <raver119@gmail.com> * - dynamic_partition TAD CUDA impl - dynamic_partition TAD CPU fix Signed-off-by: raver119 <raver119@gmail.com> * - rewrite cpu code for usampling2d/3d - write cuda code for usampling2d/3d Signed-off-by: Yurii <yurii@skymind.io> * dynamic_stitch CUDA vector case Signed-off-by: raver119 <raver119@gmail.com> * dynamic_stitch CUDA TAD case concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic_stitch CUDA TAD case impl Signed-off-by: raver119 <raver119@gmail.com> * Added tests for dynamic_stitch 3D-4D cases. * minor tests tweaks Signed-off-by: raver119 <raver119@gmail.com> * Fixed type check for dynamic stitch. * min/max bp Signed-off-by: raver119 <raver119@gmail.com> * rewrite code for upsampling2d/3d cpu Signed-off-by: Yurii <yurii@skymind.io> * reduce min/max/norm_max bp Signed-off-by: raver119 <raver119@gmail.com> * lup implementation. Additional enhancements. * provide code for upsamling2d/3d backprop Signed-off-by: Yurii <yurii@skymind.io> * weightedCrossEntropyWithLogits Signed-off-by: raver119 <raver119@gmail.com> * Fixed template math atomicMul for 64bit ints. * Refactored dynamic_partition_bp op. * inverseBroadcast fix Signed-off-by: raver119 <raver119@gmail.com> * DynamicPartitionBP test datatype fixed. * - nd4j_atomicMul Windows fix - cpu/NDArrayLambda.hpp excluded from CUDA Signed-off-by: raver119 <raver119@gmail.com>
2019-06-27 17:37:04 +02:00
BUILD_SINGLE_SELECTOR(xType, oesTadGeneric, (launchDims, stream, dX, dXShapeInfo, nullptr, dimensionLength, tadShapeInfo, tadOffsets, descending), LIBND4J_TYPES);
2019-06-06 14:21:15 +02:00
Merge master to upstream (#7945) * Shugeo strided slice zeros (#14) * Modified strided_slice op to properly work with empty-like shapes. * Fixed test for reduce_mean with empty-like input. * [WIP] Last merge (#15) * correct logsoftmax looss (#2) * Small SameDiff listener fix (#4) * Various fixes (#6) * #7839 Fix for asXMatrix and tests * #7866 EmbeddingSequenceLayer dtype fix + test * #7856 SameDiff save/load stream methods * #7859 RegressionEvaluation rank 4 fix + tests + axis configuration * EvaluationBinary 3d/4d * More evaluation 3d/4d tests * #7847 Evaluation empty checks * Small test ifx * #7848 Fix median edge case * Improve DL4J samediff layer tests * [WIP] FastText wrapper implemented (#8) * FastText implemented * Some fixes * Fix shapes for wordsNearest * Validation of input vectors * Fixes * Fixed test * Thread tagged * Some tweaks * setContextClassLoader for DeallocatorServiceThread * Numpy format tests (#1) * Various fixes (#11) * #7852 SameDiff gather fix * #7892 SameDiff placeholder to constant conversion * #7890 validate input rank for MLN/CG init methods * Fix broken permute shape calculation * Permute and gather fixes * Tests * #7850 LogSumExp fix + test * Handful of test fixes * Empty arrays with non-scalar shapes (#10) * minor rearrangements for lambdas * empty tensors with non-scalar shapes * numpy empty tensors with non-scalar shapes * few more empty tweaks * Small fixes * conv3d signature update * micro fix in batchnorm mkldnn * Import fixes * Fix * MKL-DNN update * Small fill fix * fill with empty input + test * Fixes * Small error improvement * Fix * one special test * couple of fixes for lstm * Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone * Fixes * FP16 * Unsigned * BFloat16 * Fill op - empty tweaks * - couple of fixes for empty arrays construction - stack updated * strided slice fix * one transform test * provide method for reducing shapeInfo in case of input array is empty * Fixed reduceAlongDimensions to use empty input properly. * couple of broadcast tests * couple of tests broadcast tests + tweak to make them pass * add check of non-empty to methods producing sub-arrays * Fixed reshapeC with zeros in shape. * complete empty check in reduce_... legacy ops * Concat and cumsum/prod * Tweak to empty shape inference on import * add empty check to the rest of reduce legacy ops * one more test * correct typo in evalReduceShapeInfoEmpty * Added tests for reduce_* ops to tests with zero shapes. * few more tests for empty reductions * Fixed strided_slice op with empty case and tests. * one more empty reduction test * Fixed strided_slice test. * add empty check to NDArray::reshapei * infOrMax * empty min/max with infinity tests * made unstack working correctly with empty arrays * few IndexReduce tests + tweaks for empty shapes * add test for empty concat * few tests fixed * Validation fix for reductions on empty shapes * Reverse fix * Reduction shape calc fixes * SameDiff.generateOutputVariable: don't use shape function to determine number of outputs * Range fix * - NDArray constructor updated for scalars/empty arrays - few tests fixed * More fixes * Empty creator fixes * concat fix * concat fix * TF import tests: allow 'both all NaN' and 'both all inf' to pass * Slice, zero fraction, and reshape fixes * transpose, gather * Zero fraction * scalar cast fix * Empty reduction axis support * few more tests fixed * Fixed input checks conforming with TF for concat op and tests. * few tests fixed * matmul scalar shape fix * Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats. * broadcast bool fix * few more tests * few more tests * correct evalReduceShapeInfoEmpty * argmax/argmin + tests * one more empty edge case + one more test * argmax/argmin/realdiv_bp tweaks * empty reshape test + fix * Helper fixes * Small fixes * Gather test fix * Gather test fix * Small fixes * reduce scalar zero values * scalar mean workaround * Remove debug code * along dim mean workaround * one more test * - equalsTo() tweak for empty arrays - one more test * broadcast tweaks * [WIP] Fixing outstanding issues for NLP (#9) * Avoid using not-inited objects * Test fixed. * Redundant method avoided for models like FastText * KMeans++ implementation * KMeans++ implementation * Disable parallel execution * KMeans++ * Tests * Dev branch merge (#16) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Fix some issues on master (#17) * Fix DataVec test issue * Fix issue with dl4j SameDiff output layer * Dtype fix for lambda layers * #7912 BertIterator dtype fix (use float32 not global default) * [WIP] Next set of CUDA stuff (#7) New CUDA implementations and improvements * bad file * Dev branch master merge (#23) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Compatibility of deserialization (#18) Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> * SameDiff: add activation gradient checking support for debugging (#19) * SameDiff gradient checker: first pass on activation gradient checks * Fixes + tests for activation gradient checking * Javadoc * [WIP] Some nd4j data type corrections (#20) * Adjust data type * Set correct Data type. * Size of proper data type. * fix averaged cpu load (#22) * SameDiff ops, TF import and fixes (#24) * CheckNumerics tests + fixes + misc fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fake quant Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * FakeQuantWithMinMaxArgs Signed-off-by: AlexDBlack <blacka101@gmail.com> * CheckNumerics fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix libnd4j ALL_INTS and ALL_FLOATS declaration (uint and bfloat types) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Small fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Javadoc Signed-off-by: AlexDBlack <blacka101@gmail.com> * Exception tweak Signed-off-by: AlexDBlack <blacka101@gmail.com> * fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix for out of scope stack allocated var use Signed-off-by: AlexDBlack <blacka101@gmail.com> * Ignores Signed-off-by: AlexDBlack <blacka101@gmail.com> * Ignore for known failing test (already logged issue) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Merge upstream to fork (#25) * Add thousand-separator commas to TotalParams (#7915) * Add thousand-separator commas to TotalParams The number of parameters can be quite large, and it would help the reading of the summary printout to have the TotalParams column & values at the bottom have thousand-separator-commas in them. * Add thousand-separator commas to MultiLayerNetwork Corresponding change to MultiLayerNetwork Signed-off-by: Jxtps Jxtps <jxtps435@gmail.com> * Update contributing