/* ******************************************************************************
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
* See the NOTICE file distributed with this work for additional
* information regarding copyright ownership.
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author GS <sgazeos@gmail.com>, created on 16.01.2019
#include <loops/special_kernels.h>
namespace sd {
static Nd4jLong __device__ __noinline__ getIndexOffset_(Nd4jLong index, Nd4jLong const* shapeInfo) {
return shape::getIndexOffset(index, shapeInfo);
}
static Nd4jLong __device__ __noinline__ subArrayOffset(Nd4jLong index, Nd4jLong const* shapeInfoA, Nd4jLong const* shapeInfoB) {
return shape::subArrayOffset(index, shapeInfoA, shapeInfoB);
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// tileKernel:
// input: (inputBuffer and inputShape) - NDArray buffer and shape to tile
// output: (outputBuffer and outputShape) - NDArray to tile input
// resultLength - length for output array
template<typename T>
static __global__ void
tileKernel(void const *inputBuffer, Nd4jLong const* inputShape, void *outputBuffer, Nd4jLong const* outputShape,
Nd4jLong resultLength) {
// Original code to transform in cuda-based
auto tid = blockIdx.x * blockDim.x + threadIdx.x; // copy linear sequence of elements, so one-level threading
int totalThreads = gridDim.x * blockDim.x;
if (shape::order(outputShape) == 'c') { // ews == 1 always here
for (int i = tid; i < resultLength; i += totalThreads) {
auto yOffset = subArrayOffset(i, outputShape, inputShape);
*(reinterpret_cast<T *>(outputBuffer) + i) = *(reinterpret_cast<T const *>(inputBuffer) + yOffset);
} else {
auto xOffset = getIndexOffset_(i, outputShape);
*(reinterpret_cast<T *>(outputBuffer) + xOffset) = *(reinterpret_cast<T const *>(inputBuffer) + yOffset);
BUILD_SINGLE_TEMPLATE(template __global__ void tileKernel,(void const* inputBuffer, Nd4jLong const* inputShape, void* outputBuffer, Nd4jLong const* outputShape, Nd4jLong resultLength), LIBND4J_TYPES);
void tileKernelH(void const *inputBuffer, Nd4jLong const* inputShape, void *outputBuffer, Nd4jLong const* outputShape, Nd4jLong resultLength, cudaStream_t *stream) {
dim3 launchDims(256, 512, 8192);
tileKernel<T> << < launchDims.x, launchDims.y, launchDims.z, *stream>>>(inputBuffer, inputShape, outputBuffer, outputShape, resultLength);
BUILD_SINGLE_TEMPLATE(template void tileKernelH, (void const* inputBuffer, Nd4jLong const* inputShape, void* outputBuffer, Nd4jLong const* outputShape, Nd4jLong resultLength, cudaStream_t *stream), LIBND4J_TYPES);
// enhancement for tileKernel to different input and output data types: X - output type, Y - input type
template<typename X, typename Y>
tileKernelDouble(void const *inputBuffer, Nd4jLong const* inputShape, void *outputBuffer, Nd4jLong const* outputShape, Nd4jLong resultLength, Nd4jLong ews) {
char ordering = shape::order(outputShape);
auto tid = blockIdx.x * blockDim.x + threadIdx.x;
if (ordering == 'c' && ews == 1) { // ews == 1 always here
*(reinterpret_cast<X *>(outputBuffer) + i) = static_cast<X>(*(reinterpret_cast<Y const *>(inputBuffer) + yOffset));
} else if (ordering == 'c' && ews > 1) {
*(reinterpret_cast<X *>(outputBuffer) + i * ews) = static_cast<X>(*(reinterpret_cast<Y const *>(inputBuffer) + yOffset));
*(reinterpret_cast<X *>(outputBuffer) + xOffset) = static_cast<X>(*(reinterpret_cast<Y const *>(inputBuffer) + yOffset));
BUILD_SINGLE_TEMPLATE_TWICE(template __global__ void tileKernelDouble, (void const* inputBuffer, Nd4jLong const* inputShape, void* outputBuffer, Nd4jLong const* outputShape, Nd4jLong resultLength, Nd4jLong ews), LIBND4J_TYPES);
void tileKernelHH(void const *inputBuffer, Nd4jLong const* inputShape, void *outputBuffer, Nd4jLong const* outputShape, Nd4jLong resultLength, Nd4jLong ews, cudaStream_t *stream) {
tileKernelDouble<X, Y><<<launchDims.x, launchDims.y, launchDims.z, *stream>>>(inputBuffer, inputShape, outputBuffer, outputShape, resultLength, ews);
BUILD_SINGLE_TEMPLATE_TWICE(template void tileKernelHH, (void const* inputBuffer, Nd4jLong const* inputShape, void* outputBuffer, Nd4jLong const* outputShape, Nd4jLong resultLength, Nd4jLong ews, cudaStream_t *stream),LIBND4J_TYPES);