2019-06-06 14:21:15 +02:00
/*******************************************************************************
* Copyright ( c ) 2015 - 2018 Skymind , Inc .
*
* This program and the accompanying materials are made available under the
* terms of the Apache License , Version 2.0 which is available at
* https : //www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing , software
* distributed under the License is distributed on an " AS IS " BASIS , WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND , either express or implied . See the
* License for the specific language governing permissions and limitations
* under the License .
*
* SPDX - License - Identifier : Apache - 2.0
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
//
// implementation of operations for Simple Recurrent Unit: arXiv:1709.02755v2 [cs.CL] 12 Sep 2017
//
//@author Yurii Shyrma
//
# include <op_boilerplate.h>
# if NOT_EXCLUDED(OP_sru)
# include <ops/declarable/CustomOperations.h>
# include <ops/declarable/helpers/sru.h>
# include <MmulHelper.h>
# include <helpers/PointersManager.h>
namespace nd4j {
namespace ops {
//////////////////////////////////////////////////////////////////////////
CUSTOM_OP_IMPL ( sru , 5 , 2 , false , 0 , 0 ) {
auto x = INPUT_VARIABLE ( 0 ) ; // X, input 3d tensor [bS x inSize x time], time - number of time steps, bS - batch size, inSize - number of features
auto w = INPUT_VARIABLE ( 1 ) ; // W, 2d tensor of weights [3*inSize x inSize]
auto b = INPUT_VARIABLE ( 2 ) ; // B, row of biases with twice length [2*inSize]
auto c0 = INPUT_VARIABLE ( 3 ) ; // C_{0}, 2d tensor of initial state [bS x inSize] at time t=0
auto mask = block . width ( ) > 4 ? INPUT_VARIABLE ( 4 ) : nullptr ; // optional, 2d tensor of dropout mask [bS x inSize]
auto h = OUTPUT_VARIABLE ( 0 ) ; // cell outputs, [bS x inSize x time]
auto c = OUTPUT_VARIABLE ( 1 ) ; // cell states, [bS x inSize x time]
const int rank = x - > rankOf ( ) ; // = 3
const auto bS = x - > sizeAt ( 0 ) ;
const auto inSize = x - > sizeAt ( 1 ) ;
const auto time = x - > sizeAt ( 2 ) ;
// input shapes validation
REQUIRE_TRUE ( w - > rankOf ( ) = = rank - 1 , 0 , " SRU operation: wrong rank of weights array, expected is %i, but got %i instead ! " , rank - 1 , w - > rankOf ( ) ) ;
REQUIRE_TRUE ( b - > rankOf ( ) = = 1 , 0 , " SRU operation: wrong rank of biases array, expected is %i, but got %i instead ! " , 1 , b - > rankOf ( ) ) ;
REQUIRE_TRUE ( c0 - > rankOf ( ) = = rank - 1 , 0 , " SRU operation: wrong rank of initial state array, expected is %i, but got %i instead ! " , rank - 1 , c0 - > rankOf ( ) ) ;
if ( mask )
REQUIRE_TRUE ( mask - > rankOf ( ) = = rank - 1 , 0 , " SRU operation: wrong rank of mask array, expected is %i, but got %i instead ! " , rank - 1 , mask - > rankOf ( ) ) ;
const std : : string wShape = ShapeUtils : : shapeAsString ( w ) ;
const std : : string wCorrectShape = ShapeUtils : : shapeAsString ( { 3 * inSize , inSize } ) ;
const std : : string bShape = ShapeUtils : : shapeAsString ( b ) ;
const std : : string bCorrectShape = ShapeUtils : : shapeAsString ( { 2 * inSize } ) ;
const std : : string c0Shape = ShapeUtils : : shapeAsString ( c0 ) ;
const std : : string c0CorrectShape = ShapeUtils : : shapeAsString ( { bS , inSize } ) ;
REQUIRE_TRUE ( wShape = = wCorrectShape , 0 , " SRU operation: wrong shape of weights array, expected is %s, but got %s instead ! " , wCorrectShape . c_str ( ) , wShape . c_str ( ) ) ;
REQUIRE_TRUE ( bShape = = bCorrectShape , 0 , " SRU operation: wrong shape of biases array, expected is %s, but got %s instead ! " , bCorrectShape . c_str ( ) , bShape . c_str ( ) ) ;
REQUIRE_TRUE ( c0Shape = = c0CorrectShape , 0 , " SRU operation: wrong shape of initial state array, expected is %s, but got %s instead ! " , c0CorrectShape . c_str ( ) , c0Shape . c_str ( ) ) ;
if ( mask ) {
const std : : string maskShape = ShapeUtils : : shapeAsString ( mask ) ;
REQUIRE_TRUE ( maskShape = = c0CorrectShape , 0 , " SRU operation: wrong shape of mask array, expected is %s, but got %s instead ! " , c0CorrectShape . c_str ( ) , maskShape . c_str ( ) ) ;
}
// xm = x * mask
auto xm = x ;
if ( mask ) {
xm = new NDArray ( x - > getShapeInfo ( ) , true , block . launchContext ( ) ) ;
2019-12-20 20:35:39 +01:00
x - > applyBroadcast ( broadcast : : Multiply , { 0 , 1 } , * mask , * xm ) ;
2019-06-06 14:21:15 +02:00
}
// time loop
helpers : : sruTimeLoop ( block . launchContext ( ) , xm , c0 , w , b , h , c ) ;
if ( mask )
delete xm ;
return Status : : OK ( ) ;
}
DECLARE_TYPES ( sru ) {
getOpDescriptor ( )
- > setAllowedInputTypes ( nd4j : : DataType : : ANY )
- > setAllowedOutputTypes ( { ALL_FLOATS } ) ;
}
DECLARE_SHAPE_FN ( sru ) {
auto xShapeInfo = inputShape - > at ( 0 ) ; // X, input 3d tensor [bS x inSize x time], time - number of time steps, bS - batch size, inSize - number of features
auto wShapeInfo = inputShape - > at ( 1 ) ; // W, 2d tensor of weights [3*inSize x inSize]
auto bShapeInfo = inputShape - > at ( 2 ) ; // B, row of biases with twice length [2*inSize]
auto c0ShapeInfo = inputShape - > at ( 3 ) ; // C_{0}, 2d tensor of initial state [bS x inSize] at time t=0
Nd4jLong * maskShapeInfo = block . width ( ) > 4 ? inputShape - > at ( 4 ) : nullptr ; // optional, 2d tensor of dropout mask [bS x inSize]
const int rank = xShapeInfo [ 0 ] ; // = 3
const int bS = xShapeInfo [ 1 ] ;
const int inSize = xShapeInfo [ 2 ] ;
const int time = xShapeInfo [ 3 ] ;
// input shapes validation
REQUIRE_TRUE ( wShapeInfo [ 0 ] = = rank - 1 , 0 , " SRU operation: wrong rank of weights array, expected is %i, but got %i instead ! " , rank - 1 , wShapeInfo [ 0 ] ) ;
REQUIRE_TRUE ( bShapeInfo [ 0 ] = = 1 , 0 , " SRU operation: wrong rank of biases array, expected is %i, but got %i instead ! " , 1 , bShapeInfo [ 0 ] ) ;
REQUIRE_TRUE ( c0ShapeInfo [ 0 ] = = rank - 1 , 0 , " SRU operation: wrong rank of initial state array, expected is %i, but got %i instead ! " , rank - 1 , c0ShapeInfo [ 0 ] ) ;
if ( maskShapeInfo )
REQUIRE_TRUE ( maskShapeInfo [ 0 ] = = rank - 1 , 0 , " SRU operation: wrong rank of mask array, expected is %i, but got %i instead ! " , rank - 1 , maskShapeInfo [ 0 ] ) ;
const std : : string wShape = ShapeUtils : : shapeAsString ( wShapeInfo ) ;
const std : : string wCorrectShape = ShapeUtils : : shapeAsString ( { 3 * inSize , inSize } ) ;
const std : : string bShape = ShapeUtils : : shapeAsString ( bShapeInfo ) ;
const std : : string bCorrectShape = ShapeUtils : : shapeAsString ( { 2 * inSize } ) ;
const std : : string c0Shape = ShapeUtils : : shapeAsString ( c0ShapeInfo ) ;
const std : : string c0CorrectShape = ShapeUtils : : shapeAsString ( { bS , inSize } ) ;
REQUIRE_TRUE ( wShape = = wCorrectShape , 0 , " SRU operation: wrong shape of weights array, expected is %s, but got %s instead ! " , wCorrectShape . c_str ( ) , wShape . c_str ( ) ) ;
REQUIRE_TRUE ( bShape = = bCorrectShape , 0 , " SRU operation: wrong shape of biases array, expected is %s, but got %s instead ! " , bCorrectShape . c_str ( ) , bShape . c_str ( ) ) ;
REQUIRE_TRUE ( c0Shape = = c0CorrectShape , 0 , " SRU operation: wrong shape of initial state array, expected is %s, but got %s instead ! " , c0CorrectShape . c_str ( ) , c0Shape . c_str ( ) ) ;
if ( maskShapeInfo ) {
const std : : string maskShape = ShapeUtils : : shapeAsString ( maskShapeInfo ) ;
REQUIRE_TRUE ( maskShape = = c0CorrectShape , 0 , " SRU operation: wrong shape of mask array, expected is %s, but got %s instead ! " , c0CorrectShape . c_str ( ) , maskShape . c_str ( ) ) ;
}
Nd4jLong * newShapeInfo1 = nullptr ;
ALLOCATE ( newShapeInfo1 , block . getWorkspace ( ) , shape : : shapeInfoLength ( rank ) , Nd4jLong ) ; // [bS x inSize x time]
newShapeInfo1 [ 0 ] = rank ;
newShapeInfo1 [ 1 ] = bS ;
newShapeInfo1 [ 2 ] = inSize ;
newShapeInfo1 [ 3 ] = time ;
ShapeUtils : : updateStridesAndType ( newShapeInfo1 , xShapeInfo , shape : : order ( xShapeInfo ) ) ;
ShapeDescriptor descriptor ( newShapeInfo1 ) ;
RELEASE ( newShapeInfo1 , block . getWorkspace ( ) ) ;
auto result = ConstantShapeHelper : : getInstance ( ) - > createShapeInfo ( descriptor ) ;
return SHAPELIST ( result , result ) ;
}
//////////////////////////////////////////////////////////////////////////
CUSTOM_OP_IMPL ( sru_bp , 8 , 4 , true , 0 , 0 ) {
auto x = INPUT_VARIABLE ( 0 ) ; // X, input 3d tensor [bS x K x N], N - number of time steps, bS - batch size, K - number of features
auto w = INPUT_VARIABLE ( 1 ) ; // W, 2d tensor of weights [3K x K]
2019-07-08 09:58:48 +02:00
auto b = INPUT_VARIABLE ( 2 ) ; // B, row of biases with twice length [1 x 2*K]
2019-06-06 14:21:15 +02:00
auto c0 = INPUT_VARIABLE ( 3 ) ; // C_{0}, 2d tensor of initial state [bS x K] at time t=0
auto c = INPUT_VARIABLE ( 4 ) ; // C, [bS x K x N]
auto inGradCt = INPUT_VARIABLE ( 5 ) ; // [bS x K]
auto inGradH = INPUT_VARIABLE ( 6 ) ; // [bS x K x N]
NDArray * mask = nullptr ; // optional, 2d tensor of dropout mask [bS x K]
2019-07-12 10:51:51 +02:00
bool applyMask = false ;
2019-06-06 14:21:15 +02:00
if ( block . width ( ) > 7 ) {
2019-07-12 10:51:51 +02:00
mask = INPUT_VARIABLE ( 7 ) ;
2019-06-06 14:21:15 +02:00
applyMask = true ;
}
auto gradX = OUTPUT_VARIABLE ( 0 ) ; // [bS x K x N]
auto gradW = OUTPUT_VARIABLE ( 1 ) ; // [bS x 3K x K]
auto gradB = OUTPUT_VARIABLE ( 2 ) ; // [1 x 2K]
auto gradInit = OUTPUT_VARIABLE ( 3 ) ; // [bS x K]
const int bS = x - > shapeOf ( ) [ 0 ] ;
const int K = x - > shapeOf ( ) [ 1 ] ;
const int N = x - > shapeOf ( ) [ 2 ] ; // N - number of time steps
2019-07-12 10:51:51 +02:00
2019-06-06 14:21:15 +02:00
auto gradBias = NDArrayFactory : : create_ ( x - > ordering ( ) , { bS , 2 * K , N } , gradX - > dataType ( ) , block . launchContext ( ) ) ;