and issue/PR templates (#7934) Signed-off-by: AlexDBlack <blacka101@gmail.com> * Fix link to AdaDelta paper (#7942) Fix link to AdaDelta paper hosted on matthewzeiler.com Signed-off-by: Jxtps * Fixes, and ignores for known/logged failing issues (#7943) Signed-off-by: AlexDBlack <blacka101@gmail.com> * SameDiff + DL4J/SameDiff: Multiple fixes (#28) * #7919 HDF5 attribute buffer length fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7909 Arbiter constructor exception ux improvements Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7925 RNN output layer length checks Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7939 Add listener for validating inputs are not incorrectly modified Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7939 Integrate NonInplaceValidationListener into tests * #7844 DL4J SameDiff fixes for variable minibatch size * DL4J SameDiff fixes - ensure gradient for input placeholder is available Signed-off-by: AlexDBlack <blacka101@gmail.com> * Tweaks to ExternalErrorsFunction - use placeholders, make more robust * Another fix * More fixes * More SameDiff/DL4J fixes * Scope out scalar array creation in BaseScalarOp * Remove debug code Signed-off-by: AlexDBlack <blacka101@gmail.com> * [WIP] Final dev branch merge (#29) * SameDiff: convertDataType and gradient check util improvements (#12) * GradCheck util improvements * StopGradient constructor + test * SameDiff: Add datatype conversion * Javadoc and add DataType.isNumerical() * Small fix * Fix SameDiff TF import test cases intermediate naming (workaround for bad default) * TFGraphTestAllHelper: check intermediates in execution order * Add missing debug listener * [WIP] lstmBlock fix + other changes (#13) - fixes lstmBlock issue - changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer - CheckNumerics op - fixes for ReduceBool IsInfOrNan & IsFinite * Small test fix * CheckNumerics op wrapper * Compatibility of deserialization (#18) Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> * SameDiff: add activation gradient checking support for debugging (#19) * SameDiff gradient checker: first pass on activation gradient checks * Fixes + tests for activation gradient checking * Javadoc * [WIP] Some nd4j data type corrections (#20) * Adjust data type * Set correct Data type. * Size of proper data type. * fix averaged cpu load (#22) * [WIP] Multiple dataset iterators (#27) * Splitting dataset into arbitrary number * Fixes * Multiple split of iterator * Test * Test * Some fixes * signature change * one more tweak Signed-off-by: raver119 <raver119@gmail.com> * one more test for sequential use of DataSetIteratorSplitter Signed-off-by: raver119 <raver119@gmail.com> * Fixes * Fixes * one more test for Alexander Signed-off-by: raver119 <raver119@gmail.com> * Some fixes * Some fixes * one more test for Alexander Signed-off-by: raver119 <raver119@gmail.com> * minor test fix Signed-off-by: raver119 <raver119@gmail.com> * Some fixes * Some fixes * couple of assertions tweaked Signed-off-by: raver119 <raver119@gmail.com> * MDS splitter test :/ Signed-off-by: raver119 <raver119@gmail.com> * Minor refactoring * Multi dataset * Some fixes * More tests * Small number of test fixes/improvements (failures on CI) (#31) Signed-off-by: AlexDBlack <blacka101@gmail.com> * [WIP] More CUDA stuff (#26) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * LRN BP CUDA Signed-off-by: raver119 <raver119@gmail.com> * less memory Signed-off-by: raver119 <raver119@gmail.com> * Fixed bug with crop_and_resize op helper. * get rid of unnecessary index-calculation dunction Signed-off-by: Yurii <yurii@skymind.io> * Fixed sort with nth_element cuda-based helper. * Refactored nth_element. * Refactored nth_element op and tests. * Modified usage of dim array with sortTad routine. * Refactored main routine of helper for non_max_image_suppression op. * non_max_image_suppression op helper with cuda kernel implementation. Initial revision. * fix vol2col cuda kernel * meh Signed-off-by: raver119 <raver119@gmail.com> * topK concept Signed-off-by: raver119 <raver119@gmail.com> * unsorted topK with scanWitdh of 1 Signed-off-by: raver119 <raver119@gmail.com> * correct vol2col tests * sorted/unsorted topK Signed-off-by: raver119 <raver119@gmail.com> * implementation and fixing col2im/col2vol * Corrected usage flags with input/output with reverse op. * dup is const now Signed-off-by: raver119 <raver119@gmail.com> * percentile op Signed-off-by: raver119 <raver119@gmail.com> * group tests for mapool2d Signed-off-by: Yurii <yurii@skymind.io> * special test for george Signed-off-by: raver119 <raver119@gmail.com> * less threads for sortTad Signed-off-by: raver119 <raver119@gmail.com> * provide conv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * remove auther in sort tad kernel code Signed-off-by: Yurii <yurii@skymind.io> * provide depthwise_conv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * - max_pooling_with_argmax - null check for special use Signed-off-by: raver119 <raver119@gmail.com> * dts cuda Signed-off-by: raver119 <raver119@gmail.com> * provide sconv2d for cuda Signed-off-by: Yurii <yurii@skymind.io> * std cuda Signed-off-by: raver119 <raver119@gmail.com> * Refactored non_max_suppression op to conform TF implementation. * Improved suppression helper. * provide pooling3d for cuda Signed-off-by: Yurii <yurii@skymind.io> * minor lstm rearrangements Signed-off-by: raver119 <raver119@gmail.com> * more of minor lstm rearrangements Signed-off-by: raver119 <raver119@gmail.com> * (bi)dynamic_rnn Signed-off-by: raver119 <raver119@gmail.com> * templates init order Signed-off-by: raver119 <raver119@gmail.com> * Refactored non_max_suppression op. * Added cuda kernel for non_max_suppression. * CPU sort by key/value Signed-off-by: raver119 <raver119@gmail.com> * CPU sort TAD by key/value Signed-off-by: raver119 <raver119@gmail.com> * CPU sort TAD by key/value tests Signed-off-by: raver119 <raver119@gmail.com> * Eliminate compiler error with cuda implementation. * - repaired gradCheck in cuda - provide conv2d_bp for cuda Signed-off-by: Yurii <yurii@skymind.io> * missed signature Signed-off-by: raver119 <raver119@gmail.com> * provide depthwise_conv2d_bp for cuda Signed-off-by: Yurii <yurii@skymind.io> * Implementation of lup helper with cuda kernel. Initial commit. * further work on backprops for convolutions Signed-off-by: Yurii <yurii@skymind.io> * CUDA linear sort by key/val Signed-off-by: raver119 <raver119@gmail.com> * CUDA tad sort by key/val Signed-off-by: raver119 <raver119@gmail.com> * start providing of backprop for pooling2d/3d Signed-off-by: Yurii <yurii@skymind.io> * Added atomicAdd for bool datatype. * dynamic partition concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic partition concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic partition scalar CUDA Signed-off-by: raver119 <raver119@gmail.com> * important comment Signed-off-by: raver119 <raver119@gmail.com> * fix pooling2d/3d backprop helpers Signed-off-by: Yurii <yurii@skymind.io> * Added non-linear test with dynamic_partition. * Improved test for dynamic_partition. * dynamic_partition TAD concept Signed-off-by: raver119 <raver119@gmail.com> * - dynamic_partition TAD CUDA impl - dynamic_partition TAD CPU fix Signed-off-by: raver119 <raver119@gmail.com> * - rewrite cpu code for usampling2d/3d - write cuda code for usampling2d/3d Signed-off-by: Yurii <yurii@skymind.io> * dynamic_stitch CUDA vector case Signed-off-by: raver119 <raver119@gmail.com> * dynamic_stitch CUDA TAD case concept Signed-off-by: raver119 <raver119@gmail.com> * dynamic_stitch CUDA TAD case impl Signed-off-by: raver119 <raver119@gmail.com> * Added tests for dynamic_stitch 3D-4D cases. * minor tests tweaks Signed-off-by: raver119 <raver119@gmail.com> * Fixed type check for dynamic stitch. * min/max bp Signed-off-by: raver119 <raver119@gmail.com> * rewrite code for upsampling2d/3d cpu Signed-off-by: Yurii <yurii@skymind.io> * reduce min/max/norm_max bp Signed-off-by: raver119 <raver119@gmail.com> * lup implementation. Additional enhancements. * provide code for upsamling2d/3d backprop Signed-off-by: Yurii <yurii@skymind.io> * weightedCrossEntropyWithLogits Signed-off-by: raver119 <raver119@gmail.com> * Fixed template math atomicMul for 64bit ints. * Refactored dynamic_partition_bp op. * inverseBroadcast fix Signed-off-by: raver119 <raver119@gmail.com> * DynamicPartitionBP test datatype fixed. * - nd4j_atomicMul Windows fix - cpu/NDArrayLambda.hpp excluded from CUDA Signed-off-by: raver119 <raver119@gmail.com>
