106 lines
3.3 KiB
Java
Raw Normal View History

2019-06-06 15:21:15 +03:00
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.nn.layers;
import org.deeplearning4j.nn.api.Layer;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.gradient.DefaultGradient;
import org.deeplearning4j.nn.gradient.Gradient;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.primitives.Pair;
import org.deeplearning4j.nn.workspace.ArrayType;
import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr;
/**
* Created by davekale on 12/7/16.
*/
public class DropoutLayer extends BaseLayer<org.deeplearning4j.nn.conf.layers.DropoutLayer> {
public DropoutLayer(NeuralNetConfiguration conf, DataType dataType) {
super(conf, dataType);
}
@Override
public double calcRegularizationScore(boolean backpropParamsOnly){
return 0;
}
@Override
public Type type() {
return Type.FEED_FORWARD;
}
@Override
public void fit(INDArray input, LayerWorkspaceMgr workspaceMgr) {
throw new UnsupportedOperationException("Not supported");
}
@Override
public Pair<Gradient, INDArray> backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr) {
INDArray delta = workspaceMgr.dup(ArrayType.ACTIVATION_GRAD, epsilon);
if (maskArray != null) {
delta.muliColumnVector(maskArray);
}
Gradient ret = new DefaultGradient();
delta = backpropDropOutIfPresent(delta);
return new Pair<>(ret, delta);
}
@Override
public INDArray activate(boolean training, LayerWorkspaceMgr workspaceMgr) {
assertInputSet(false);
INDArray ret;
if(!training){
ret = input;
} else {
if(layerConf().getIDropout() != null){
INDArray result;
if(inputModificationAllowed){
result = input;
} else {
result = workspaceMgr.createUninitialized(ArrayType.INPUT, input.dataType(), input.shape(), input.ordering());
}
ret = layerConf().getIDropout().applyDropout(input, result, getIterationCount(), getEpochCount(), workspaceMgr);
} else {
ret = workspaceMgr.leverageTo(ArrayType.ACTIVATIONS, input);
}
}
if (maskArray != null) {
ret.muliColumnVector(maskArray);
}
ret = workspaceMgr.leverageTo(ArrayType.ACTIVATIONS, ret);
return ret;
}
@Override
public boolean isPretrainLayer() {
return false;
}
@Override
public INDArray params() {
return null;
}
}