auto gradU = NDArrayFactory : : create_ ( x - > ordering ( ) , { bS , 3 * K , N } , gradX - > dataType ( ) , block . launchContext ( ) ) ;
auto gradHX = NDArrayFactory : : create_ ( x - > ordering ( ) , { bS , K , N } , gradX - > dataType ( ) , block . launchContext ( ) ) ;
auto gct = NDArrayFactory : : create_ ( c - > ordering ( ) , { bS , K } , gradX - > dataType ( ) , block . launchContext ( ) ) ;
auto gradTanh = NDArrayFactory : : create_ ( c - > ordering ( ) , { bS , K } , gradX - > dataType ( ) , block . launchContext ( ) ) ;
auto gradCt = NDArrayFactory : : create_ ( c - > ordering ( ) , { bS , K } , gradX - > dataType ( ) , block . launchContext ( ) ) ;
auto ftMinus = NDArrayFactory : : create_ ( c - > ordering ( ) , { bS , K } , gradX - > dataType ( ) , block . launchContext ( ) ) ;
auto rtMinus = NDArrayFactory : : create_ ( c - > ordering ( ) , { bS , K } , gradX - > dataType ( ) , block . launchContext ( ) ) ;
auto temp1 = NDArrayFactory : : create_ ( c - > ordering ( ) , { bS , K } , gradX - > dataType ( ) , block . launchContext ( ) ) ;
auto temp2 = NDArrayFactory : : create_ ( c - > ordering ( ) , { bS , K } , gradX - > dataType ( ) , block . launchContext ( ) ) ;
// x = x * mask
if ( applyMask )
2019-12-20 20:35:39 +01:00
x - > applyBroadcast ( broadcast : : Multiply , { 0 , 1 } , * mask , * x ) ; // apply mask
2019-06-06 14:21:15 +02:00
// multiplication matrix wi = matmul(w,x), U = WX
auto wi = MmulHelper : : mmul ( w , x , nullptr , 1. , 0. ) ; // U [bS x 3K x N]
auto wiZ = ( * wi ) ( { 0 , 0 , 0 , K , 0 , 0 } , true ) ; // [bS x K x N]
auto wiF = ( * wi ) ( { 0 , 0 , K , 2 * K , 0 , 0 } , true ) ; // forget gate [bS x K x N]
auto wiR = ( * wi ) ( { 0 , 0 , 2 * K , 3 * K , 0 , 0 } , true ) ; // reset gate [bS x K x N]
auto bF = ( * b ) ( { 0 , 0 , 0 , K } , true ) ; // biases for forget gate [1 x K]
auto bR = ( * b ) ( { 0 , 0 , K , 2 * K } , true ) ; // biases for reset gate [1 x K]
auto gradBF = ( * gradBias ) ( { 0 , 0 , 0 , K , 0 , 0 } , true ) ; // [bS x K x N]
auto gradBR = ( * gradBias ) ( { 0 , 0 , K , 2 * K , 0 , 0 } , true ) ; // [bS x K x N]
auto gradUZ = ( * gradU ) ( { 0 , 0 , 0 , K , 0 , 0 } , true ) ; // [bS x K x N]
auto gradUF = ( * gradU ) ( { 0 , 0 , K , 2 * K , 0 , 0 } , true ) ; // [bS x K x N]
auto gradUR = ( * gradU ) ( { 0 , 0 , 2 * K , 3 * K , 0 , 0 } , true ) ; // [bS x K x N]
NDArray * ct_1 = nullptr ;
std : : vector < Nd4jLong > idx = { 0 , 0 , 0 , 0 , 0 , 0 } ;
2019-07-12 10:51:51 +02:00
for ( int t = N - 1 ; t > = 0 ; - - t ) {
2019-06-06 14:21:15 +02:00
// initialization
idx [ 4 ] = t ;
idx [ 5 ] = t + 1 ;
auto xt = ( * x ) ( idx ) ; // [bS x K x N] -> [bS x K x 1] -> [bS x K]
auto zt = wiZ ( idx ) ; // [bS x K x N] -> [bS x K x 1] -> [bS x K]
auto ft = wiF ( idx ) ; // [bS x K x N] -> [bS x K x 1] -> [bS x K]
auto rt = wiR ( idx ) ; // [bS x K x N] -> [bS x K x 1] -> [bS x K]
auto ct = ( * c ) ( idx ) ; // [bS x K x N] -> [bS x K x 1] -> [bS x K]
auto inGradHt = ( * inGradH ) ( idx ) ; // [bS x K x N] -> [bS x K x 1] -> [bS x K]
auto gradBRt = gradBR ( idx ) ; // [bS x K x N] -> [bS x K x 1] -> [bS x K]
auto gradBFt = gradBF ( idx ) ; // [bS x K x N] -> [bS x K x 1] -> [bS x K]
auto gradHXt = ( * gradHX ) ( idx ) ; // [bS x K x N] -> [bS x K x 1] -> [bS x K]
auto gradUZt = gradUZ ( idx ) ; // [bS x K x N] -> [bS x K x 1] -> [bS x K]
auto gradUFt = gradUF ( idx ) ; // [bS x K x N] -> [bS x K x 1] -> [bS x K]
auto gradURt = gradUR ( idx ) ; // [bS x K x N] -> [bS x K x 1] -> [bS x K]
if ( t ! = 0 ) {
idx [ 4 ] = t - 1 ;
idx [ 5 ] = t ;
ct_1 = new NDArray ( ( * c ) ( idx ) ) ; // previous c_{t-1}
}
else
ct_1 = c0 ;
///////////////// forward
// ft = sigmoid(ft + bf), rt = sigmoid(rt + bR)
2019-12-20 20:35:39 +01:00
ft . addRowVector ( bF , ft ) ;
rt . addRowVector ( bR , rt ) ;
ft . applyTransform ( transform : : Sigmoid , ft ) ;
rt . applyTransform ( transform : : Sigmoid , rt ) ;
2019-06-06 14:21:15 +02:00
// TODO T val = (activation_type == 1) ? tanh(cur) : ((activation_type == 2) ? reluf(cur) : cur );
2019-12-20 20:35:39 +01:00
ct . applyTransform ( transform : : Tanh , * gct ) ;
2019-06-06 14:21:15 +02:00
// ftMinus = 1-ft, rtMinus = 1-rt
2019-12-20 20:35:39 +01:00
ft . applyTransform ( transform : : OneMinus , * ftMinus ) ;
rt . applyTransform ( transform : : OneMinus , * rtMinus ) ;
2019-06-06 14:21:15 +02:00
///////////////// backward
// bR, *grad_brt_ptr = inGradHt * (g_ct - xt) * (1.0f - rt) * rt;
2019-12-20 20:35:39 +01:00
gct - > applyPairwiseTransform ( pairwise : : Subtract , xt , * temp1 ) ; // temp1 = (g_ct - xt)
rtMinus - > applyPairwiseTransform ( pairwise : : Multiply , rt , * temp2 ) ; // temp2 = (1.0f - rt) * rt;
temp1 - > applyPairwiseTransform ( pairwise : : Multiply , * temp2 ) ; // temp1 = (g_ct - xt) * (1.0f - rt) * rt;
inGradHt . applyPairwiseTransform ( pairwise : : Multiply , * temp1 , gradBRt ) ; // = inGradHt * (g_ct - xt) * (1.0f - rt) * rt;
2019-06-06 14:21:15 +02:00
// bF, TODO - tanh
// gradTanh = (1.0f - g_ct * g_ct);
2019-12-20 20:35:39 +01:00
gct - > applyPairwiseTransform ( pairwise : : Multiply , * gct , * gradTanh ) ; // gradTanh = g_ct * g_ct
gradTanh - > applyTransform ( transform : : OneMinus , * gradTanh ) ; // gradTanh = (1.0f - g_ct * g_ct)
2019-06-06 14:21:15 +02:00
// gradCt = inGradHt * rt * gradTanh
2019-12-20 20:35:39 +01:00
rt . applyPairwiseTransform ( pairwise : : Multiply , * gradTanh , * gradCt ) ; // gradCt = rt * gradTanh
inGradHt . applyPairwiseTransform ( pairwise : : Multiply , * gradCt , * gradCt ) ; // gradCt = inGradHt * rt * gradTanh
2019-06-06 14:21:15 +02:00
// gradBFt = (gradCt + inGradCt) * (ct_1 - zt) * (1 - ft) * ft;
2019-12-20 20:35:39 +01:00
gradCt - > applyPairwiseTransform ( pairwise : : Add , * inGradCt , * temp1 ) ; // temp1 = (gradCt + inGradCt)
ct_1 - > applyPairwiseTransform ( pairwise : : Subtract , zt , * temp2 ) ; // temp2 = (ct_1 - zt)
temp1 - > applyPairwiseTransform ( pairwise : : Multiply , * ftMinus , * temp1 ) ; // temp1 = (gradCt + inGradCt)*(1-ft)
temp1 - > applyPairwiseTransform ( pairwise : : Multiply , ft , * temp1 ) ; // temp1 = (gradCt + inGradCt)*(1-ft)*ft
temp1 - > applyPairwiseTransform ( pairwise : : Multiply , * temp2 , gradBFt ) ; // gradBFt = (gradCt + inGradCt) * (ct_1 - zt) * (1 - ft) * ft;
2019-06-06 14:21:15 +02:00
// x_t (highway connection), gradHXt = inGradHt * (1.0f - rt);
2019-12-20 20:35:39 +01:00
inGradHt . applyPairwiseTransform ( pairwise : : Multiply , * rtMinus , gradHXt ) ;
2019-06-06 14:21:15 +02:00
// U_t, gradUZt = (inGradHt * rt * grad_tanh + inGradCt) * (1.0f - ft);
2019-12-20 20:35:39 +01:00
rt . applyPairwiseTransform ( pairwise : : Multiply , * gradTanh , * temp1 ) ; // temp1 = rt * grad_tanh
inGradHt . applyPairwiseTransform ( pairwise : : Multiply , * temp1 , * temp1 ) ; // temp1 = inGradHt * rt * grad_tanh
temp1 - > applyPairwiseTransform ( pairwise : : Add , * inGradCt , * temp1 ) ; // temp1 = inGradHt * rt * grad_tanh + inGradCt
temp1 - > applyPairwiseTransform ( pairwise : : Multiply , * ftMinus , gradUZt ) ; // gradUZt = (inGradHt * rt * grad_tanh + inGradCt) * (1.0f - ft);
2019-06-06 14:21:15 +02:00
gradUFt . assign ( & gradBFt ) ;
gradURt . assign ( & gradBRt ) ;
// c_{t-1}, inGradCt = (gradCt + inGradCt) * ft;
2019-12-20 20:35:39 +01:00
gradCt - > applyPairwiseTransform ( pairwise : : Add , * inGradCt , * temp1 ) ; // temp1 = (gradCt + inGradCt)
temp1 - > applyPairwiseTransform ( pairwise : : Multiply , ft , * inGradCt ) ; // inGradCt = (gradCt + inGradCt) * ft;
2019-06-06 14:21:15 +02:00
if ( t ! = 0 )
delete ct_1 ;
}
// gradInit
gradInit - > assign ( inGradCt ) ;
2019-07-12 10:51:51 +02:00
// gradX
2019-06-06 14:21:15 +02:00
auto weightsT = w - > transpose ( ) ; // [K x 3K]
Merge master to upstream (#7945)
* Shugeo strided slice zeros (#14)
* Modified strided_slice op to properly work with empty-like shapes.
* Fixed test for reduce_mean with empty-like input.
* [WIP] Last merge (#15)
* correct logsoftmax looss (#2)
* Small SameDiff listener fix (#4)
* Various fixes (#6)
* #7839 Fix for asXMatrix and tests
* #7866 EmbeddingSequenceLayer dtype fix + test
* #7856 SameDiff save/load stream methods
* #7859 RegressionEvaluation rank 4 fix + tests + axis configuration
* EvaluationBinary 3d/4d
* More evaluation 3d/4d tests
* #7847 Evaluation empty checks
* Small test ifx
* #7848 Fix median edge case
* Improve DL4J samediff layer tests
* [WIP] FastText wrapper implemented (#8)
* FastText implemented
* Some fixes
* Fix shapes for wordsNearest
* Validation of input vectors
* Fixes
* Fixed test
* Thread tagged
* Some tweaks
* setContextClassLoader for DeallocatorServiceThread
* Numpy format tests (#1)
* Various fixes (#11)
* #7852 SameDiff gather fix
* #7892 SameDiff placeholder to constant conversion
* #7890 validate input rank for MLN/CG init methods
* Fix broken permute shape calculation
* Permute and gather fixes
* Tests
* #7850 LogSumExp fix + test
* Handful of test fixes
* Empty arrays with non-scalar shapes (#10)
* minor rearrangements for lambdas
* empty tensors with non-scalar shapes
* numpy empty tensors with non-scalar shapes
* few more empty tweaks
* Small fixes
* conv3d signature update
* micro fix in batchnorm mkldnn
* Import fixes
* Fix
* MKL-DNN update
* Small fill fix
* fill with empty input + test
* Fixes
* Small error improvement
* Fix
* one special test
* couple of fixes for lstm
* Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone
* Fixes
* FP16
* Unsigned
* BFloat16
* Fill op - empty tweaks
* - couple of fixes for empty arrays construction
- stack updated
* strided slice fix
* one transform test
* provide method for reducing shapeInfo in case of input array is empty
* Fixed reduceAlongDimensions to use empty input properly.