2019-06-27 17:37:04 +02:00
nd4j::DebugHelper::checkErrorCode(stream, "sortTad(...) failed");
2019-06-06 14:21:15 +02:00
}
void NativeOps::sortCooIndices(Nd4jPointer *extraPointers, Nd4jLong *indices, void *values, Nd4jLong length, int rank) {
throw std::runtime_error("sortCooIndices:: Not implemented yet");
}
Nd4jLong NativeOps::encodeBitmap(Nd4jPointer *extraPointers,
void *dx, Nd4jLong *hXShapeInfo,
Nd4jLong N,
int *dz,
float threshold) {
cudaStream_t *stream = reinterpret_cast<cudaStream_t *>(extraPointers[1]);
int *resultPointer = reinterpret_cast<int *>(extraPointers[2]);
int *reductionPointer = reinterpret_cast<int *>(extraPointers[3]);
dim3 launchDims(512, 512, 32768);
auto xType = nd4j::ArrayOptions::dataType(hXShapeInfo);
BUILD_SINGLE_SELECTOR(xType, cudaEncodeBitmapGeneric, (launchDims, stream, dx, N, dz, resultPointer, reductionPointer, threshold), LIBND4J_TYPES);
nd4j::DebugHelper::checkErrorCode(stream, "encodeBitmapFloat(...) failed");
Nd4jLong dZ = (Nd4jLong) resultPointer[0];
resultPointer[0] = 0;
return dZ;
}
void NativeOps::decodeBitmap(Nd4jPointer *extraPointers,
void *dx,
Nd4jLong N,
void *dz, Nd4jLong *zShapeInfo) {
cudaStream_t *stream = reinterpret_cast<cudaStream_t *>(extraPointers[1]);
dim3 launchDims(512, 512, 16384);
auto xType = nd4j::ArrayOptions::dataType(zShapeInfo);
BUILD_SINGLE_SELECTOR(xType, cudaDecodeBitmapGeneric, (launchDims, stream, dx, N, dz), LIBND4J_TYPES);
nd4j::DebugHelper::checkErrorCode(stream, "decodeBitmapFloat(...) failed");
}
Nd4jLong* NativeOps::mmapFile(Nd4jPointer *extraPointers, const char *fileName, Nd4jLong length) {
return nullptr;
}
void NativeOps::munmapFile(Nd4jPointer *extraPointers, Nd4jLong* ptrMap, Nd4jLong length) {
}
nd4j::graph::ResultWrapper* NativeOps::executeFlatGraph(Nd4jPointer *extraPointers, Nd4jPointer flatBufferPointer) {
return nd4j::graph::GraphExecutioner::executeFlatBuffer(flatBufferPointer);
}
const char* NativeOps::getAllCustomOps() {
return nd4j::ops::OpRegistrator::getInstance()->getAllCustomOperations();
}
nd4j::ShapeList* _calculateOutputShapes(Nd4jPointer* extraPointers, nd4j::ops::DeclarableOp* op, Nd4jPointer* inputBuffers, Nd4jPointer* inputShapes, int numInputShapes, double* tArgs, int numTArgs, Nd4jLong *iArgs, int numIArgs, bool *bArgs, int numBArgs) {
nd4j::graph::VariableSpace varSpace;
Context block(2, &varSpace);
nd4j::ShapeList inShapes;
for (int e = 0; e < numIArgs; e++)
block.getIArguments()->push_back(iArgs[e]);
for (int e = 0; e < numTArgs; e++)
block.getTArguments()->push_back(tArgs[e]);
for (int e = 0; e < numBArgs; e++)
block.getBArguments()->push_back(bArgs[e]);
for (int e = 0; e < numInputShapes; e++) {
auto shape_ = reinterpret_cast<Nd4jLong *>(inputShapes[e]);
// we shouldn't copy buffer if that's empty array
void *buffer_ = nd4j::ArrayOptions::arrayType(shape_) == ArrayType::EMPTY ? nullptr : inputBuffers[e];
[WIP] more CUDA stuff (#57) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * Added gradcheck test for dynamic_partition_bp op. * - implementation of dilation op (cpu and cuda) Signed-off-by: Yurii <yurii@skymind.io> * Fixed broadcast_dynamic_shape 1D case and tests. * Fixed usage of default integer arguments. * Fixed dynamic_partition_bp op and tests. * Eliminated test with grad check for dynamic_partition_bp op. * start working on cuda svd - porting available corresponding api from cuSOLVER library Signed-off-by: Yurii <yurii@skymind.io> * provide prelu_bp Signed-off-by: Yurii <yurii@skymind.io> * - provide gruCell_bp (old version ??) Signed-off-by: Yurii <yurii@skymind.io> * - polishing cumsum_bp and cumprod_bp tests Signed-off-by: Yurii <yurii@skymind.io> * provide sparseSoftmaxCrossEntropyWithLogits and sparseSoftmaxCrossEntropyWithLogits_grad Signed-off-by: Yurii <yurii@skymind.io> * Fixed atomicMul with float input/output * implementation of cuda kernel for triu_bp operation Signed-off-by: Yurii <yurii@skymind.io> * Refactored lup helper to add parrallel computing. * cusolver libraries Signed-off-by: raver119 <raver119@gmail.com> * uncomment cuSolver APIs in svd.cu Signed-off-by: Yurii <yurii@skymind.io> * cusolver var Signed-off-by: raver119 <raver119@gmail.com> * - further work on cuSolver svd Signed-off-by: Yurii <yurii@skymind.io> * Implement usage of cuda solver to LUP decomposition. * - correct naames in lup functions Signed-off-by: Yurii <yurii@skymind.io> * correct svdQR cuda Signed-off-by: Yurii <yurii@skymind.io> * - provide transpositions of input matrices in case of c order in svdCudaQR Signed-off-by: Yurii <yurii@skymind.io> * Fixed implementation issues with LUP usign cuda solver. * Implementation of matrix_determinant helper with cuda kernels. Working revision. * Implemented log_matrix_determinant helper with cuda kernels. * - implementation of batched cuda svd Signed-off-by: Yurii <yurii@skymind.io> * Refactored cholesky helper and implementation of cuda solver cholesky batch. * - implementation of cuda kernel for tile bp Signed-off-by: Yurii <yurii@skymind.io> * Implementation of cholesky and logdet with cuda kernels. * - implementation of cuda kernel for sru_bidirectional Signed-off-by: Yurii <yurii@skymind.io> * Fixed cholesky helper. * Cholesky op helper implementation. Working double-based cublas implementation. * bad import excluded Signed-off-by: raver119 <raver119@gmail.com> * Finished with cuda implementation of cholesky helper and tests. * - implementation of cuda kernel for sru_bidirectional_backprop operation Signed-off-by: Yurii <yurii@skymind.io> * Implementation of matrix_inverse op helper with cuda kernels. The first revision. * - start working on gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * Implementation of matrix_inverse helper. * - further work on new gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * cuBLAS related fixes Signed-off-by: raver119 <raver119@gmail.com> * calculateOutputShapes() now passes device buffers as well Signed-off-by: raver119 <raver119@gmail.com> * special concat/average/accumulate init host pointers now Signed-off-by: raver119 <raver119@gmail.com> * few more tweaks Signed-off-by: raver119 <raver119@gmail.com> * additional CudaDataBufferFactory signatures certain for data types Signed-off-by: raver119 <raver119@gmail.com> * cuSolver host buffer Signed-off-by: raver119 <raver119@gmail.com> * buffer to buffer memcpy host ptr allocation Signed-off-by: raver119 <raver119@gmail.com>
2019-07-12 10:51:51 +02:00
void *bufferD_ = nd4j::ArrayOptions::arrayType(shape_) == ArrayType::EMPTY ? nullptr : inputBuffers[e + numInputShapes];
2019-06-06 14:21:15 +02:00
[WIP] more CUDA stuff (#57) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * Added gradcheck test for dynamic_partition_bp op. * - implementation of dilation op (cpu and cuda) Signed-off-by: Yurii <yurii@skymind.io> * Fixed broadcast_dynamic_shape 1D case and tests. * Fixed usage of default integer arguments. * Fixed dynamic_partition_bp op and tests. * Eliminated test with grad check for dynamic_partition_bp op. * start working on cuda svd - porting available corresponding api from cuSOLVER library Signed-off-by: Yurii <yurii@skymind.io> * provide prelu_bp Signed-off-by: Yurii <yurii@skymind.io> * - provide gruCell_bp (old version ??) Signed-off-by: Yurii <yurii@skymind.io> * - polishing cumsum_bp and cumprod_bp tests Signed-off-by: Yurii <yurii@skymind.io> * provide sparseSoftmaxCrossEntropyWithLogits and sparseSoftmaxCrossEntropyWithLogits_grad Signed-off-by: Yurii <yurii@skymind.io> * Fixed atomicMul with float input/output * implementation of cuda kernel for triu_bp operation Signed-off-by: Yurii <yurii@skymind.io> * Refactored lup helper to add parrallel computing. * cusolver libraries Signed-off-by: raver119 <raver119@gmail.com> * uncomment cuSolver APIs in svd.cu Signed-off-by: Yurii <yurii@skymind.io> * cusolver var Signed-off-by: raver119 <raver119@gmail.com> * - further work on cuSolver svd Signed-off-by: Yurii <yurii@skymind.io> * Implement usage of cuda solver to LUP decomposition. * - correct naames in lup functions Signed-off-by: Yurii <yurii@skymind.io> * correct svdQR cuda Signed-off-by: Yurii <yurii@skymind.io> * - provide transpositions of input matrices in case of c order in svdCudaQR Signed-off-by: Yurii <yurii@skymind.io> * Fixed implementation issues with LUP usign cuda solver. * Implementation of matrix_determinant helper with cuda kernels. Working revision. * Implemented log_matrix_determinant helper with cuda kernels. * - implementation of batched cuda svd Signed-off-by: Yurii <yurii@skymind.io> * Refactored cholesky helper and implementation of cuda solver cholesky batch. * - implementation of cuda kernel for tile bp Signed-off-by: Yurii <yurii@skymind.io> * Implementation of cholesky and logdet with cuda kernels. * - implementation of cuda kernel for sru_bidirectional Signed-off-by: Yurii <yurii@skymind.io> * Fixed cholesky helper. * Cholesky op helper implementation. Working double-based cublas implementation. * bad import excluded Signed-off-by: raver119 <raver119@gmail.com> * Finished with cuda implementation of cholesky helper and tests. * - implementation of cuda kernel for sru_bidirectional_backprop operation Signed-off-by: Yurii <yurii@skymind.io> * Implementation of matrix_inverse op helper with cuda kernels. The first revision. * - start working on gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * Implementation of matrix_inverse helper. * - further work on new gruCell_bp Signed-off-by: Yurii <yurii@skymind.io> * cuBLAS related fixes Signed-off-by: raver119 <raver119@gmail.com> * calculateOutputShapes() now passes device buffers as well Signed-off-by: raver119 <raver119@gmail.com> * special concat/average/accumulate init host pointers now Signed-off-by: raver119 <raver119@gmail.com> * few more tweaks Signed-off-by: raver119 <raver119@gmail.com> * additional CudaDataBufferFactory signatures certain for data types Signed-off-by: raver119 <raver119@gmail.com> * cuSolver host buffer Signed-off-by: raver119 <raver119@gmail.com> * buffer to buffer memcpy host ptr allocation Signed-off-by: raver119 <raver119@gmail.com>
2019-07-12 10:51:51 +02:00
auto array = new nd4j::NDArray(buffer_, bufferD_, shape_);
2019-06-06 14:21:15 +02:00
// block should contain references to proper variable
varSpace.putVariable(1, e, array);
block.pickInput(1, e);
inShapes.push_back(shape_);
}
auto shapeList = op->calculateOutputShape(&inShapes, block);
if (varSpace.launchContext()->getWorkspace() != nullptr)
shapeList->detach();
return shapeList;
}
nd4j::ShapeList* NativeOps::calculateOutputShapes(Nd4jPointer* extraPointers, Nd4jLong hash, Nd4jPointer* inputBuffers, Nd4jPointer* inputShapes, int numInputShapes, double* tArgs, int numTArgs, Nd4jLong *iArgs, int numIArgs, bool *bArgs, int numBArgs) {
auto op = nd4j::ops::OpRegistrator::getInstance()->getOperation(hash);
return _calculateOutputShapes(extraPointers, op, inputBuffers, inputShapes, numInputShapes, tArgs, numTArgs, iArgs, numIArgs, bArgs, numBArgs);
}
nd4j::ShapeList* _calculateOutputShapes(Nd4jPointer* extraPointers, nd4j::ops::DeclarableOp* op, Nd4jPointer* inputShapes, int numInputShapes, double* tArgs, int numTArgs, Nd4jLong *iArgs, int numIArgs) {
Context block(1);
nd4j::ShapeList inShapes;
for (int e = 0; e < numIArgs; e++)
block.getIArguments()->push_back(iArgs[e]);
for (int e = 0; e < numTArgs; e++)
block.getTArguments()->push_back(tArgs[e]);
for (int e = 0; e < numInputShapes; e++)
inShapes.push_back(reinterpret_cast<Nd4jLong *>(inputShapes[e]));
auto shapeList = op->calculateOutputShape(&inShapes, block);
return shapeList;
}
nd4j::ShapeList* NativeOps::calculateOutputShapes(Nd4jPointer* extraPointers, Nd4jLong hash, Nd4jPointer* inputShapes, int numInputShapes, double* tArgs, int numTArgs, Nd4jLong *iArgs, int numIArgs) {
auto op = nd4j::ops::OpRegistrator::getInstance()->getOperation(hash);
return _calculateOutputShapes(extraPointers, op, inputShapes, numInputShapes, tArgs, numTArgs, iArgs, numIArgs);
}
static FORCEINLINE Nd4jStatus realExec(nd4j::ops::DeclarableOp* op, Nd4jPointer* extraPointers, Nd4jLong hash, Nd4jPointer* inputBuffers, Nd4jPointer* inputShapes, int numInputs, Nd4jPointer* outputBuffers, Nd4jPointer* outputShapes, int numOutputs, double* tArgs, int numTArgs, Nd4jLong *iArgs, int numIArgs, bool* bArgs, int numBArgs, bool isInplace) {
if (op == nullptr)
nd4j_printf("Can't find requested operation: [%lld]\n", hash);
// we're using the same fake nodeId everywhere here
std::vector<nd4j::NDArray*> inputs(numInputs);
std::vector<nd4j::NDArray*> outputs(numOutputs);
std::vector<double> ttArgs(numTArgs);
std::vector<bool> bbArgs(numBArgs);
std::vector<Nd4jLong> iiArgs(numIArgs);
// filling block now with inputs
for (int e = 0; e < numInputs; e++) {
auto shape = reinterpret_cast<Nd4jLong *>(inputShapes[e]);
void *buffer = nd4j::ArrayOptions::arrayType(shape) == ArrayType::EMPTY ? nullptr : inputBuffers[e];
void *bufferD = nd4j::ArrayOptions::arrayType(shape) == ArrayType::EMPTY ? nullptr : inputBuffers[e + numInputs];
inputs[e] = new nd4j::NDArray(buffer, bufferD, shape);
}
// if not inplace - transferring output arrays
if (!isInplace)
for (int e = 0; e < numOutputs; e++) {
// we want to keep original output shape intact
auto shape = shape::copyShape(reinterpret_cast<Nd4jLong *>(outputShapes[e]));
void *buffer = nd4j::ArrayOptions::arrayType(shape) == ArrayType::EMPTY ? nullptr : outputBuffers[e];
void *bufferD = nd4j::ArrayOptions::arrayType(shape) == ArrayType::EMPTY ? nullptr : outputBuffers[e + numOutputs];
// FIXME: revisit this.
bool canNullify = true;
for (int i = 0; i < numInputs; i++) {
void *ibuffer = nd4j::ArrayOptions::arrayType(shape) == ArrayType::EMPTY ? nullptr : inputBuffers[i];
if (ibuffer == buffer) {
canNullify = false;
break;
}
}
if (canNullify)
memset((uint8_t *) buffer, '\0', shape::length(shape) * DataTypeUtils::sizeOfElement(ArrayOptions::dataType(shape)));
auto array = new nd4j::NDArray(buffer, bufferD, shape);
outputs[e] = array;
}
for (int e = 0; e < numIArgs; e++)
iiArgs[e] = iArgs[e];
for (int e = 0; e < numTArgs; e++)
ttArgs[e] = tArgs[e];
for (int e = 0; e < numBArgs; e++)
bbArgs[e] = bArgs[e];
// hypothetically at this point we have everything filled
auto dZ = op->execute(inputs, outputs, ttArgs, iiArgs, bbArgs, isInplace);
//auto dZ = op->execute(inputs, ttArgs, iiArgs, isInplace);
if (!isInplace)
for (int e = 0; e < numOutputs; e++) {
//shape::printShapeInfoLinear("JVM output shape", (int *) outputShapes[e]);
//shape::printShapeInfoLinear("C++ output shape", (int *) outputs[e]->shapeInfo());
//outputs[e]->printIndexedBuffer("C++ raw output");
//outputs[e]->printBuffer("C++ indexed output");
if (outputs[e]->ordering() != shape::order(reinterpret_cast<Nd4jLong *>(outputShapes[e])))
outputs[e]->streamline(shape::order(reinterpret_cast<Nd4jLong *>(outputShapes[e])));
}
for (auto v: inputs)
delete v;
for (auto v: outputs)
delete v;
return Status::OK();
}
int NativeOps::execCustomOp(Nd4jPointer* extraPointers, Nd4jLong hash, Nd4jPointer* inputBuffers, Nd4jPointer* inputShapes, int numInputs, Nd4jPointer* outputBuffers, Nd4jPointer* outputShapes, int numOutputs, double* tArgs, int numTArgs, Nd4jLong *iArgs, int numIArgs, bool* bArgs, int numBArgs, bool isInplace) {
auto op = nd4j::ops::OpRegistrator::getInstance()->getOperation(hash);
return realExec(op, extraPointers, hash, inputBuffers, inputShapes, numInputs, outputBuffers, outputShapes, numOutputs, tArgs, numTArgs, iArgs, numIArgs, bArgs, numBArgs, isInplace);
}
int NativeOps::execCustomOp(Nd4jPointer* extraPointers, Nd4jLong hash, Nd4jPointer opContext) {
auto op = nd4j::ops::OpRegistrator::getInstance()->getOperation(hash);
auto context = reinterpret_cast<Context*>(opContext);
auto result = op->execute(context);
// FIXME: remove once CUDA backend is 100% ready
for (auto v:context->fastpath_in()) {
v->makeBothActual();
}
for (auto v:context->fastpath_out()) {
v->makeBothActual();
}
return result;
}
int NativeOps::registerGraph(Nd4jPointer *extraPointers, Nd4jLong graphId, Nd4jPointer flatBufferPointer) {
auto graph = nd4j::graph::GraphExecutioner::importFromFlatPointer(flatBufferPointer);