* couple of broadcast tests
* couple of tests broadcast tests + tweak to make them pass
* add check of non-empty to methods producing sub-arrays
* Fixed reshapeC with zeros in shape.
* complete empty check in reduce_... legacy ops
* Concat and cumsum/prod
* Tweak to empty shape inference on import
* add empty check to the rest of reduce legacy ops
* one more test
* correct typo in evalReduceShapeInfoEmpty
* Added tests for reduce_* ops to tests with zero shapes.
* few more tests for empty reductions
* Fixed strided_slice op with empty case and tests.
* one more empty reduction test
* Fixed strided_slice test.
* add empty check to NDArray::reshapei
* infOrMax
* empty min/max with infinity tests
* made unstack working correctly with empty arrays
* few IndexReduce tests + tweaks for empty shapes
* add test for empty concat
* few tests fixed
* Validation fix for reductions on empty shapes
* Reverse fix
* Reduction shape calc fixes
* SameDiff.generateOutputVariable: don't use shape function to determine number of outputs
* Range fix
* - NDArray constructor updated for scalars/empty arrays
- few tests fixed
* More fixes
* Empty creator fixes
* concat fix
* concat fix
* TF import tests: allow 'both all NaN' and 'both all inf' to pass
* Slice, zero fraction, and reshape fixes
* transpose, gather
* Zero fraction
* scalar cast fix
* Empty reduction axis support
* few more tests fixed
* Fixed input checks conforming with TF for concat op and tests.
* few tests fixed
* matmul scalar shape fix
* Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats.
* broadcast bool fix
* few more tests
* few more tests
* correct evalReduceShapeInfoEmpty
* argmax/argmin + tests
* one more empty edge case + one more test
* argmax/argmin/realdiv_bp tweaks
* empty reshape test + fix
* Helper fixes
* Small fixes
* Gather test fix
* Gather test fix
* Small fixes
* reduce scalar zero values
* scalar mean workaround
* Remove debug code
* along dim mean workaround
* one more test
* - equalsTo() tweak for empty arrays
- one more test
* broadcast tweaks
* [WIP] Fixing outstanding issues for NLP (#9)
* Avoid using not-inited objects
* Test fixed.
* Redundant method avoided for models like FastText
* KMeans++ implementation
* KMeans++ implementation
* Disable parallel execution
* KMeans++
* Tests
* Dev branch merge (#16)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Fix some issues on master (#17)
* Fix DataVec test issue
* Fix issue with dl4j SameDiff output layer
* Dtype fix for lambda layers
* #7912 BertIterator dtype fix (use float32 not global default)
* [WIP] Next set of CUDA stuff (#7)
New CUDA implementations and improvements
* bad file
* Dev branch master merge (#23)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Compatibility of deserialization (#18)
Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
* SameDiff: add activation gradient checking support for debugging (#19)
* SameDiff gradient checker: first pass on activation gradient checks
* Fixes + tests for activation gradient checking
* Javadoc
* [WIP] Some nd4j data type corrections (#20)
* Adjust data type
* Set correct Data type.
* Size of proper data type.
* fix averaged cpu load (#22)
* SameDiff ops, TF import and fixes (#24)
* CheckNumerics tests + fixes + misc fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fake quant
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* FakeQuantWithMinMaxArgs
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* CheckNumerics fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix libnd4j ALL_INTS and ALL_FLOATS declaration (uint and bfloat types)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Small fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Javadoc
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Exception tweak
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix for out of scope stack allocated var use
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Ignores
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Ignore for known failing test (already logged issue)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Merge upstream to fork (#25)
* Add thousand-separator commas to TotalParams (#7915)
* Add thousand-separator commas to TotalParams
The number of parameters can be quite large, and it would help the reading of the summary printout to have the TotalParams column & values at the bottom have thousand-separator-commas in them.
* Add thousand-separator commas to MultiLayerNetwork
Corresponding change to MultiLayerNetwork
Signed-off-by: Jxtps Jxtps <jxtps435@gmail.com>
* Update contributing and issue/PR templates (#7934)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix link to AdaDelta paper (#7942)
Fix link to AdaDelta paper hosted on matthewzeiler.com
Signed-off-by: Jxtps
* Fixes, and ignores for known/logged failing issues (#7943)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* SameDiff + DL4J/SameDiff: Multiple fixes (#28)
* #7919 HDF5 attribute buffer length fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7909 Arbiter constructor exception ux improvements
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7925 RNN output layer length checks
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7939 Add listener for validating inputs are not incorrectly modified
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7939 Integrate NonInplaceValidationListener into tests
* #7844 DL4J SameDiff fixes for variable minibatch size
* DL4J SameDiff fixes - ensure gradient for input placeholder is available
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Tweaks to ExternalErrorsFunction - use placeholders, make more robust
* Another fix
* More fixes
* More SameDiff/DL4J fixes
* Scope out scalar array creation in BaseScalarOp
* Remove debug code
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] Final dev branch merge (#29)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Compatibility of deserialization (#18)
Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
* SameDiff: add activation gradient checking support for debugging (#19)
* SameDiff gradient checker: first pass on activation gradient checks
* Fixes + tests for activation gradient checking
* Javadoc
* [WIP] Some nd4j data type corrections (#20)
* Adjust data type
* Set correct Data type.
* Size of proper data type.
* fix averaged cpu load (#22)
* [WIP] Multiple dataset iterators (#27)
* Splitting dataset into arbitrary number
* Fixes
* Multiple split of iterator
* Test
* Test
* Some fixes
* signature change
* one more tweak
Signed-off-by: raver119 <raver119@gmail.com>
* one more test for sequential use of DataSetIteratorSplitter
Signed-off-by: raver119 <raver119@gmail.com>
* Fixes
* Fixes
* one more test for Alexander
Signed-off-by: raver119 <raver119@gmail.com>
* Some fixes
* Some fixes
* one more test for Alexander
Signed-off-by: raver119 <raver119@gmail.com>
* minor test fix
Signed-off-by: raver119 <raver119@gmail.com>
* Some fixes
* Some fixes
* couple of assertions tweaked
Signed-off-by: raver119 <raver119@gmail.com>
* MDS splitter test :/
Signed-off-by: raver119 <raver119@gmail.com>
* Minor refactoring
* Multi dataset
* Some fixes
* More tests
* Small number of test fixes/improvements (failures on CI) (#31)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] More CUDA stuff (#26)
* initial commit
Signed-off-by: raver119 <raver119@gmail.com>
* LRN BP CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* less memory
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed bug with crop_and_resize op helper.
* get rid of unnecessary index-calculation dunction
Signed-off-by: Yurii <yurii@skymind.io>
* Fixed sort with nth_element cuda-based helper.
* Refactored nth_element.
* Refactored nth_element op and tests.
* Modified usage of dim array with sortTad routine.
* Refactored main routine of helper for non_max_image_suppression op.
* non_max_image_suppression op helper with cuda kernel implementation. Initial revision.
* fix vol2col cuda kernel
* meh
Signed-off-by: raver119 <raver119@gmail.com>
* topK concept
Signed-off-by: raver119 <raver119@gmail.com>
* unsorted topK with scanWitdh of 1
Signed-off-by: raver119 <raver119@gmail.com>
* correct vol2col tests
* sorted/unsorted topK
Signed-off-by: raver119 <raver119@gmail.com>
* implementation and fixing col2im/col2vol
* Corrected usage flags with input/output with reverse op.
* dup is const now
Signed-off-by: raver119 <raver119@gmail.com>
* percentile op
Signed-off-by: raver119 <raver119@gmail.com>
* group tests for mapool2d
Signed-off-by: Yurii <yurii@skymind.io>
* special test for george
Signed-off-by: raver119 <raver119@gmail.com>
* less threads for sortTad
Signed-off-by: raver119 <raver119@gmail.com>
* provide conv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* remove auther in sort tad kernel code
Signed-off-by: Yurii <yurii@skymind.io>
* provide depthwise_conv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* - max_pooling_with_argmax
- null check for special use
Signed-off-by: raver119 <raver119@gmail.com>
* dts cuda
Signed-off-by: raver119 <raver119@gmail.com>
* provide sconv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* std cuda
Signed-off-by: raver119 <raver119@gmail.com>
* Refactored non_max_suppression op to conform TF implementation.
* Improved suppression helper.
* provide pooling3d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* minor lstm rearrangements
Signed-off-by: raver119 <raver119@gmail.com>
* more of minor lstm rearrangements
Signed-off-by: raver119 <raver119@gmail.com>
* (bi)dynamic_rnn
Signed-off-by: raver119 <raver119@gmail.com>
* templates init order
Signed-off-by: raver119 <raver119@gmail.com>
* Refactored non_max_suppression op.
* Added cuda kernel for non_max_suppression.
* CPU sort by key/value
Signed-off-by: raver119 <raver119@gmail.com>
* CPU sort TAD by key/value
Signed-off-by: raver119 <raver119@gmail.com>
* CPU sort TAD by key/value tests
Signed-off-by: raver119 <raver119@gmail.com>
* Eliminate compiler error with cuda implementation.
* - repaired gradCheck in cuda
- provide conv2d_bp for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* missed signature
Signed-off-by: raver119 <raver119@gmail.com>
* provide depthwise_conv2d_bp for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* Implementation of lup helper with cuda kernel. Initial commit.
* further work on backprops for convolutions
Signed-off-by: Yurii <yurii@skymind.io>
* CUDA linear sort by key/val
Signed-off-by: raver119 <raver119@gmail.com>
* CUDA tad sort by key/val
Signed-off-by: raver119 <raver119@gmail.com>
* start providing of backprop for pooling2d/3d
Signed-off-by: Yurii <yurii@skymind.io>
* Added atomicAdd for bool datatype.
* dynamic partition concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic partition concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic partition scalar CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* important comment
Signed-off-by: raver119 <raver119@gmail.com>
* fix pooling2d/3d backprop helpers
Signed-off-by: Yurii <yurii@skymind.io>
* Added non-linear test with dynamic_partition.
* Improved test for dynamic_partition.
* dynamic_partition TAD concept
Signed-off-by: raver119 <raver119@gmail.com>
* - dynamic_partition TAD CUDA impl
- dynamic_partition TAD CPU fix
Signed-off-by: raver119 <raver119@gmail.com>
* - rewrite cpu code for usampling2d/3d
- write cuda code for usampling2d/3d
Signed-off-by: Yurii <yurii@skymind.io>
* dynamic_stitch CUDA vector case
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic_stitch CUDA TAD case concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic_stitch CUDA TAD case impl
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for dynamic_stitch 3D-4D cases.
* minor tests tweaks
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed type check for dynamic stitch.
* min/max bp
Signed-off-by: raver119 <raver119@gmail.com>
* rewrite code for upsampling2d/3d cpu
Signed-off-by: Yurii <yurii@skymind.io>
* reduce min/max/norm_max bp
Signed-off-by: raver119 <raver119@gmail.com>
* lup implementation. Additional enhancements.
* provide code for upsamling2d/3d backprop
Signed-off-by: Yurii <yurii@skymind.io>
* weightedCrossEntropyWithLogits
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed template math atomicMul for 64bit ints.
* Refactored dynamic_partition_bp op.
* inverseBroadcast fix
Signed-off-by: raver119 <raver119@gmail.com>
* DynamicPartitionBP test datatype fixed.
* - nd4j_atomicMul Windows fix
- cpu/NDArrayLambda.hpp excluded from CUDA
Signed-off-by: raver119 <raver119@gmail.com>
2019-06-27 17:37:04 +02:00
MmulHelper : : mmul ( & weightsT , gradU , gradX , 1. , 0. ) ; // [bS x K x N]
2019-12-20 20:35:39 +01:00
gradX - > applyPairwiseTransform ( pairwise : : Add , * gradHX , * gradX ) ; // + grad_highway_x
2019-06-06 14:21:15 +02:00
if ( applyMask )
2019-12-20 20:35:39 +01:00
gradX - > applyBroadcast ( broadcast : : Multiply , { 0 , 1 } , * mask , * gradX ) ; // apply mask
2019-06-06 14:21:15 +02:00
2019-07-12 10:51:51 +02:00
// gradB
2019-06-06 14:21:15 +02:00
auto temp3 = gradBias - > reduceAlongDimension ( reduce : : Sum , { 0 , 2 } , false , true ) ; // [1 x 2K]
gradB - > assign ( temp3 ) ;
// gradW [bS x 3K x K]
x - > permutei ( { 0 , 2 , 1 } ) ; // [bS x N x K]
MmulHelper : : mmul ( gradU , x , gradW , 1. , 0. ) ; // [bS x 3K x K]
delete gct ; delete gradU ; delete gradHX ;
2019-12-20 20:35:39 +01:00
delete temp1 ; delete temp2 ; delete gradCt ; delete wi ;
Merge master to upstream (#7945)
* Shugeo strided slice zeros (#14)
* Modified strided_slice op to properly work with empty-like shapes.