nd4j::graph::GraphHolder::getInstance()->registerGraph(graphId, graph);
return ND4J_STATUS_OK;
}
static VariablesSet* executeStoredGraphT(Nd4jPointer *extraPointers, Nd4jLong graphId, Nd4jPointer *inputBuffers, Nd4jPointer *inputShapes, int* inputIndices, int numInputs) {
auto graph = nd4j::graph::GraphHolder::getInstance()->pullGraph(graphId);
auto varSpace = graph->getVariableSpace()->clone();
std::vector<nd4j::NDArray*> handles;
for (int e = 0; e < numInputs; e++) {
auto idx = inputIndices[e];
// we'll delete this array later, together with cloned VariableSpace
auto array = new nd4j::NDArray(inputBuffers[e], reinterpret_cast<Nd4jLong *>(inputShapes[e]));
handles.emplace_back(array);
if (varSpace->hasVariable(idx)) {
auto var = varSpace->getVariable(idx);
if (var->hasNDArray())
delete var->getNDArray();
var->setNDArray(array);
} else
varSpace->putVariable(idx, array);
}
auto dZ = nd4j::graph::GraphExecutioner::execute(graph, varSpace);
auto varSet = new nd4j::graph::VariablesSet(dZ);
if (dZ == ND4J_STATUS_OK) {
// pull back results, and provide them
auto outputs = graph->fetchOutputs();
for (int e = 0; e < outputs->size(); e++) {
// we're only getting variable ID/Index from original grap. values will be taken from cloned workspace
std::pair<int, int> varId(outputs->at(e)->id(), outputs->at(e)->index());
auto var = varSpace->getVariable(varId);
varSet->push_back(var->clone());
}
delete outputs;
}
delete varSpace;
return varSet;
}
VariablesSet* NativeOps::executeStoredGraph(Nd4jPointer *extraPointers, Nd4jLong graphId, Nd4jPointer *inputBuffers, Nd4jPointer *inputShapes, int* inputIndices, int numInputs) {
return executeStoredGraphT(extraPointers, graphId, inputBuffers, inputShapes, inputIndices, numInputs);
}
int NativeOps::unregisterGraph(Nd4jPointer *extraPointers, Nd4jLong graphId) {
nd4j::graph::GraphHolder::getInstance()->dropGraphAny(graphId);
return ND4J_STATUS_OK;
}
void NativeOps::deletePointerArray(Nd4jPointer pointer) {
Nd4jPointer *ptr = reinterpret_cast<Nd4jPointer *>(pointer);
delete[] ptr;
}
void NativeOps::deleteCharArray(Nd4jPointer pointer) {
auto ptr = reinterpret_cast<char *>(pointer);
delete[] ptr;
}
2019-06-06 14:21:15 +02:00
void NativeOps::deleteIntArray(Nd4jPointer pointer) {
auto ptr = reinterpret_cast<int *>(pointer);
delete[] ptr;
}
void NativeOps::deleteLongArray(Nd4jPointer pointer) {
auto ptr = reinterpret_cast<Nd4jLong *>(pointer);
delete[] ptr;
}
template <typename T>
static void deleteVariablesSetT(Nd4jPointer pointer) {
nd4j::graph::VariablesSet* ptr = reinterpret_cast<nd4j::graph::VariablesSet*>(pointer);
delete ptr;
}
void NativeOps::deleteVariablesSet(Nd4jPointer pointer) {
deleteVariablesSetT<double>(pointer);
}
void NativeOps::deleteShapeList(Nd4jPointer shapeList) {
nd4j::ShapeList* list = reinterpret_cast<nd4j::ShapeList*>(shapeList);
//list->destroy();
delete list;
}
const char* NativeOps::getAllOperations() {
return nd4j::OpTracker::getInstance()->exportOperations();
}
Nd4jPointer NativeOps::getGraphState(Nd4jLong id) {
return (Nd4jPointer) new nd4j::graph::GraphState(id);
}
void NativeOps::deleteGraphState(Nd4jPointer state) {
auto stateP = reinterpret_cast<nd4j::graph::GraphState*>(state);
delete stateP;
}
Nd4jStatus execCustomOpWithScope(Nd4jPointer *extraPointers, nd4j::graph::GraphState *state, Nd4jLong opHash, Nd4jLong *scopes, int numScopes, Nd4jPointer *inputBuffers, Nd4jPointer *inputShapes, int numInputs, Nd4jPointer *outputBuffers, Nd4jPointer *outputShapes, int numOutputs) {
/**
* That's basically exec, with VariableSpace provided in GraphState:
* depending on operation (i.e. while of if), different logic executors could be used
*/
auto graph = state->graph();
auto varSpace = state->variableSpace();
// Node is dynamically created, and has nothing beyond it: only inputs and outputs
// this node has id of 0, and inputs are
Node node(OpType_LOGIC, opHash, 0);
// mapping inputs
for (int e = 0; e < numInputs; e++) {
auto buffer = inputBuffers[e];
auto shapeInfo = reinterpret_cast<Nd4jLong *>(inputShapes[e]);
auto array = new nd4j::NDArray(buffer, shapeInfo, varSpace->launchContext());
// now we just put array to VarSpace
varSpace->putVariable(0, e, array);
node.pickInput(0, e);
}
// mapping scopes
for (int e = 0; e < numScopes; e++) {
// we should check scope existence in GraphState/Graph
int scopeId = (int) scopes[e];
if (!state->hasScope(scopeId)) {
// nd4j_printf("execCustomOpWithScope: referenced scope [%i] doesn't exist\n", scopeId);
return Status::THROW();
}
node.pickInput(scopeId, 0);
}
auto dZ = LogicExecutor::processNode(graph, &node);
if (dZ != Status::OK())
return dZ;
// mapping outputs
for (int e = 0; e < numOutputs; e++) {
auto buffer = outputBuffers[e];
auto shapeInfo = reinterpret_cast<Nd4jLong *>(outputShapes[e]);
NDArray array(buffer, shapeInfo, varSpace->launchContext());
// now we just put array to VarSpace to the same ID
//varSpace->putVariable(0, e, array);
auto t = varSpace->getVariable(0, e)->getNDArray();
array.assign(t);
}
// removing input variables
for (int e = 0; e < numInputs; e++) {
varSpace->dropVariable(0, e);
}
// after some bla-bla-bla we should have Graph and Node for current op
return Status::OK();
}
Nd4jStatus NativeOps::execCustomOpWithScope(Nd4jPointer *extraPointers, Nd4jPointer state, Nd4jLong opHash, Nd4jLong *scopes, int numScopes, Nd4jPointer *inputBuffers, Nd4jPointer *inputShapes, int numInputs, Nd4jPointer *outputBuffers, Nd4jPointer *outputShapes, int numOutputs) {
return execCustomOpWithScope(extraPointers, reinterpret_cast<nd4j::graph::GraphState*>(state), opHash, scopes, numScopes, inputBuffers, inputShapes, numInputs, outputBuffers, outputShapes, numOutputs);
}
void NativeOps::deleteResultWrapper(Nd4jPointer ptr) {
// just 0 room for compiler s@!t
auto p = reinterpret_cast<nd4j::graph::ResultWrapper *>(ptr);
delete p;
}
int NativeOps::estimateThreshold(Nd4jPointer *extraPointers, Nd4jPointer dX, Nd4jLong *dXShapeInfo, int N, float threshold) {
throw std::runtime_error("estimateThreshold: Not implemented yet");
}
/*
* TypeDef:
* void convertTypes(Nd4jPointer *extras, int srcType, Nd4jPointer dX, long N, int dstType, Nd4jPointer dZ);
*/
void NativeOps::convertTypes(Nd4jPointer *extras, int srcType, Nd4jPointer dX, Nd4jLong N, int dstType, Nd4jPointer dZ) {
auto dx = reinterpret_cast<void *>(dX);
auto dz = reinterpret_cast<void *>(dZ);
if (srcType == ND4J_FLOAT8) {
if (dstType == ND4J_FLOAT8) {
// convertKernel<double, nd4j::float8>(extras, dx, N, dz);
} else if (dstType == ND4J_INT8) {
//nd4j::TypeCast::convertGenericCuda<nd4j::float8, nd4j::int8>(extras, dx, N, dz);
} else if (dstType == ND4J_UINT8) {
//nd4j::TypeCast::convertGenericCuda<nd4j::float8, nd4j::uint8>(extras, dx, N, dz);
} else if (dstType == ND4J_FLOAT16) {
//nd4j::TypeCast::convertGenericCuda<nd4j::float8, float16>(extras, dx, N, dz);
} else if (dstType == ND4J_INT16) {
//nd4j::TypeCast::convertGenericCuda<nd4j::float8, nd4j::int16>(extras, dx, N, dz);
} else if (dstType == ND4J_UINT16) {
//nd4j::TypeCast::convertGenericCuda<nd4j::float8, nd4j::uint16>(extras, dx, N, dz);
} else if (dstType == ND4J_FLOAT24) {
} else if (dstType == ND4J_FLOAT32) {
//nd4j::TypeCast::convertGenericCuda<nd4j::float8, float>(extras, dx, N, dz);
} else if (dstType == ND4J_DOUBLE) {
//nd4j::TypeCast::convertGenericCuda<nd4j::float8, double>(extras, dx, N, dz);
} else {
nd4j_printf("Unsupported types conversion: [%i] -> [%i]\n", srcType, dstType);
}
} else if (srcType == ND4J_INT8) {
if (dstType == ND4J_FLOAT8) {
//nd4j::TypeCast::convertGenericCuda<nd4j::int8, nd4j::float8>(extras, dx, N, dz);
} else if (dstType == ND4J_INT8) {
//convertKernel<nd4j::int8, nd4j::int8>(extras, dx, N, dz);
} else if (dstType == ND4J_UINT8) {
nd4j::TypeCast::convertGenericCuda<int8_t, uint8_t>(extras, dx, N, dz);
} else if (dstType == ND4J_FLOAT16) {
nd4j::TypeCast::convertGenericCuda<int8_t, float16>(extras, dx, N, dz);
} else if (dstType == ND4J_INT16) {
nd4j::TypeCast::convertGenericCuda<int8_t, int16_t>(extras, dx, N, dz);
} else if (dstType == ND4J_UINT16) {
nd4j::TypeCast::convertGenericCuda<int8_t, uint16_t>(extras, dx, N, dz);
} else if (dstType == ND4J_FLOAT24) {
// TODO: eventually we might want to add it
} else if (dstType == ND4J_FLOAT32) {
nd4j::TypeCast::convertGenericCuda<int8_t, float>(extras, dx, N, dz);
} else if (dstType == ND4J_DOUBLE) {
nd4j::TypeCast::convertGenericCuda<int8_t, double>(extras, dx, N, dz);
} else {
nd4j_printf("Unsupported types conversion: [%i] -> [%i]\n", srcType, dstType);
}
} else if (srcType == ND4J_UINT8) {
if (dstType == ND4J_FLOAT8) {
//nd4j::TypeCast::convertGenericCuda<uint8_t, nd4j::float8>(extras, dx, N, dz);
} else if (dstType == ND4J_INT8) {
nd4j::TypeCast::convertGenericCuda<uint8_t, int8_t>(extras, dx, N, dz);
} else if (dstType == ND4J_UINT8) {
nd4j::TypeCast::convertGenericCuda<uint8_t, uint8_t>(extras, dx, N, dz);
} else if (dstType == ND4J_FLOAT16) {
nd4j::TypeCast::convertGenericCuda<uint8_t, float16>(extras, dx, N, dz);
} else if (dstType == ND4J_INT16) {
nd4j::TypeCast::convertGenericCuda<uint8_t, int16_t>(extras, dx, N, dz);
} else if (dstType == ND4J_UINT16) {
nd4j::TypeCast::convertGenericCuda<uint8_t, uint16_t>(extras, dx, N, dz);
} else if (dstType == ND4J_FLOAT24) {
// TODO: still might want to add
} else if (dstType == ND4J_FLOAT32) {
nd4j::TypeCast::convertGenericCuda<uint8_t, float>(extras, dx, N, dz);
} else if (dstType == ND4J_DOUBLE) {
nd4j::TypeCast::convertGenericCuda<uint8_t, double>(extras, dx, N, dz);
} else {
nd4j_printf("Unsupported types conversion: [%i] -> [%i]\n", srcType, dstType);
}
} else if (srcType == ND4J_FLOAT16) {
if (dstType == ND4J_FLOAT8) {
//nd4j::TypeCast::convertGenericCuda<float16, nd4j::float8>(extras, dx, N, dz);
} else if (dstType == ND4J_INT8) {
nd4j::TypeCast::convertGenericCuda<float16, int8_t>(extras, dx, N, dz);
} else if (dstType == ND4J_UINT8) {
nd4j::TypeCast::convertGenericCuda<float16, uint8_t>(extras, dx, N, dz);
} else if (dstType == ND4J_FLOAT16) {
nd4j::TypeCast::convertGenericCuda<float16, float16>(extras, dx, N, dz);
} else if (dstType == ND4J_INT16) {
nd4j::TypeCast::convertGenericCuda<float16, int16_t>(extras, dx, N, dz);
} else if (dstType == ND4J_UINT16) {
nd4j::TypeCast::convertGenericCuda<float16, uint16_t>(extras, dx, N, dz);
} else if (dstType == ND4J_FLOAT24) {
// TODO: .... ^^^
} else if (dstType == ND4J_FLOAT32) {
nd4j::TypeCast::convertGenericCuda<float16, float>(extras, dx, N, dz);
} else if (dstType == ND4J_DOUBLE) {
nd4j::TypeCast::convertGenericCuda<float16, double>(extras, dx, N, dz);
} else if (dstType == ND4J_THRESHOLD) {
//nd4j::convertToThreshold<float16>(nullptr, dx, N, dz);
} else {
nd4j_printf("Unsupported types conversion: [%i] -> [%i]\n", srcType, dstType);
}
} else if (srcType == ND4J_INT16) {
if (dstType == ND4J_FLOAT8) {
//nd4j::TypeCast::convertGenericCuda<int16_t, nd4j::float8>(extras, dx, N, dz);
} else if (dstType == ND4J_INT8) {
nd4j::TypeCast::convertGenericCuda<int16_t, int8_t>(extras, dx, N, dz);
} else if (dstType == ND4J_UINT8) {
nd4j::TypeCast::convertGenericCuda<int16_t, uint8_t>(extras, dx, N, dz);
} else if (dstType == ND4J_FLOAT16) {
nd4j::TypeCast::convertGenericCuda<int16_t, float16>(extras, dx, N, dz);
} else if (dstType == ND4J_INT16) {
nd4j::TypeCast::convertGenericCuda<int16_t, int16_t>(extras, dx, N, dz);
} else if (dstType == ND4J_UINT16) {
nd4j::TypeCast::convertGenericCuda<int16_t, uint16_t>(extras, dx, N, dz);
} else if (dstType == ND4J_FLOAT24) {
// TODO...
} else if (dstType == ND4J_FLOAT32) {
nd4j::TypeCast::convertGenericCuda<int16_t, float>(extras, dx, N, dz);
} else if (dstType == ND4J_DOUBLE) {
nd4j::TypeCast::convertGenericCuda<int16_t, double>(extras, dx, N, dz);
} else {
printf("Unsupported types conversion: [%i] -> [%i]\n", srcType, dstType);
}
} else if (srcType == ND4J_FLOAT24) {
} else if (srcType == ND4J_FLOAT32) {
if (dstType == ND4J_FLOAT8) {
//nd4j::TypeCast::convertGenericCuda<float, nd4j::float8>(extras, dx, N, dz);
} else if (dstType == ND4J_INT8) {
nd4j::TypeCast::convertGenericCuda<float, int8_t>(extras, dx, N, dz);
} else if (dstType == ND4J_UINT8) {
nd4j::TypeCast::convertGenericCuda<float, uint8_t>(extras, dx, N, dz);
} else if (dstType == ND4J_FLOAT16) {
nd4j::TypeCast::convertGenericCuda<float, float16>(extras, dx, N, dz);
} else if (dstType == ND4J_INT16) {
nd4j::TypeCast::convertGenericCuda<float, int16_t>(extras, dx, N, dz);
} else if (dstType == ND4J_UINT16) {
nd4j::TypeCast::convertGenericCuda<float, uint16_t>(extras, dx, N, dz);
} else if (dstType == ND4J_FLOAT24) {
} else if (dstType == ND4J_DOUBLE) {
nd4j::TypeCast::convertGenericCuda<float, double>(extras, dx, N, dz);
} else if (dstType == ND4J_THRESHOLD) {
//nd4j::convertToThreshold<float>(nullptr, dx, N, dz);
} else {
nd4j_printf("Unsupported types conversion: [%i] -> [%i]\n", srcType, dstType);
}
} else if (srcType == ND4J_DOUBLE) {
if (dstType == ND4J_FLOAT8) {
//nd4j::TypeCast::convertGenericCuda<double, nd4j::float8>(extras, dx, N, dz);
} else if (dstType == ND4J_INT8) {
nd4j::TypeCast::convertGenericCuda<double, int8_t>(extras, dx, N, dz);
} else if (dstType == ND4J_UINT8) {
nd4j::TypeCast::convertGenericCuda<double, uint8_t>(extras, dx, N, dz);
} else if (dstType == ND4J_FLOAT16) {
nd4j::TypeCast::convertGenericCuda<double, float16>(extras, dx, N, dz);
} else if (dstType == ND4J_INT16) {
nd4j::TypeCast::convertGenericCuda<double, int16_t>(extras, dx, N, dz);
} else if (dstType == ND4J_UINT16) {
nd4j::TypeCast::convertGenericCuda<double, uint16_t>(extras, dx, N, dz);
} else if (dstType == ND4J_FLOAT24) {
} else if (dstType == ND4J_FLOAT32) {
nd4j::TypeCast::convertGenericCuda<double, float>(extras, dx, N, dz);
} else if (dstType == ND4J_DOUBLE) {
//
} else if (dstType == ND4J_THRESHOLD) {
//nd4j::convertToThreshold<double>(nullptr, dx, N, dz);
} else {
nd4j_printf("Unsupported types conversion: [%i] -> [%i]\n", srcType, dstType);
}
} else if (srcType == ND4J_THRESHOLD) {
if (dstType == ND4J_FLOAT16) {
//nd4j::convertFromThreshold<float16>(nullptr, dx, N, dz);
} else if (dstType == ND4J_FLOAT32) {
//nd4j::convertFromThreshold<float>(nullptr, dx, N, dz);
} else if (dstType == ND4J_DOUBLE) {
//nd4j::convertFromThreshold<double>(nullptr, dx, N, dz);
} else {
nd4j_printf("Unsupported types conversion: [%i] -> [%i]\n", srcType, dstType);
}
} else {
nd4j_printf("Unsupported types conversion: [%i] -> [%i]\n", srcType, dstType);
}
}
Nd4jPointer NativeOps::createUtf8String(Nd4jPointer *extraPointers, const char *string, int length) {
auto u = new nd4j::utf8string(string, length);
return reinterpret_cast<Nd4jPointer>(u);
}
void NativeOps::deleteUtf8String(Nd4jPointer *extraPointers, Nd4jPointer ptr) {
delete(reinterpret_cast<nd4j::utf8string*>(ptr));
}
///////////////////////////////////////////////////////////////////
template<typename T>
__global__ static void scatterUpdateCuda(const int opCode, const int numOfSubArrs,
void* vx, const Nd4jLong *xShapeInfo, const Nd4jLong *xOffsets,
void* vy, const Nd4jLong *yShapeInfo, const Nd4jLong *yOffsets,
const int* indexes) {
__shared__ T *x, *y;
__shared__ Nd4jLong arrLenX, arrLenY;
for (int e = 0; e < numOfSubArrs; e++ ) {
const auto xIndex = indexes[e];
const bool isOwner = xIndex < gridDim.x ? blockIdx.x == xIndex : blockIdx.x == xIndex % gridDim.x;
if (!isOwner)
continue;
if (threadIdx.x == 0) {
x = reinterpret_cast<T*>(vx) + xOffsets[xIndex];
y = reinterpret_cast<T*>(vy) + yOffsets[e];
arrLenX = shape::length(xShapeInfo);
arrLenY = shape::length(yShapeInfo);
}
__syncthreads();
if (arrLenX != arrLenY)
return;
for (Nd4jLong i = threadIdx.x; i < arrLenX; i += blockDim.x) {
const auto xOffset = shape::getIndexOffset(i, xShapeInfo, arrLenX);
const auto yOffset = shape::getIndexOffset(i, yShapeInfo, arrLenY);
switch (opCode) {
case 0:
x[xOffset] += y[yOffset];
break;
case 1:
x[xOffset] -= y[yOffset];
break;
case 2:
x[xOffset] *= y[yOffset];
break;
case 3:
x[xOffset] /= y[yOffset];
break;
case 4:
x[xOffset] = y[yOffset] - x[xOffset];
break;
case 5:
x[xOffset] = y[yOffset] / x[xOffset];
break;
case 6:
x[xOffset] = y[yOffset];
break;
default:
continue;
}
}
__syncthreads();
}
}
template<typename T>
__host__ static void scatterUpdateCudaLauncher(const cudaStream_t* stream, const int opCode, const int numOfSubArrs, void* vx, const Nd4jLong *xShapeInfo, const Nd4jLong *xOffsets, void* vy, const Nd4jLong *yShapeInfo, const Nd4jLong *yOffsets, const int* indexes) {
scatterUpdateCuda<T><<<512, 256, MAX_NUM_THREADS, *stream>>>(opCode, numOfSubArrs, vx, xShapeInfo, xOffsets, vy, yShapeInfo, yOffsets, indexes);