* Fixed test for reduce_mean with empty-like input.
* [WIP] Last merge (#15)
* correct logsoftmax looss (#2)
* Small SameDiff listener fix (#4)
* Various fixes (#6)
* #7839 Fix for asXMatrix and tests
* #7866 EmbeddingSequenceLayer dtype fix + test
* #7856 SameDiff save/load stream methods
* #7859 RegressionEvaluation rank 4 fix + tests + axis configuration
* EvaluationBinary 3d/4d
* More evaluation 3d/4d tests
* #7847 Evaluation empty checks
* Small test ifx
* #7848 Fix median edge case
* Improve DL4J samediff layer tests
* [WIP] FastText wrapper implemented (#8)
* FastText implemented
* Some fixes
* Fix shapes for wordsNearest
* Validation of input vectors
* Fixes
* Fixed test
* Thread tagged
* Some tweaks
* setContextClassLoader for DeallocatorServiceThread
* Numpy format tests (#1)
* Various fixes (#11)
* #7852 SameDiff gather fix
* #7892 SameDiff placeholder to constant conversion
* #7890 validate input rank for MLN/CG init methods
* Fix broken permute shape calculation
* Permute and gather fixes
* Tests
* #7850 LogSumExp fix + test
* Handful of test fixes
* Empty arrays with non-scalar shapes (#10)
* minor rearrangements for lambdas
* empty tensors with non-scalar shapes
* numpy empty tensors with non-scalar shapes
* few more empty tweaks
* Small fixes
* conv3d signature update
* micro fix in batchnorm mkldnn
* Import fixes
* Fix
* MKL-DNN update
* Small fill fix
* fill with empty input + test
* Fixes
* Small error improvement
* Fix
* one special test
* couple of fixes for lstm
* Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone
* Fixes
* FP16
* Unsigned
* BFloat16
* Fill op - empty tweaks
* - couple of fixes for empty arrays construction
- stack updated
* strided slice fix
* one transform test
* provide method for reducing shapeInfo in case of input array is empty
* Fixed reduceAlongDimensions to use empty input properly.
* couple of broadcast tests
* couple of tests broadcast tests + tweak to make them pass
* add check of non-empty to methods producing sub-arrays
* Fixed reshapeC with zeros in shape.
* complete empty check in reduce_... legacy ops
* Concat and cumsum/prod
* Tweak to empty shape inference on import
* add empty check to the rest of reduce legacy ops
* one more test
* correct typo in evalReduceShapeInfoEmpty
* Added tests for reduce_* ops to tests with zero shapes.
* few more tests for empty reductions
* Fixed strided_slice op with empty case and tests.
* one more empty reduction test
* Fixed strided_slice test.
* add empty check to NDArray::reshapei
* infOrMax
* empty min/max with infinity tests
* made unstack working correctly with empty arrays
* few IndexReduce tests + tweaks for empty shapes
* add test for empty concat
* few tests fixed
* Validation fix for reductions on empty shapes
* Reverse fix
* Reduction shape calc fixes
* SameDiff.generateOutputVariable: don't use shape function to determine number of outputs
* Range fix
* - NDArray constructor updated for scalars/empty arrays
- few tests fixed
* More fixes
* Empty creator fixes
* concat fix
* concat fix
* TF import tests: allow 'both all NaN' and 'both all inf' to pass
* Slice, zero fraction, and reshape fixes
* transpose, gather
* Zero fraction
* scalar cast fix
* Empty reduction axis support
* few more tests fixed
* Fixed input checks conforming with TF for concat op and tests.
* few tests fixed
* matmul scalar shape fix
* Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats.
* broadcast bool fix
* few more tests
* few more tests
* correct evalReduceShapeInfoEmpty
* argmax/argmin + tests
* one more empty edge case + one more test
* argmax/argmin/realdiv_bp tweaks
* empty reshape test + fix
* Helper fixes
* Small fixes
* Gather test fix
* Gather test fix
* Small fixes
* reduce scalar zero values
* scalar mean workaround
* Remove debug code
* along dim mean workaround
* one more test
* - equalsTo() tweak for empty arrays
- one more test
* broadcast tweaks
* [WIP] Fixing outstanding issues for NLP (#9)
* Avoid using not-inited objects
* Test fixed.
* Redundant method avoided for models like FastText
* KMeans++ implementation
* KMeans++ implementation
* Disable parallel execution
* KMeans++
* Tests
* Dev branch merge (#16)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Fix some issues on master (#17)
* Fix DataVec test issue
* Fix issue with dl4j SameDiff output layer
* Dtype fix for lambda layers
* #7912 BertIterator dtype fix (use float32 not global default)
* [WIP] Next set of CUDA stuff (#7)
New CUDA implementations and improvements
* bad file
* Dev branch master merge (#23)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Compatibility of deserialization (#18)
Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
* SameDiff: add activation gradient checking support for debugging (#19)
* SameDiff gradient checker: first pass on activation gradient checks
* Fixes + tests for activation gradient checking
* Javadoc
* [WIP] Some nd4j data type corrections (#20)
* Adjust data type
* Set correct Data type.
* Size of proper data type.
* fix averaged cpu load (#22)
* SameDiff ops, TF import and fixes (#24)
* CheckNumerics tests + fixes + misc fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fake quant
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* FakeQuantWithMinMaxArgs
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* CheckNumerics fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix libnd4j ALL_INTS and ALL_FLOATS declaration (uint and bfloat types)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Small fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Javadoc
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Exception tweak
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix for out of scope stack allocated var use
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Ignores
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Ignore for known failing test (already logged issue)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Merge upstream to fork (#25)
* Add thousand-separator commas to TotalParams (#7915)
* Add thousand-separator commas to TotalParams
The number of parameters can be quite large, and it would help the reading of the summary printout to have the TotalParams column & values at the bottom have thousand-separator-commas in them.
* Add thousand-separator commas to MultiLayerNetwork
Corresponding change to MultiLayerNetwork
Signed-off-by: Jxtps Jxtps <jxtps435@gmail.com>
* Update contributing and issue/PR templates (#7934)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix link to AdaDelta paper (#7942)
Fix link to AdaDelta paper hosted on matthewzeiler.com
Signed-off-by: Jxtps
* Fixes, and ignores for known/logged failing issues (#7943)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* SameDiff + DL4J/SameDiff: Multiple fixes (#28)
* #7919 HDF5 attribute buffer length fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7909 Arbiter constructor exception ux improvements
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7925 RNN output layer length checks
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7939 Add listener for validating inputs are not incorrectly modified
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7939 Integrate NonInplaceValidationListener into tests
* #7844 DL4J SameDiff fixes for variable minibatch size
* DL4J SameDiff fixes - ensure gradient for input placeholder is available
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Tweaks to ExternalErrorsFunction - use placeholders, make more robust
* Another fix
* More fixes
* More SameDiff/DL4J fixes
* Scope out scalar array creation in BaseScalarOp
* Remove debug code
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] Final dev branch merge (#29)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Compatibility of deserialization (#18)
Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
* SameDiff: add activation gradient checking support for debugging (#19)
* SameDiff gradient checker: first pass on activation gradient checks
* Fixes + tests for activation gradient checking
* Javadoc
* [WIP] Some nd4j data type corrections (#20)
* Adjust data type
* Set correct Data type.
* Size of proper data type.
* fix averaged cpu load (#22)
* [WIP] Multiple dataset iterators (#27)
* Splitting dataset into arbitrary number
* Fixes
* Multiple split of iterator
* Test
* Test
* Some fixes
* signature change
* one more tweak
Signed-off-by: raver119 <raver119@gmail.com>
* one more test for sequential use of DataSetIteratorSplitter
Signed-off-by: raver119 <raver119@gmail.com>
* Fixes
* Fixes
* one more test for Alexander
Signed-off-by: raver119 <raver119@gmail.com>
* Some fixes
* Some fixes
* one more test for Alexander
Signed-off-by: raver119 <raver119@gmail.com>
* minor test fix
Signed-off-by: raver119 <raver119@gmail.com>
* Some fixes
* Some fixes
* couple of assertions tweaked
Signed-off-by: raver119 <raver119@gmail.com>
* MDS splitter test :/
Signed-off-by: raver119 <raver119@gmail.com>
* Minor refactoring
* Multi dataset
* Some fixes
* More tests
* Small number of test fixes/improvements (failures on CI) (#31)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] More CUDA stuff (#26)
* initial commit
Signed-off-by: raver119 <raver119@gmail.com>
* LRN BP CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* less memory
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed bug with crop_and_resize op helper.
* get rid of unnecessary index-calculation dunction
Signed-off-by: Yurii <yurii@skymind.io>
* Fixed sort with nth_element cuda-based helper.
* Refactored nth_element.
* Refactored nth_element op and tests.
* Modified usage of dim array with sortTad routine.
* Refactored main routine of helper for non_max_image_suppression op.
* non_max_image_suppression op helper with cuda kernel implementation. Initial revision.
* fix vol2col cuda kernel
* meh
Signed-off-by: raver119 <raver119@gmail.com>
* topK concept
Signed-off-by: raver119 <raver119@gmail.com>
* unsorted topK with scanWitdh of 1
Signed-off-by: raver119 <raver119@gmail.com>
* correct vol2col tests
* sorted/unsorted topK
Signed-off-by: raver119 <raver119@gmail.com>
* implementation and fixing col2im/col2vol
* Corrected usage flags with input/output with reverse op.
* dup is const now
Signed-off-by: raver119 <raver119@gmail.com>
* percentile op
Signed-off-by: raver119 <raver119@gmail.com>
* group tests for mapool2d
Signed-off-by: Yurii <yurii@skymind.io>
* special test for george
Signed-off-by: raver119 <raver119@gmail.com>
* less threads for sortTad
Signed-off-by: raver119 <raver119@gmail.com>
* provide conv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* remove auther in sort tad kernel code
Signed-off-by: Yurii <yurii@skymind.io>
* provide depthwise_conv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* - max_pooling_with_argmax
- null check for special use
Signed-off-by: raver119 <raver119@gmail.com>
* dts cuda
Signed-off-by: raver119 <raver119@gmail.com>
* provide sconv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* std cuda
Signed-off-by: raver119 <raver119@gmail.com>
* Refactored non_max_suppression op to conform TF implementation.
* Improved suppression helper.
* provide pooling3d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* minor lstm rearrangements
Signed-off-by: raver119 <raver119@gmail.com>
* more of minor lstm rearrangements
Signed-off-by: raver119 <raver119@gmail.com>
* (bi)dynamic_rnn
Signed-off-by: raver119 <raver119@gmail.com>
* templates init order
Signed-off-by: raver119 <raver119@gmail.com>
* Refactored non_max_suppression op.
* Added cuda kernel for non_max_suppression.
* CPU sort by key/value
Signed-off-by: raver119 <raver119@gmail.com>
* CPU sort TAD by key/value
Signed-off-by: raver119 <raver119@gmail.com>
* CPU sort TAD by key/value tests
Signed-off-by: raver119 <raver119@gmail.com>
* Eliminate compiler error with cuda implementation.
* - repaired gradCheck in cuda
- provide conv2d_bp for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* missed signature
Signed-off-by: raver119 <raver119@gmail.com>
* provide depthwise_conv2d_bp for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* Implementation of lup helper with cuda kernel. Initial commit.
* further work on backprops for convolutions
Signed-off-by: Yurii <yurii@skymind.io>
* CUDA linear sort by key/val
Signed-off-by: raver119 <raver119@gmail.com>
* CUDA tad sort by key/val
Signed-off-by: raver119 <raver119@gmail.com>
* start providing of backprop for pooling2d/3d
Signed-off-by: Yurii <yurii@skymind.io>
* Added atomicAdd for bool datatype.
* dynamic partition concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic partition concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic partition scalar CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* important comment
Signed-off-by: raver119 <raver119@gmail.com>
* fix pooling2d/3d backprop helpers
Signed-off-by: Yurii <yurii@skymind.io>
* Added non-linear test with dynamic_partition.
* Improved test for dynamic_partition.
* dynamic_partition TAD concept
Signed-off-by: raver119 <raver119@gmail.com>
* - dynamic_partition TAD CUDA impl
- dynamic_partition TAD CPU fix
Signed-off-by: raver119 <raver119@gmail.com>
* - rewrite cpu code for usampling2d/3d
- write cuda code for usampling2d/3d
Signed-off-by: Yurii <yurii@skymind.io>
* dynamic_stitch CUDA vector case
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic_stitch CUDA TAD case concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic_stitch CUDA TAD case impl
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for dynamic_stitch 3D-4D cases.