}
//////////////////////////////////////////////////////////////////////////
void NativeOps::scatterUpdate(Nd4jPointer *extraPointers, int opCode, int numOfSubArrs,
void* hX, Nd4jLong* hXShapeInfo, Nd4jLong* hXOffsets,
void* dX, Nd4jLong* dXShapeInfo, Nd4jLong* dXOffsets,
void* hY, Nd4jLong* hYShapeInfo, Nd4jLong* hYOffsets,
void* dY, Nd4jLong* dYShapeInfo, Nd4jLong* dYOffsets,
int* hIindexes, int* dIndexes) {
auto stream = reinterpret_cast<cudaStream_t *>(extraPointers[1]);
nd4j::DataType type = ArrayOptions::dataType(hXShapeInfo);
BUILD_SINGLE_SELECTOR(type, scatterUpdateCudaLauncher, (stream, opCode, numOfSubArrs, dX, dXShapeInfo, dXOffsets, dY, dYShapeInfo, dYOffsets, dIndexes), LIBND4J_TYPES);
nd4j::DebugHelper::checkErrorCode(stream, "scatterUpdate(...) failed");
}
void NativeOps::inspectArray(Nd4jPointer *extraPointers, Nd4jPointer buffer, Nd4jLong *shapeInfo, Nd4jPointer specialBuffer, Nd4jLong *specialShapeInfo, Nd4jPointer debugInfo) {
LaunchContext lc(extraPointers[1], extraPointers[4], extraPointers[5], extraPointers[3]);
auto p = reinterpret_cast<nd4j::DebugInfo*>(debugInfo);
NDArray array(buffer, specialBuffer, shapeInfo, &lc);
nd4j::DebugHelper::retrieveDebugStatistics(p, &array);
}
void __global__ tryPointerKernel(void* p, int len) {
auto buf = reinterpret_cast<int8_t*>(p);
auto tid = threadIdx.x + blockIdx.x * blockDim.x;
__shared__ int b;
if (tid < len)
atomicAdd(&b, buf[tid]);
__syncthreads();
if (threadIdx.x ==0 && blockIdx.x == 0)
printf("Pointer check complete: %i\n", b);
}
void NativeOps::tryPointer(Nd4jPointer extra, Nd4jPointer p, int len) {
cudaStream_t stream;
cudaStreamCreate(&stream);
tryPointerKernel<<<256, 512, len+64, stream>>>(p, len);
auto e = cudaStreamSynchronize(stream);
if (e != 0)
throw std::runtime_error("tryPointer failed");
cudaStreamDestroy(stream);
}
int NativeOps::dataTypeFromNpyHeader(void *header) {
return (int) cnpy::dataTypeFromHeader(reinterpret_cast<char *>(header));
}
nd4j::ConstantDataBuffer* NativeOps::shapeBuffer(int rank, Nd4jLong *shape, Nd4jLong *strides, nd4j::DataType dtype, char order, Nd4jLong ews, bool empty) {
auto buffer = new ConstantDataBuffer();
*buffer = nd4j::ConstantShapeHelper::getInstance()->bufferForShapeInfo(ShapeDescriptor(dtype, order, shape, strides, rank, ews, empty));
return buffer;
}
nd4j::ConstantDataBuffer* NativeOps::constantBuffer(nd4j::DataType dtype, Nd4jLong *data, int length) {
return nd4j::ConstantHelper::getInstance()->constantBuffer(ConstantDescriptor(data, length), dtype);
}
nd4j::ConstantDataBuffer* NativeOps::constantBuffer(nd4j::DataType dtype, double *data, int length) {
return nd4j::ConstantHelper::getInstance()->constantBuffer(ConstantDescriptor(data, length), dtype);
}
nd4j::ConstantDataBuffer* NativeOps::constantBuffer(nd4j::DataType dtype, nd4j::ConstantDescriptor *descriptor) {
return nd4j::ConstantHelper::getInstance()->constantBuffer(*descriptor, dtype);
}
Dev branch merge: dev_20190606 (#7904) * correct logsoftmax looss (#2) * Small SameDiff listener fix (#4) * Various fixes (#6) * #7839 Fix for asXMatrix and tests * #7866 EmbeddingSequenceLayer dtype fix + test * #7856 SameDiff save/load stream methods * #7859 RegressionEvaluation rank 4 fix + tests + axis configuration * EvaluationBinary 3d/4d * More evaluation 3d/4d tests * #7847 Evaluation empty checks * Small test ifx * #7848 Fix median edge case * Improve DL4J samediff layer tests * [WIP] FastText wrapper implemented (#8) * FastText implemented * Some fixes * Fix shapes for wordsNearest * Validation of input vectors * Fixes * Fixed test * Thread tagged * Some tweaks * setContextClassLoader for DeallocatorServiceThread * Numpy format tests (#1) * Various fixes (#11) * #7852 SameDiff gather fix * #7892 SameDiff placeholder to constant conversion * #7890 validate input rank for MLN/CG init methods * Fix broken permute shape calculation * Permute and gather fixes * Tests * #7850 LogSumExp fix + test * Handful of test fixes * Empty arrays with non-scalar shapes (#10) * minor rearrangements for lambdas * empty tensors with non-scalar shapes * numpy empty tensors with non-scalar shapes * few more empty tweaks * Small fixes * conv3d signature update * micro fix in batchnorm mkldnn * Import fixes * Fix * MKL-DNN update * Small fill fix * fill with empty input + test * Fixes * Small error improvement * Fix * one special test * couple of fixes for lstm * Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone * Fixes * FP16 * Unsigned * BFloat16 * Fill op - empty tweaks * - couple of fixes for empty arrays construction - stack updated * strided slice fix * one transform test * provide method for reducing shapeInfo in case of input array is empty * Fixed reduceAlongDimensions to use empty input properly. * couple of broadcast tests * couple of tests broadcast tests + tweak to make them pass * add check of non-empty to methods producing sub-arrays * Fixed reshapeC with zeros in shape. * complete empty check in reduce_... legacy ops * Concat and cumsum/prod * Tweak to empty shape inference on import * add empty check to the rest of reduce legacy ops * one more test * correct typo in evalReduceShapeInfoEmpty * Added tests for reduce_* ops to tests with zero shapes. * few more tests for empty reductions * Fixed strided_slice op with empty case and tests. * one more empty reduction test * Fixed strided_slice test. * add empty check to NDArray::reshapei * infOrMax * empty min/max with infinity tests * made unstack working correctly with empty arrays * few IndexReduce tests + tweaks for empty shapes * add test for empty concat * few tests fixed * Validation fix for reductions on empty shapes * Reverse fix * Reduction shape calc fixes * SameDiff.generateOutputVariable: don't use shape function to determine number of outputs * Range fix * - NDArray constructor updated for scalars/empty arrays - few tests fixed * More fixes * Empty creator fixes * concat fix * concat fix * TF import tests: allow 'both all NaN' and 'both all inf' to pass * Slice, zero fraction, and reshape fixes * transpose, gather * Zero fraction * scalar cast fix * Empty reduction axis support * few more tests fixed * Fixed input checks conforming with TF for concat op and tests. * few tests fixed * matmul scalar shape fix * Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats. * broadcast bool fix * few more tests * few more tests * correct evalReduceShapeInfoEmpty * argmax/argmin + tests * one more empty edge case + one more test * argmax/argmin/realdiv_bp tweaks * empty reshape test + fix * Helper fixes * Small fixes * Gather test fix * Gather test fix * Small fixes * reduce scalar zero values * scalar mean workaround * Remove debug code * along dim mean workaround * one more test * - equalsTo() tweak for empty arrays - one more test * broadcast tweaks
2019-06-15 13:34:34 +02:00
Nd4jPointer NativeOps::shapeBufferForNumpy(Nd4jPointer npyArray) {
cnpy::NpyArray arr = cnpy::loadNpyFromPointer(reinterpret_cast<char *>(npyArray));
unsigned int shapeSize = arr.shape.size();
std::vector<Nd4jLong> shape(shapeSize);
bool _empty = false;
for(unsigned int i = 0; i < shapeSize; i++) {
shape[i] = arr.shape[i];
if (arr.shape[i] == 0)
_empty = true;
}
auto dtype = cnpy::dataTypeFromHeader(reinterpret_cast<char *>(npyArray));
Nd4jLong *shapeBuffer;
if (shape.size() == 1 && shape[0] == 0) {
// scalar case
shapeBuffer = nd4j::ShapeBuilders::createScalarShapeInfo(dtype);
} else if (_empty) {