* minor tests tweaks
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed type check for dynamic stitch.
* min/max bp
Signed-off-by: raver119 <raver119@gmail.com>
* rewrite code for upsampling2d/3d cpu
Signed-off-by: Yurii <yurii@skymind.io>
* reduce min/max/norm_max bp
Signed-off-by: raver119 <raver119@gmail.com>
* lup implementation. Additional enhancements.
* provide code for upsamling2d/3d backprop
Signed-off-by: Yurii <yurii@skymind.io>
* weightedCrossEntropyWithLogits
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed template math atomicMul for 64bit ints.
* Refactored dynamic_partition_bp op.
* inverseBroadcast fix
Signed-off-by: raver119 <raver119@gmail.com>
* DynamicPartitionBP test datatype fixed.
* - nd4j_atomicMul Windows fix
- cpu/NDArrayLambda.hpp excluded from CUDA
Signed-off-by: raver119 <raver119@gmail.com>
2019-06-27 17:37:04 +02:00
delete gradTanh ; delete ftMinus ; delete rtMinus ; delete gradBias ;
2019-07-12 10:51:51 +02:00
2019-06-06 14:21:15 +02:00
return Status : : OK ( ) ;
}
DECLARE_TYPES ( sru_bp ) {
getOpDescriptor ( )
- > setAllowedInputTypes ( nd4j : : DataType : : ANY )
- > setAllowedOutputTypes ( { ALL_FLOATS } ) ;
}
DECLARE_SHAPE_FN ( sru_bp ) {
auto inShape = inputShape - > at ( 0 ) ; // [bS x inSize x time]
auto bS = inShape [ 1 ] ;
auto inSize = inShape [ 2 ] ;
auto time = inShape [ 3 ] ;
char order = ( char ) ( inShape [ 9 ] ) ;
ShapeDescriptor descriptor1 ( ArrayOptions : : dataType ( inShape ) , order , { bS , inSize , time } ) ;
ShapeDescriptor descriptor2 ( ArrayOptions : : dataType ( inShape ) , order , { bS , 3 * inSize , inSize } ) ;
ShapeDescriptor descriptor3 ( ArrayOptions : : dataType ( inShape ) , order , { 1 , 2 * inSize } ) ;
ShapeDescriptor descriptor4 ( ArrayOptions : : dataType ( inShape ) , order , { bS , inSize } ) ;
return SHAPELIST ( ConstantShapeHelper : : getInstance ( ) - > createShapeInfo ( descriptor1 ) , ConstantShapeHelper : : getInstance ( ) - > createShapeInfo ( descriptor2 ) , ConstantShapeHelper : : getInstance ( ) - > createShapeInfo ( descriptor3 ) , ConstantShapeHelper : : getInstance ( ) - > createShapeInfo ( descriptor4 ) ) ;
2019-07-12 10:51:51 +02:00
}
2019-06-06 14:21:15 +02:00
//////////////////////////////////////////////////////////////////////////
2019-07-12 10:51:51 +02:00
CUSTOM_OP_IMPL ( sru_bi , 5 , 2 , true , 0 , 0 ) {
2019-06-06 14:21:15 +02:00
auto x = INPUT_VARIABLE ( 0 ) ; // X, input 3d tensor [time x bS x 2*inSize], time - number of time steps, bS - batch size, inSize - number of features
auto w = INPUT_VARIABLE ( 1 ) ; // W, 2d tensor of weights [2*inSize x 6*inSize]
2019-07-08 09:58:48 +02:00
auto b = INPUT_VARIABLE ( 2 ) ; // B, row of biases with twice length [1 x 4*inSize]
2019-06-06 14:21:15 +02:00
auto c0 = INPUT_VARIABLE ( 3 ) ; // C_{0}, 2d tensor of initial state [bS x 2*inSize] at time t=0
NDArray * mask = block . width ( ) > 4 ? INPUT_VARIABLE ( 4 ) : nullptr ; // optional, 2d tensor of dropout mask [bS x 2*inSize]
2019-07-12 10:51:51 +02:00
2019-06-06 14:21:15 +02:00
auto ht = OUTPUT_VARIABLE ( 0 ) ; // h_t, [time x bS x 2*inSize]
2019-07-12 10:51:51 +02:00
auto ct = OUTPUT_VARIABLE ( 1 ) ; // c_t, [time x bS x 2*inSize]
2019-06-06 14:21:15 +02:00
// input shapes validation
const int rank = x - > rankOf ( ) ;
const Nd4jLong bS = x - > sizeAt ( 1 ) ;
const Nd4jLong inSize = x - > sizeAt ( 2 ) / 2 ;
REQUIRE_TRUE ( x - > rankOf ( ) = = rank , 0 , " SRU_BI operation: wrong rank of input array, expected is %i, but got %i instead ! " , rank , x - > rankOf ( ) ) ;
REQUIRE_TRUE ( w - > rankOf ( ) = = rank - 1 , 0 , " SRU_BI operation: wrong rank of weights array, expected is %i, but got %i instead ! " , rank - 1 , w - > rankOf ( ) ) ;
2019-07-12 10:51:51 +02:00
REQUIRE_TRUE ( b - > rankOf ( ) = = 1 , 0 , " SRU_BI operation: wrong rank of biases array, expected is 1, but got %i instead ! " , b - > rankOf ( ) ) ;
REQUIRE_TRUE ( c0 - > rankOf ( ) = = rank - 1 , 0 , " SRU_BI operation: wrong rank of initial state array, expected is %i, but got %i instead ! " , rank - 1 , c0 - > rankOf ( ) ) ;
2019-06-06 14:21:15 +02:00
if ( mask )
REQUIRE_TRUE ( mask - > rankOf ( ) = = rank - 1 , 0 , " SRU_BI operation: wrong rank of mask array, expected is %i, but got %i instead ! " , rank - 1 , mask - > rankOf ( ) ) ;
const std : : string wShape = ShapeUtils : : shapeAsString ( w ) ;
const std : : string wCorrectShape = ShapeUtils : : shapeAsString ( { 2 * inSize , 6 * inSize } ) ;
const std : : string bShape = ShapeUtils : : shapeAsString ( b ) ;
2019-07-12 10:51:51 +02:00
const std : : string bCorrectShape = ShapeUtils : : shapeAsString ( { 4 * inSize } ) ;
2019-06-06 14:21:15 +02:00
const std : : string c0Shape = ShapeUtils : : shapeAsString ( c0 ) ;
const std : : string c0CorrectShape = ShapeUtils : : shapeAsString ( { bS , 2 * inSize } ) ;
REQUIRE_TRUE ( wShape = = wCorrectShape , 0 , " SRU_BI operation: wrong shape of weights array, expected is %s, but got %s instead ! " , wCorrectShape . c_str ( ) , wShape . c_str ( ) ) ;
2019-07-12 10:51:51 +02:00
REQUIRE_TRUE ( bShape = = bCorrectShape , 0 , " SRU_BI operation: wrong shape of biases array, expected is %s, but got %s instead ! " , bCorrectShape . c_str ( ) , bShape . c_str ( ) ) ;
2019-06-06 14:21:15 +02:00
REQUIRE_TRUE ( c0Shape = = c0CorrectShape , 0 , " SRU_BI operation: wrong shape of initial state array, expected is %s, but got %s instead ! " , c0CorrectShape . c_str ( ) , c0Shape . c_str ( ) ) ;
if ( mask ) {
const std : : string maskShape = ShapeUtils : : shapeAsString ( mask ) ;
REQUIRE_TRUE ( maskShape = = c0CorrectShape , 0 , " SRU_BI operation: wrong shape of mask array, expected is %s, but got %s instead ! " , c0CorrectShape . c_str ( ) , maskShape . c_str ( ) ) ;
}
helpers : : sruBI ( block . launchContext ( ) , x , w , b , c0 , mask , ht , ct ) ;
2019-07-12 10:51:51 +02:00
2019-06-06 14:21:15 +02:00
return Status : : OK ( ) ;
}
DECLARE_TYPES ( sru_bi ) {
getOpDescriptor ( )
- > setAllowedInputTypes ( nd4j : : DataType : : ANY )
- > setAllowedOutputTypes ( { ALL_FLOATS } ) ;
}
DECLARE_SHAPE_FN ( sru_bi ) {
auto xShapeInfo = inputShape - > at ( 0 ) ; // [time x bS x 2K ]
2019-07-12 10:51:51 +02:00
auto wShapeInfo = inputShape - > at ( 1 ) ;
auto bShapeInfo = inputShape - > at ( 2 ) ;
auto c0ShapeInfo = inputShape - > at ( 3 ) ;
2019-06-06 14:21:15 +02:00
Nd4jLong * maskShapeInfo = block . width ( ) > 4 ? inputShape - > at ( 4 ) : nullptr ; // optional, 2d tensor of dropout mask [bS x inSize]
const int rank = xShapeInfo [ 0 ] ; // = 3
const Nd4jLong time = xShapeInfo [ 1 ] ;
const Nd4jLong bS = xShapeInfo [ 2 ] ;
2019-07-12 10:51:51 +02:00
const Nd4jLong inSize = xShapeInfo [ 3 ] / 2 ;
2019-06-06 14:21:15 +02:00
// input shapes validation
REQUIRE_TRUE ( wShapeInfo [ 0 ] = = rank - 1 , 0 , " SRU_BI operation: wrong rank of weights array, expected is %i, but got %i instead ! " , rank - 1 , wShapeInfo [ 0 ] ) ;
2019-07-12 10:51:51 +02:00
REQUIRE_TRUE ( bShapeInfo [ 0 ] = = 1 , 0 , " SRU_BI operation: wrong rank of biases array, expected is 1, but got %i instead ! " , bShapeInfo [ 0 ] ) ;
2019-06-06 14:21:15 +02:00
REQUIRE_TRUE ( c0ShapeInfo [ 0 ] = = rank - 1 , 0 , " SRU_BI operation: wrong rank of initial state array, expected is %i, but got %i instead ! " , rank - 1 , c0ShapeInfo [ 0 ] ) ;
if ( maskShapeInfo )
REQUIRE_TRUE ( maskShapeInfo [ 0 ] = = rank - 1 , 0 , " SRU_BI operation: wrong rank of mask array, expected is %i, but got %i instead ! " , rank - 1 , maskShapeInfo [ 0 ] ) ;
const std : : string wShape = ShapeUtils : : shapeAsString ( wShapeInfo ) ;
const std : : string wCorrectShape = ShapeUtils : : shapeAsString ( { 2 * inSize , 6 * inSize } ) ;
const std : : string bShape = ShapeUtils : : shapeAsString ( bShapeInfo ) ;
2019-07-12 10:51:51 +02:00
const std : : string bCorrectShape = ShapeUtils : : shapeAsString ( { 4 * inSize } ) ;
2019-06-06 14:21:15 +02:00
const std : : string c0Shape = ShapeUtils : : shapeAsString ( c0ShapeInfo ) ;
const std : : string c0CorrectShape = ShapeUtils : : shapeAsString ( { bS , 2 * inSize } ) ;
REQUIRE_TRUE ( wShape = = wCorrectShape , 0 , " SRU_BI operation: wrong shape of weights array, expected is %s, but got %s instead ! " , wCorrectShape . c_str ( ) , wShape . c_str ( ) ) ;
2019-07-12 10:51:51 +02:00
REQUIRE_TRUE ( bShape = = bCorrectShape , 0 , " SRU_BI operation: wrong shape of biases array, expected is %s, but got %s instead ! " , bCorrectShape . c_str ( ) , bShape . c_str ( ) ) ;
2019-06-06 14:21:15 +02:00
REQUIRE_TRUE ( c0Shape = = c0CorrectShape , 0 , " SRU_BI operation: wrong shape of initial state array, expected is %s, but got %s instead ! " , c0CorrectShape . c_str ( ) , c0Shape . c_str ( ) ) ;
if ( maskShapeInfo ) {
const std : : string maskShape = ShapeUtils : : shapeAsString ( maskShapeInfo ) ;
REQUIRE_TRUE ( maskShape = = c0CorrectShape , 0 , " SRU_BI operation: wrong shape of mask array, expected is %s, but got %s instead ! " , c0CorrectShape . c_str ( ) , maskShape . c_str ( ) ) ;
}
char order = shape : : order ( xShapeInfo ) ;
ShapeDescriptor descriptor ( ArrayOptions : : dataType ( xShapeInfo ) , order , { time , bS , 2 * inSize } ) ;
auto result = ConstantShapeHelper : : getInstance ( ) - > createShapeInfo ( descriptor ) ;
return SHAPELIST ( result , result ) ;
}
DECLARE_TYPES ( sru_bi_bp ) {
getOpDescriptor ( )
- > setAllowedInputTypes ( nd4j : : DataType : : ANY )
- > setAllowedOutputTypes ( { ALL_FLOATS } ) ;
}
//////////////////////////////////////////////////////////////////////////
CUSTOM_OP_IMPL ( sru_bi_bp , 8 , 4 , true , 0 , 0 ) {
2019-07-12 10:51:51 +02:00
2019-06-06 14:21:15 +02:00
auto x = INPUT_VARIABLE ( 0 ) ; // X, input 3d tensor [time x bS x 2*inSize], time - number of time steps, bS - batch size, inSize - number of features
auto w = INPUT_VARIABLE ( 1 ) ; // W, 2d tensor of weights [2*inSize x 6*inSize]
2019-07-12 10:51:51 +02:00
auto b = INPUT_VARIABLE ( 2 ) ; // B, row of biases with twice length [4*inSize]
2019-06-06 14:21:15 +02:00
auto c0 = INPUT_VARIABLE ( 3 ) ; // C_{0}, 2d tensor of initial state [bS x 2*inSize] at time t=0
auto ct = INPUT_VARIABLE ( 4 ) ; // C, [time x bS x 2*inSize]
auto inGradC0 = INPUT_VARIABLE ( 5 ) ; // [bS x 2*inSize]
auto inGradHt = INPUT_VARIABLE ( 6 ) ; // [time x bS x 2*inSize]
2019-07-12 10:51:51 +02:00
NDArray * mask = block . width ( ) > 7 ? INPUT_VARIABLE ( 7 ) : nullptr ; // optional, 2d tensor of dropout mask [bS x 2*inSize]
2019-06-06 14:21:15 +02:00
// input shapes validation
const int rank = x - > rankOf ( ) ;
const Nd4jLong time = x - > sizeAt ( 0 ) ;
const Nd4jLong bS = x - > sizeAt ( 1 ) ;
const Nd4jLong inSize = x - > sizeAt ( 2 ) / 2 ;
REQUIRE_TRUE ( w - > rankOf ( ) = = rank - 1 , 0 , " SRU_BI_BP operation: wrong rank of weights array, expected is %i, but got %i instead ! " , rank - 1 , w - > rankOf ( ) ) ;
2019-07-12 10:51:51 +02:00
REQUIRE_TRUE ( b - > rankOf ( ) = = 1 , 0 , " SRU_BI_BP operation: wrong rank of biases array, expected is 1, but got %i instead ! " , b - > rankOf ( ) ) ;
2019-06-06 14:21:15 +02:00
REQUIRE_TRUE ( c0 - > rankOf ( ) = = rank - 1 , 0 , " SRU_BI_BP operation: wrong rank of initial state array, expected is %i, but got %i instead ! " , rank - 1 , c0 - > rankOf ( ) ) ;
REQUIRE_TRUE ( ct - > rankOf ( ) = = rank , 0 , " SRU_BI_BP operation: wrong rank of state array, expected is %i, but got %i instead ! " , rank , ct - > rankOf ( ) ) ;
REQUIRE_TRUE ( inGradC0 - > rankOf ( ) = = rank - 1 , 0 , " SRU_BI_BP operation: wrong rank of gradient c0, expected is %i, but got %i instead ! " , rank - 1 , inGradC0 - > rankOf ( ) ) ;
REQUIRE_TRUE ( inGradHt - > rankOf ( ) = = rank , 0 , " SRU_BI_BP operation: wrong rank of gradient ht, expected is %i, but got %i instead ! " , rank , inGradHt - > rankOf ( ) ) ;
if ( mask )
REQUIRE_TRUE ( mask - > rankOf ( ) = = rank - 1 , 0 , " SRU_BI_BP operation: wrong rank of mask array, expected is %i, but got %i instead ! " , rank - 1 , mask - > rankOf ( ) ) ;
const std : : string wShape = ShapeUtils : : shapeAsString ( w ) ;
const std : : string wCorrectShape = ShapeUtils : : shapeAsString ( { 2 * inSize , 6 * inSize } ) ;
const std : : string bShape = ShapeUtils : : shapeAsString ( b ) ;
2019-07-12 10:51:51 +02:00
const std : : string bCorrectShape = ShapeUtils : : shapeAsString ( { 4 * inSize } ) ;
2019-06-06 14:21:15 +02:00
const std : : string c0Shape = ShapeUtils : : shapeAsString ( c0 ) ;
const std : : string c0CorrectShape = ShapeUtils : : shapeAsString ( { bS , 2 * inSize } ) ;
const std : : string ctShape = ShapeUtils : : shapeAsString ( ct ) ;
const std : : string ctCorrectShape = ShapeUtils : : shapeAsString ( { time , bS , 2 * inSize } ) ;
REQUIRE_TRUE ( wShape = = wCorrectShape , 0 , " SRU_BI operation: wrong shape of weights array, expected is %s, but got %s instead ! " , wCorrectShape . c_str ( ) , wShape . c_str ( ) ) ;
REQUIRE_TRUE ( bShape = = bCorrectShape , 0 , " SRU_BI operation: wrong shape of biases array, expected is %s, but got %s instead ! " , bCorrectShape . c_str ( ) , bShape . c_str ( ) ) ;
REQUIRE_TRUE ( c0Shape = = c0CorrectShape , 0 , " SRU_BI operation: wrong shape of initial state array, expected is %s, but got %s instead ! " , c0CorrectShape . c_str ( ) , c0Shape . c_str ( ) ) ;
REQUIRE_TRUE ( ctShape = = ctCorrectShape , 0 , " SRU_BI operation: wrong shape of state array, expected is %s, but got %s instead ! " , ctCorrectShape . c_str ( ) , ctShape . c_str ( ) ) ;
if ( mask ) {
const std : : string maskShape = ShapeUtils : : shapeAsString ( mask ) ;
REQUIRE_TRUE ( maskShape = = c0CorrectShape , 0 , " SRU_BI operation: wrong shape of mask array, expected is %s, but got %s instead ! " , c0CorrectShape . c_str ( ) , maskShape . c_str ( ) ) ;
}
2019-07-12 10:51:51 +02:00
2019-06-06 14:21:15 +02:00
auto gradI = OUTPUT_VARIABLE ( 0 ) ; // [time x bS x 2*inSize]
auto gradW = OUTPUT_VARIABLE ( 1 ) ; // [time x 2*inSize x 6*inSize]
auto gradB = OUTPUT_VARIABLE ( 2 ) ; // [1 x 4*inSize]
auto gradC0 = OUTPUT_VARIABLE ( 3 ) ; // [bS x 2*inSize]
helpers : : sruBIBP ( block . launchContext ( ) , x , w , b , c0 , ct , inGradC0 , inGradHt , mask , gradI , gradW , gradB , gradC0 ) ;
return Status : : OK ( ) ;
}
DECLARE_SHAPE_FN ( sru_bi_bp ) {
auto xShapeInfo = inputShape - > at ( 0 ) ; // [time x bS x 2K ]
2019-07-12 10:51:51 +02:00
auto wShapeInfo = inputShape - > at ( 1 ) ;
auto bShapeInfo = inputShape - > at ( 2 ) ;
auto c0ShapeInfo = inputShape - > at ( 3 ) ;
2019-06-06 14:21:15 +02:00
auto ctShapeInfo = inputShape - > at ( 4 ) ;
auto inGradC0ShapeInfo = inputShape - > at ( 5 ) ;
auto inGradHtShapeInfo = inputShape - > at ( 6 ) ;
Nd4jLong * maskShapeInfo = block . width ( ) > 7 ? inputShape - > at ( 7 ) : nullptr ; // optional, 2d tensor of dropout mask [bS x inSize]
// input shapes validation
const int rank = xShapeInfo [ 0 ] ;
const Nd4jLong time = xShapeInfo [ 1 ] ;
const Nd4jLong bS = xShapeInfo [ 2 ] ;
const Nd4jLong inSize = xShapeInfo [ 3 ] / 2 ;
REQUIRE_TRUE ( wShapeInfo [ 0 ] = = rank - 1 , 0 , " SRU_BI_BP operation: wrong rank of weights array, expected is %i, but got %i instead ! " , rank - 1 , wShapeInfo [ 0 ] ) ;
2019-07-12 10:51:51 +02:00
REQUIRE_TRUE ( bShapeInfo [ 0 ] = = 1 , 0 , " SRU_BI_BP operation: wrong rank of biases array, expected is 1, but got %i instead ! " , bShapeInfo [ 0 ] ) ;
2019-06-06 14:21:15 +02:00
REQUIRE_TRUE ( c0ShapeInfo [ 0 ] = = rank - 1 , 0 , " SRU_BI_BP operation: wrong rank of initial state array, expected is %i, but got %i instead ! " , rank - 1 , c0ShapeInfo ) ;
REQUIRE_TRUE ( ctShapeInfo [ 0 ] = = rank , 0 , " SRU_BI_BP operation: wrong rank of state array, expected is %i, but got %i instead ! " , rank , ctShapeInfo ) ;
REQUIRE_TRUE ( inGradC0ShapeInfo [ 0 ] = = rank - 1 , 0 , " SRU_BI_BP operation: wrong rank of gradient c0, expected is %i, but got %i instead ! " , rank - 1 , inGradC0ShapeInfo [ 0 ] ) ;
REQUIRE_TRUE ( inGradHtShapeInfo [ 0 ] = = rank , 0 , " SRU_BI_BP operation: wrong rank of gradient ht, expected is %i, but got %i instead ! " , rank , inGradHtShapeInfo [ 0 ] ) ;
if ( maskShapeInfo )
REQUIRE_TRUE ( maskShapeInfo [ 0 ] = = rank - 1 , 0 , " SRU_BI_BP operation: wrong rank of mask array, expected is %i, but got %i instead ! " , rank - 1 , maskShapeInfo [ 0 ] ) ;
const std : : string wShape = ShapeUtils : : shapeAsString ( wShapeInfo ) ;
const std : : string wCorrectShape = ShapeUtils : : shapeAsString ( { 2 * inSize , 6 * inSize } ) ;
const std : : string bShape = ShapeUtils : : shapeAsString ( bShapeInfo ) ;
2019-07-12 10:51:51 +02:00
const std : : string bCorrectShape = ShapeUtils : : shapeAsString ( { 4 * inSize } ) ;
2019-06-06 14:21:15 +02:00
const std : : string c0Shape = ShapeUtils : : shapeAsString ( c0ShapeInfo ) ;
const std : : string c0CorrectShape = ShapeUtils : : shapeAsString ( { bS , 2 * inSize } ) ;
const std : : string ctShape = ShapeUtils : : shapeAsString ( ctShapeInfo ) ;
const std : : string ctCorrectShape = ShapeUtils : : shapeAsString ( { time , bS , 2 * inSize } ) ;
const std : : string inGradC0Shape = ShapeUtils : : shapeAsString ( inGradC0ShapeInfo ) ;
const std : : string inGradC0CorrectShape = ShapeUtils : : shapeAsString ( { bS , 2 * inSize } ) ;
const std : : string inGradHtShape = ShapeUtils : : shapeAsString ( inGradHtShapeInfo ) ;
const std : : string inGradHtCorrectShape = ShapeUtils : : shapeAsString ( { time , bS , 2 * inSize } ) ;
REQUIRE_TRUE ( wShape = = wCorrectShape , 0 , " SRU_BI operation: wrong shape of weights array, expected is %s, but got %s instead ! " , wCorrectShape . c_str ( ) , wShape . c_str ( ) ) ;
REQUIRE_TRUE ( bShape = = bCorrectShape , 0 , " SRU_BI operation: wrong shape of biases array, expected is %s, but got %s instead ! " , bCorrectShape . c_str ( ) , bShape . c_str ( ) ) ;
REQUIRE_TRUE ( c0Shape = = c0CorrectShape , 0 , " SRU_BI operation: wrong shape of initial state array, expected is %s, but got %s instead ! " , c0CorrectShape . c_str ( ) , c0Shape . c_str ( ) ) ;
REQUIRE_TRUE ( ctShape = = ctCorrectShape , 0 , " SRU_BI operation: wrong shape of state array, expected is %s, but got %s instead ! " , ctCorrectShape . c_str ( ) , ctShape . c_str ( ) ) ;
REQUIRE_TRUE ( inGradC0Shape = = inGradC0CorrectShape , 0 , " SRU_BI operation: wrong shape of gradient c0 array, expected is %s, but got %s instead ! " , inGradC0CorrectShape . c_str ( ) , inGradC0Shape . c_str ( ) ) ;
REQUIRE_TRUE ( inGradHtShape = = inGradHtCorrectShape , 0 , " SRU_BI operation: wrong shape of gradient ht array, expected is %s, but got %s instead ! " , inGradHtCorrectShape . c_str ( ) , inGradHtShape . c_str ( ) ) ;
if ( maskShapeInfo ) {
const std : : string maskShape = ShapeUtils : : shapeAsString ( maskShapeInfo ) ;
REQUIRE_TRUE ( maskShape = = c0CorrectShape , 0 , " SRU_BI operation: wrong shape of mask array, expected is %s, but got %s instead ! " , c0CorrectShape . c_str ( ) , maskShape . c_str ( ) ) ;
}
const char order = shape : : order ( xShapeInfo ) ;
ShapeDescriptor descriptor1 ( ArrayOptions : : dataType ( xShapeInfo ) , order , { time , bS , 2 * inSize } ) ;
ShapeDescriptor descriptor2 ( ArrayOptions : : dataType ( xShapeInfo ) , order , { time , 2 * inSize , 6 * inSize } ) ;
2019-07-12 10:51:51 +02:00
ShapeDescriptor descriptor3 ( ArrayOptions : : dataType ( xShapeInfo ) , order , { 4 * inSize } ) ;
2019-06-06 14:21:15 +02:00