Dev branch merge: dev_20190606 (#7904) * correct logsoftmax looss (#2) * Small SameDiff listener fix (#4) * Various fixes (#6) * #7839 Fix for asXMatrix and tests * #7866 EmbeddingSequenceLayer dtype fix + test * #7856 SameDiff save/load stream methods * #7859 RegressionEvaluation rank 4 fix + tests + axis configuration * EvaluationBinary 3d/4d * More evaluation 3d/4d tests * #7847 Evaluation empty checks * Small test ifx * #7848 Fix median edge case * Improve DL4J samediff layer tests * [WIP] FastText wrapper implemented (#8) * FastText implemented * Some fixes * Fix shapes for wordsNearest * Validation of input vectors * Fixes * Fixed test * Thread tagged * Some tweaks * setContextClassLoader for DeallocatorServiceThread * Numpy format tests (#1) * Various fixes (#11) * #7852 SameDiff gather fix * #7892 SameDiff placeholder to constant conversion * #7890 validate input rank for MLN/CG init methods * Fix broken permute shape calculation * Permute and gather fixes * Tests * #7850 LogSumExp fix + test * Handful of test fixes * Empty arrays with non-scalar shapes (#10) * minor rearrangements for lambdas * empty tensors with non-scalar shapes * numpy empty tensors with non-scalar shapes * few more empty tweaks * Small fixes * conv3d signature update * micro fix in batchnorm mkldnn * Import fixes * Fix * MKL-DNN update * Small fill fix * fill with empty input + test * Fixes * Small error improvement * Fix * one special test * couple of fixes for lstm * Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone * Fixes * FP16 * Unsigned * BFloat16 * Fill op - empty tweaks * - couple of fixes for empty arrays construction - stack updated * strided slice fix * one transform test * provide method for reducing shapeInfo in case of input array is empty * Fixed reduceAlongDimensions to use empty input properly. * couple of broadcast tests * couple of tests broadcast tests + tweak to make them pass * add check of non-empty to methods producing sub-arrays * Fixed reshapeC with zeros in shape. * complete empty check in reduce_... legacy ops * Concat and cumsum/prod * Tweak to empty shape inference on import * add empty check to the rest of reduce legacy ops * one more test * correct typo in evalReduceShapeInfoEmpty * Added tests for reduce_* ops to tests with zero shapes. * few more tests for empty reductions * Fixed strided_slice op with empty case and tests. * one more empty reduction test * Fixed strided_slice test. * add empty check to NDArray::reshapei * infOrMax * empty min/max with infinity tests * made unstack working correctly with empty arrays * few IndexReduce tests + tweaks for empty shapes * add test for empty concat * few tests fixed * Validation fix for reductions on empty shapes * Reverse fix * Reduction shape calc fixes * SameDiff.generateOutputVariable: don't use shape function to determine number of outputs * Range fix * - NDArray constructor updated for scalars/empty arrays - few tests fixed * More fixes * Empty creator fixes * concat fix * concat fix * TF import tests: allow 'both all NaN' and 'both all inf' to pass * Slice, zero fraction, and reshape fixes * transpose, gather * Zero fraction * scalar cast fix * Empty reduction axis support * few more tests fixed * Fixed input checks conforming with TF for concat op and tests. * few tests fixed * matmul scalar shape fix * Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats. * broadcast bool fix * few more tests * few more tests * correct evalReduceShapeInfoEmpty * argmax/argmin + tests * one more empty edge case + one more test * argmax/argmin/realdiv_bp tweaks * empty reshape test + fix * Helper fixes * Small fixes * Gather test fix * Gather test fix * Small fixes * reduce scalar zero values * scalar mean workaround * Remove debug code * along dim mean workaround * one more test * - equalsTo() tweak for empty arrays - one more test * broadcast tweaks
2019-06-15 13:34:34 +02:00
if (shapeSize > 0)
shapeBuffer = nd4j::ShapeBuilders::emptyShapeInfo(dtype, arr.fortranOrder ? 'f' : 'c', shape);
else
shapeBuffer = nd4j::ShapeBuilders::emptyShapeInfo(dtype);
} else {
shapeBuffer = nd4j::ShapeBuilders::createShapeInfo(dtype, arr.fortranOrder ? 'f' : 'c', shape);
}
return reinterpret_cast<Nd4jPointer>(nd4j::ConstantShapeHelper::getInstance()->createFromExisting(shapeBuffer, true));
Dev branch merge: dev_20190606 (#7904) * correct logsoftmax looss (#2) * Small SameDiff listener fix (#4) * Various fixes (#6) * #7839 Fix for asXMatrix and tests * #7866 EmbeddingSequenceLayer dtype fix + test * #7856 SameDiff save/load stream methods * #7859 RegressionEvaluation rank 4 fix + tests + axis configuration * EvaluationBinary 3d/4d * More evaluation 3d/4d tests * #7847 Evaluation empty checks * Small test ifx * #7848 Fix median edge case * Improve DL4J samediff layer tests * [WIP] FastText wrapper implemented (#8) * FastText implemented * Some fixes * Fix shapes for wordsNearest * Validation of input vectors * Fixes * Fixed test * Thread tagged * Some tweaks * setContextClassLoader for DeallocatorServiceThread * Numpy format tests (#1) * Various fixes (#11) * #7852 SameDiff gather fix * #7892 SameDiff placeholder to constant conversion * #7890 validate input rank for MLN/CG init methods * Fix broken permute shape calculation * Permute and gather fixes * Tests * #7850 LogSumExp fix + test * Handful of test fixes * Empty arrays with non-scalar shapes (#10) * minor rearrangements for lambdas * empty tensors with non-scalar shapes * numpy empty tensors with non-scalar shapes * few more empty tweaks * Small fixes * conv3d signature update * micro fix in batchnorm mkldnn * Import fixes * Fix * MKL-DNN update * Small fill fix * fill with empty input + test * Fixes * Small error improvement * Fix * one special test * couple of fixes for lstm * Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone * Fixes * FP16 * Unsigned * BFloat16 * Fill op - empty tweaks * - couple of fixes for empty arrays construction - stack updated * strided slice fix * one transform test * provide method for reducing shapeInfo in case of input array is empty * Fixed reduceAlongDimensions to use empty input properly. * couple of broadcast tests * couple of tests broadcast tests + tweak to make them pass * add check of non-empty to methods producing sub-arrays * Fixed reshapeC with zeros in shape. * complete empty check in reduce_... legacy ops * Concat and cumsum/prod * Tweak to empty shape inference on import * add empty check to the rest of reduce legacy ops * one more test * correct typo in evalReduceShapeInfoEmpty * Added tests for reduce_* ops to tests with zero shapes. * few more tests for empty reductions * Fixed strided_slice op with empty case and tests. * one more empty reduction test * Fixed strided_slice test. * add empty check to NDArray::reshapei * infOrMax * empty min/max with infinity tests * made unstack working correctly with empty arrays * few IndexReduce tests + tweaks for empty shapes * add test for empty concat * few tests fixed * Validation fix for reductions on empty shapes * Reverse fix * Reduction shape calc fixes * SameDiff.generateOutputVariable: don't use shape function to determine number of outputs * Range fix * - NDArray constructor updated for scalars/empty arrays - few tests fixed * More fixes * Empty creator fixes * concat fix * concat fix * TF import tests: allow 'both all NaN' and 'both all inf' to pass * Slice, zero fraction, and reshape fixes * transpose, gather * Zero fraction * scalar cast fix * Empty reduction axis support * few more tests fixed * Fixed input checks conforming with TF for concat op and tests. * few tests fixed * matmul scalar shape fix * Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats. * broadcast bool fix * few more tests * few more tests * correct evalReduceShapeInfoEmpty * argmax/argmin + tests * one more empty edge case + one more test * argmax/argmin/realdiv_bp tweaks * empty reshape test + fix * Helper fixes * Small fixes * Gather test fix * Gather test fix * Small fixes * reduce scalar zero values * scalar mean workaround * Remove debug code * along dim mean workaround * one more test * - equalsTo() tweak for empty arrays - one more test * broadcast tweaks
2019-06-15 13:34:34 +02:00
}
const char* NativeOps::runLightBenchmarkSuit(bool printOut) {
nd4j::LightBenchmarkSuit suit;
auto result = suit.runSuit();
if (printOut)
nd4j_printf("%s\n", result.data());
auto chars = new char[result.length()+1];
std::memcpy(chars, result.data(), result.length());
chars[result.length()] = (char) 0x0;
return chars;
}
const char* NativeOps::runFullBenchmarkSuit(bool printOut) {
nd4j::FullBenchmarkSuit suit;
auto result = suit.runSuit();
if (printOut)
nd4j_printf("%s\n", result.data());
auto chars = new char[result.length()+1];
std::memcpy(chars, result.data(), result.length());
chars[result.length()] = (char) 0x0;
return chars;
}
Nd4jLong NativeOps::getCachedMemory(int deviceId) {
return nd4j::ConstantHelper::getInstance()->getCachedAmount(deviceId);
}