ShapeDescriptor descriptor4 ( ArrayOptions : : dataType ( xShapeInfo ) , order , { bS , 2 * inSize } ) ;
return SHAPELIST ( ConstantShapeHelper : : getInstance ( ) - > createShapeInfo ( descriptor1 ) , ConstantShapeHelper : : getInstance ( ) - > createShapeInfo ( descriptor2 ) , ConstantShapeHelper : : getInstance ( ) - > createShapeInfo ( descriptor3 ) , ConstantShapeHelper : : getInstance ( ) - > createShapeInfo ( descriptor4 ) ) ;
2019-07-12 10:51:51 +02:00
}
2019-06-06 14:21:15 +02:00
}
}
# endif
//////////////////////////////////////////////////////////////////////////
/**
* Implementation of operations for Simple Recurrent Unit : " Training RNNs as Fast as CNNs " Tao Lei , Yu Zhang , Yoav Artzi
2019-07-12 10:51:51 +02:00
*
* Input arrays :
2019-06-06 14:21:15 +02:00
* 0 : input 3 d tensor with shape [ bS x K x N ] , N - number of time steps , bS - batch size , K - number of features
* 1 : 2 d tensor of weights [ 3 K x K ]
2019-07-08 09:58:48 +02:00
* 2 : row of biases with twice length [ 1 x 2 K ]
2019-06-06 14:21:15 +02:00
* 3 : 2 d tensor of previous cell state [ bS x K ]
* 4 : optional , 2 d tensor of dropout mask [ bS x K ]
2019-07-12 10:51:51 +02:00
*
* Output arrays :
2019-06-06 14:21:15 +02:00
* 0 : 3 d tensor of cell output [ bS x K x N ]
* 1 : 3 d tensor of cell state [ bS x K x N ]
*/
// #if NOT_EXCLUDED(OP_sru)
// DECLARE_CUSTOM_OP(sru_old, 5, 2, false, 0, 0);
//////////////////////////////////////////////////////////////////////////
/**
* Implementation of operation for Simple Recurrent Unit : " Training RNNs as Fast as CNNs " Tao Lei , Yu Zhang , Yoav Artzi
2019-07-12 10:51:51 +02:00
*
* Input arrays :
2019-06-06 14:21:15 +02:00
* 0 : input 3 d tensor with shape [ bS x K x N ] , N - number of time steps , bS - batch size , K - number of features
* 1 : 2 d tensor of weights [ 3 K x K ]
2019-07-08 09:58:48 +02:00
* 2 : row of biases with twice length [ 1 x 2 K ]
2019-06-06 14:21:15 +02:00
* 3 : 2 d tensor of previous cell state [ bS x K ]
* 4 : optional , 2 d tensor of dropout mask [ bS x K ]
2019-07-12 10:51:51 +02:00
*
* Output arrays :
2019-06-06 14:21:15 +02:00
* 0 : 3 d tensor of cell output [ bS x K x N ]
* 1 : 3 d tensor of cell state [ bS x K x N ]
*/
// #if NOT_EXCLUDED(OP_sru_logic)
// DECLARE_CUSTOM_OP(sru_logic, 5, 2, false, 0, 0);
// #endif
//////////////////////////////////////////////////////////////////////////
/**
* Implementation of operation for back propagation in Simple Recurrent Unit : " Training RNNs as Fast as CNNs " Tao Lei , Yu Zhang , Yoav Artzi
2019-07-12 10:51:51 +02:00
*
* Input arrays :
2019-06-06 14:21:15 +02:00
* 0 : input 3 d tensor with shape [ bS x K x N ] , N - number of time steps , bS - batch size , K - number of features
* 1 : 2 d tensor of weights [ 3 K x K ]
2019-07-08 09:58:48 +02:00
* 2 : row of biases with twice length [ 1 x 2 K ]
2019-06-06 14:21:15 +02:00
* 3 : 2 d tensor of previous cell state [ bS x K ]
* 4 : 3 d tensor of cell state [ bS x K x N ]
* 5 : 2 d tensor of cell state gradients [ bS x K ]
* 6 : 3 d tensor of state output gradients [ bS x K x N ]
* 7 : optional , 2 d tensor of dropout mask [ bS x K ]
2019-07-12 10:51:51 +02:00
*
* Output arrays :
2019-06-06 14:21:15 +02:00
* 0 : 3 d tensor of input gradients [ bS x K x N ]
* 1 : 3 d tensor of weights gradients [ bS x 3 K x K ]
* 2 : 2 d , row of biases gradients [ 1 x 2 K ]
* 3 : 2 d , tensor of state gradients [ bS x K ]
2019-07-12 10:51:51 +02:00
*/
2019-06-06 14:21:15 +02:00
// #if NOT_EXCLUDED(OP_sru_logic)
// DECLARE_CUSTOM_OP(sru_bp_logic,8, 4, true, 0, 0);
// #endif
// return 2d array evaluated though last dimension interval t1-t2
// static NDArray* timestep(const NDArray* arr, const int t1, const int t2) {
// NDArray* result = new NDArray((*arr)({0,0, 0,0, t1,t2}, true));
// result->reshapei(result->ordering(), {arr->shapeOf()[0], arr->shapeOf()[1]} );
// return result;
// }
/////////////////////////////////////////////////////////////////////////
2019-07-12 10:51:51 +02:00
// CUSTOM_OP_IMPL(sru_logic, 5, 2, false, 0, 0) {
2019-06-06 14:21:15 +02:00
// auto input = INPUT_VARIABLE(0); // X, input 3d tensor [bS x K x N], N - number of time steps, bS - batch size, K - number of features
// auto weights = INPUT_VARIABLE(1); // W, 2d tensor of weights [3K x K]
2019-07-08 09:58:48 +02:00
// auto bias = INPUT_VARIABLE(2); // B, row of biases with twice length [1 x 2*K]
2019-06-06 14:21:15 +02:00
// auto init = INPUT_VARIABLE(3); // C_{0}, 2d tensor of initial state [bS x K] at time t=0
// NDArray* mask = nullptr; // optional, 2d tensor of dropout mask [bS x K]
2019-07-12 10:51:51 +02:00
// bool applyMask = false;
2019-06-06 14:21:15 +02:00
// if (block.width() > 4) {
2019-07-12 10:51:51 +02:00
// mask = INPUT_VARIABLE(4);
2019-06-06 14:21:15 +02:00
// applyMask = true;
// }
// auto output = OUTPUT_VARIABLE(0); // h_t, [bS x K x N]
// auto state = OUTPUT_VARIABLE(1); // c_t, [bS x K x N]
2019-07-12 10:51:51 +02:00
2019-06-06 14:21:15 +02:00
// const int bS = input->shapeOf()[0]; // bS - batch size
// const int K = input->shapeOf()[1]; // K - number of features
// const int N = input->shapeOf()[2]; // N - number of time steps
2019-07-12 10:51:51 +02:00
2019-06-06 14:21:15 +02:00
// const auto wi = mmul(*weights, *input); // U [bS x 3K x N]
// const auto bF = (*bias)({0,0, 0, K}); // biases for forget gate [1 x K]
// const auto bR = (*bias)({0,0, K,2*K}); // biases for reset gate [1 x K]
// NDArray xt(input->dataType(), block.launchContext());
// NDArray zt(input->dataType(), block.launchContext());
// NDArray ft(input->dataType(), block.launchContext());
// NDArray rt(input->dataType(), block.launchContext());
// NDArray ht(input->dataType(), block.launchContext());
// NDArray ct = *init;
// NDArray gct(state->ordering(), {bS, K}, input->dataType(), block.launchContext());
// NDArray xmt = *input;
// // input = input * mask
// if(applyMask)
// xmt.applyBroadcast(broadcast::Multiply, {0, 1}, mask, &xmt, nullptr);
// for (int t = 0; t < N; ++t) {
// xt = xmt({0,0, 0,0, t,t+1}); xt.reshapei(xt.ordering(), {bS, K}); // [bS x K x N] -> [bS x K x 1] -> [bS x K]
// zt = wi({0,0, 0, K, t,t+1}); zt.reshapei(zt.ordering(), {bS, K}); // [bS x 3K x N] -> [bS x K x 1] -> [bS x K]
// ft = wi({0,0, K, 2*K, t,t+1}); ft.reshapei(ft.ordering(), {bS, K}); // [bS x 3K x N] -> [bS x K x 1] -> [bS x K]
// rt = wi({0,0, 2*K,3*K, t,t+1}); rt.reshapei(rt.ordering(), {bS, K}); // [bS x 3K x N] -> [bS x K x 1] -> [bS x K]
// ft = sigmoid_(ft + bF);
// rt = sigmoid_(rt + bR);
2019-07-12 10:51:51 +02:00
// ct = ft * (ct - zt) + zt;
2019-06-06 14:21:15 +02:00
// // TODO T val = (activation_type == 1) ? tanh(cur) : ((activation_type == 2) ? reluf(cur) : cur );
// ct.applyTransform(transform::Tanh, &gct);
// ht = rt * (gct - xt) + xt;
// // save results
// (*output)({0,0, 0,0, t,t+1}, true).assign(ht);
// (*state)({0,0, 0,0, t,t+1}, true).assign(ct);
// }
// return Status::OK();
// }
// DECLARE_TYPES(sru_logic) {
// getOpDescriptor()
// ->setAllowedInputTypes(nd4j::DataType::ANY)
// ->setAllowedOutputTypes({ALL_FLOATS});
// }
// DECLARE_SHAPE_FN(sru_logic) {
// auto inShape = inputShape->at(0); // [bS x K x N]
// int rank = inShape[0]; // = 3
// int size = rank*2 + 4;
// int bS = inShape[1];
// int K = inShape[2];
// int N = inShape[3];
// char order = (char)(inShape[size-1]);
// Nd4jLong* newShapeInfo1 = nullptr;
// ALLOCATE(newShapeInfo1, block.getWorkspace(), size, Nd4jLong);
2019-07-12 10:51:51 +02:00
// newShapeInfo1[0] = rank;
2019-06-06 14:21:15 +02:00
// newShapeInfo1[1] = bS;
// newShapeInfo1[2] = K;
// newShapeInfo1[3] = N;
2019-07-12 10:51:51 +02:00
2019-06-06 14:21:15 +02:00
// ShapeUtils::updateStridesAndType(newShapeInfo1, inShape, order);
// auto result = CONSTANT(newShapeInfo1);
// return SHAPELIST(result, result);
2019-07-12 10:51:51 +02:00
// }
2019-06-06 14:21:15 +02:00
// //////////////////////////////////////////////////////////////////////////
// CUSTOM_OP_IMPL(sru_old, 5, 2, false, 0, 0) {
// auto x = INPUT_VARIABLE(0); // X, input 3d tensor [bS x inSize x time], time - number of time steps, bS - batch size, inSize - number of features
// auto w = INPUT_VARIABLE(1); // W, 2d tensor of weights [3K x inSize]
2019-07-08 09:58:48 +02:00
// auto b = INPUT_VARIABLE(2); // B, row of biases with twice length [1 x 2*inSize]
2019-06-06 14:21:15 +02:00
// auto c0 = INPUT_VARIABLE(3); // C_{0}, 2d tensor of initial state [bS x inSize] at time t=0
// NDArray* mask = nullptr; // optional, 2d tensor of dropout mask [bS x inSize]
// bool applyMask = false;
// if (block.width() > 4) {
// mask = INPUT_VARIABLE(4);
// applyMask = true;
// }
// auto h = OUTPUT_VARIABLE(0); // h_t, [bS x inSize x time]
// auto state = OUTPUT_VARIABLE(1); // c_t, [bS x inSize x time]
// const int bS = x->shapeOf()[0]; // bS - batch size
// const int inSize = x->shapeOf()[1]; // inSize - number of features
// const int time = x->shapeOf()[2]; // time - number of time steps
// // multiplication matrix = matmul(w,x)
// auto wi = MmulHelper::mmul(w, x, nullptr, 1., 0.); // U [bS x 3K x time]
// auto wiZ = (*wi)({0,0, 0,inSize, 0,0}, true); // [bS x inSize x time]
// auto wiF = (*wi)({0,0, inSize,2*inSize, 0,0}, true); // forget gate [bS x inSize x time]
// auto wiR = (*wi)({0,0, 2*inSize,3*inSize, 0,0}, true); // reset gate [bS x inSize x time]
// auto bF = (*b) ({0,0, 0,inSize }, true); // biases for forget gate [1 x inSize]
// auto bR = (*b) ({0,0, inSize,2*inSize}, true); // biases for reset gate [1 x inSize]
// NDArray* xt(nullptr), *zt(nullptr), *ft(nullptr), *rt(nullptr), *ct(nullptr), *ht(nullptr);
// auto ct_1 = c0->dup(c0->ordering());
// auto gct = NDArrayFactory::create_(state->ordering(), {bS, inSize}, state->dataType(), state->getContext());
// auto xmt = x->dup(x->ordering());
// // x = x * mask
// if(applyMask)
// xmt->applyBroadcast(broadcast::Multiply, {0, 1}, mask, xmt, nullptr); // apply mask
// for (int t = 0; t < time; ++t) {
// xt = timestep(xmt, t, t+1); // [bS x inSize x time] -> [bS x inSize x 1] -> [bS x inSize]
// zt = timestep(&wiZ, t, t+1); // [bS x inSize x time] -> [bS x inSize x 1] -> [bS x inSize]
// ft = timestep(&wiF, t, t+1); // [bS x inSize x time] -> [bS x inSize x 1] -> [bS x inSize]
// rt = timestep(&wiR, t, t+1); // [bS x inSize x time] -> [bS x inSize x 1] -> [bS x inSize]
// ct = timestep(state, t, t+1); // [bS x inSize x time] -> [bS x inSize x 1] -> [bS x inSize]
// ht = timestep(h, t, t+1); // [bS x inSize x time] -> [bS x inSize x 1] -> [bS x inSize]
// // ft = sigmoid(ft + bf), rt = sigmoid(rt + bR)
// ft->addRowVector(&bF, ft);
// rt->addRowVector(&bR, rt);
// ft->applyTransform(transform::Sigmoid, ft, nullptr);
// rt->applyTransform(transform::Sigmoid, rt, nullptr);
// // ct = ft * c_t-1 + (1 - ft) * zt,
// ft->applyPairwiseTransform(pairwise::Multiply, ct_1, ct, nullptr);
// ft->applyTransform(transform::OneMinus, ft);
// ft->applyPairwiseTransform(pairwise::Multiply, *zt, nullptr);
// ct->applyPairwiseTransform(pairwise::Add, *ft, nullptr);
// // TODO T val = (activation_type == 1) ? tanh(cur) : ((activation_type == 2) ? reluf(cur) : cur );
// ct->applyTransform(transform::Tanh, gct);
// // ht = rt * gct + (1 - rt) * xt
// rt->applyPairwiseTransform(pairwise::Multiply, gct, ht, nullptr);
// rt->applyTransform(transform::OneMinus, rt);
// rt->applyPairwiseTransform(pairwise::Multiply, *xt, nullptr);
// ht->applyPairwiseTransform(pairwise::Add, *rt, nullptr);
// delete xt; delete zt; delete ft; delete rt; delete ht; delete ct_1;
// ct_1 = ct;
// }
// delete wi; delete ct_1; delete gct; delete xmt;
// return Status::OK();
// }
// DECLARE_TYPES(sru_old) {
// getOpDescriptor()
// ->setAllowedInputTypes(nd4j::DataType::ANY)
// ->setAllowedOutputTypes({ALL_FLOATS});
// }
// DECLARE_SHAPE_FN(sru_old) {
// auto inShape = inputShape->at(0); // [bS x inSize x time]
// int rank = inShape[0]; // = 3
// int size = rank*2 + 4;
// auto bS = inShape[1];
// auto inSize = inShape[2];
// int time = inShape[3];
// char order = (char)(inShape[size-1]);
// Nd4jLong *newShapeInfo1 = nullptr;
// ALLOCATE(newShapeInfo1, block.getWorkspace(), size, Nd4jLong);
// newShapeInfo1[0] = rank;
// newShapeInfo1[1] = bS;
// newShapeInfo1[2] = inSize;
// newShapeInfo1[3] = time;
// ShapeUtils::updateStridesAndType(newShapeInfo1, inShape, order);
// auto result = ConstantShapeHelper::getInstance()->createShapeInfo(ShapeDescriptor(newShapeInfo1));
// RELEASE(newShapeInfo1, block.getWorkspace());
// return SHAPELIST(result, result);
// }
// static NDArray sigmoid_(const NDArray& arr) {
// NDArray result(arr.getShapeInfo(), false, arr.getContext());
// (const_cast<NDArray&>(arr)).applyTransform(transform::Sigmoid, &result);
// return result;
// }
//////////////////////////////////////////////////////////////////////////
// CUSTOM_OP_IMPL(sru_bp_logic, 8, 4, true, 0, 0) {
// auto x = INPUT_VARIABLE(0); // X, input 3d tensor [bS x inSize x time], time - number of time steps, bS - batch size, inSize - number of features
// auto w = INPUT_VARIABLE(1); // W, 2d tensor of weights [3*inSize x inSize]
2019-07-08 09:58:48 +02:00
// auto b = INPUT_VARIABLE(2); // B, row of biases with twice length [1 x 2*inSize]
2019-06-06 14:21:15 +02:00
// auto c0 = INPUT_VARIABLE(3); // C_{0}, 2d tensor of initial state [bS x inSize] at time t=0
// auto c = INPUT_VARIABLE(4); // C, [bS x inSize x time]
// auto inGradCt = INPUT_VARIABLE(5); // [bS x inSize]
// auto inGradH = INPUT_VARIABLE(6); // [bS x inSize x time]
// auto mask = block.width() > 7 ? INPUT_VARIABLE(7) : nullptr; // optional, 2d tensor of dropout mask [bS x inSize]
// auto gradX = OUTPUT_VARIABLE(0); // [bS x inSize x time]
// auto gradW = OUTPUT_VARIABLE(1); // [bS x 3*inSize x inSize]
// auto gradB = OUTPUT_VARIABLE(2); // [2*inSize]
// auto gradInit = OUTPUT_VARIABLE(3); // [bS x inSize]
// // input shapes validation
// const int rank = 3;
// REQUIRE_TRUE(x->rankOf() == rank, 0, "SRU_BP operation: wrong rank of input array, expected is %i, but got %i instead !", rank, x->rankOf());
// REQUIRE_TRUE(w->rankOf() == rank-1, 0, "SRU_BP operation: wrong rank of weights array, expected is %i, but got %i instead !", rank-1, w->rankOf());
// REQUIRE_TRUE(b->rankOf() <= 2, 0, "SRU_BP operation: wrong rank of biases array, expected is <=2, but got %i instead !", b->rankOf());
// REQUIRE_TRUE(c0->rankOf() == rank-1, 0, "SRU_BP operation: wrong rank of initial state array, expected is %i, but got %i instead !", rank-1, c0->rankOf());
// REQUIRE_TRUE(c->rankOf() == rank, 0, "SRU_BP operation: wrong rank of cell states array, expected is %i, but got %i instead !", rank, c->rankOf());
// REQUIRE_TRUE(inGradCt->rankOf() == rank-1, 0, "SRU_BP operation: wrong rank of array of cell state gradient, expected is %i, but got %i instead !", rank-1, inGradCt->rankOf());
// REQUIRE_TRUE(inGradH->rankOf() == rank, 0, "SRU_BP operation: wrong rank of array of cell outputs gradients, expected is %i, but got %i instead !", rank, inGradH->rankOf());
// if(mask)
// REQUIRE_TRUE(mask->rankOf() == rank-1, 0, "SRU_BP operation: wrong rank of mask array, expected is %i, but got %i instead !", rank-1, mask->rankOf());
// const int bS = x->shapeOf()[0];
// const int inSize = x->shapeOf()[1];
// const int time = x->shapeOf()[2]; // time - number of time steps
// const std::string wShape = ShapeUtils::shapeAsString(w);
// const std::string wCorrectShape = ShapeUtils::shapeAsString({3*inSize, inSize});
// // const std::string bShape = ShapeUtils::shapeAsString(b);
// // const std::string bCorrectShape = ShapeUtils::shapeAsString({2*inSize});
// const std::string c0Shape = ShapeUtils::shapeAsString(c0);
// const std::string c0CorrectShape = ShapeUtils::shapeAsString({bS, inSize});
// const std::string cShape = ShapeUtils::shapeAsString(c);
// const std::string cCorrectShape = ShapeUtils::shapeAsString({bS, inSize, time});
// const std::string inGradCtShape = ShapeUtils::shapeAsString(inGradCt);
// const std::string inGradCtCorrectShape = ShapeUtils::shapeAsString({bS, inSize});
// const std::string inGradHShape = ShapeUtils::shapeAsString(inGradH);
// const std::string inGradHCorrectShape = ShapeUtils::shapeAsString({bS, inSize, time});
2019-07-12 10:51:51 +02:00
2019-06-06 14:21:15 +02:00
// REQUIRE_TRUE(wShape == wCorrectShape, 0, "SRU_BP operation: wrong shape of weights array, expected is %s, but got %s instead !", wCorrectShape.c_str(), wShape.c_str());
// // REQUIRE_TRUE(bShape == bCorrectShape, 0, "SRU_BP operation: wrong shape of biases array, expected is %s, but got %s instead !", bCorrectShape.c_str(), bShape.c_str());
// REQUIRE_TRUE(c0Shape == c0CorrectShape, 0, "SRU_BP operation: wrong shape of initial state array, expected is %s, but got %s instead !", c0CorrectShape.c_str(), c0Shape.c_str());
// REQUIRE_TRUE(cShape == cCorrectShape, 0, "SRU_BP operation: wrong shape of cell states array, expected is %s, but got %s instead !", cCorrectShape.c_str(), cShape.c_str());
// REQUIRE_TRUE(inGradCtShape == inGradCtCorrectShape, 0, "SRU_BP operation: wrong shape of array of cell state gradient, expected is %s, but got %s instead !", inGradCtCorrectShape.c_str(), inGradCtShape.c_str());
// REQUIRE_TRUE(inGradHShape == inGradHCorrectShape, 0, "SRU_BP operation: wrong shape of array of cell outputs gradients, expected is %s, but got %s instead !", inGradHCorrectShape.c_str(), inGradHShape.c_str());
// if(mask) {
// const std::string maskShape = ShapeUtils::shapeAsString(mask);
// REQUIRE_TRUE(maskShape == c0CorrectShape, 0, "SRU_BP operation: wrong shape of mask array, expected is %s, but got %s instead !", c0CorrectShape.c_str(), maskShape.c_str());
// }
// const auto bF = (*b)({0,0, 0, inSize}); // biases for forget gate [1 x inSize]
// const auto bR = (*b)({0,0, inSize,2*inSize}); // biases for reset gate [1 x inSize]
// NDArray gradBias(x->ordering(), {bS, 2*inSize, time}, x->dataType(), block.launchContext());
// NDArray gradU (x->ordering(), {bS, 3*inSize, time}, x->dataType(), block.launchContext());
// NDArray gradHX (x->ordering(), {bS, inSize, time}, x->dataType(), block.launchContext());
// NDArray gct (c->ordering(), {bS, inSize}, x->dataType(), block.launchContext());
// // x = x * mask
// if(mask)
// x->applyBroadcast(broadcast::Multiply, {0, 1}, mask, x, nullptr); // apply mask
// // multiplication matrix wi = matmul(w,x), U = WX
// const auto wi = mmul(*w, *x); // U [bS x 3K x time]
// for (int t = time-1; t >=0 ; --t) {
// // initialization
// auto xt = (*x)({0,0, 0,0, t,t+1}); // [bS x inSize x time] -> [bS x inSize]
// auto zt = wi({0,0, 0, inSize, t,t+1}); // [bS x 3K x time] -> [bS x inSize]
// auto ft = wi({0,0, inSize, 2*inSize, t,t+1}); // [bS x 3K x time] -> [bS x inSize]
// auto rt = wi({0,0, 2*inSize,3*inSize, t,t+1}); // [bS x 3K x time] -> [bS x inSize]
// auto ct = (*c)({0,0, 0,0, t,t+1}); // [bS x inSize x time] -> [bS x inSize]
// auto inGradHt = (*inGradH)({ 0,0, 0,0, t,t+1}); // [bS x inSize x time] -> [bS x inSize]
// auto ct_1 = t ? (*c)({ 0,0, 0,0, t-1,t}) : *c0; // previous c_{t-1}
2019-07-12 10:51:51 +02:00
2019-06-06 14:21:15 +02:00
// ///////////////// forward
// // ft = sigmoid(ft + bf), rt = sigmoid(rt + bR)
// ft = sigmoid_(ft + bF);
2019-07-12 10:51:51 +02:00
// rt = sigmoid_(rt + bR);
2019-06-06 14:21:15 +02:00
// // TODO T val = (activation_type == 1) ? tanh(cur) : ((activation_type == 2) ? reluf(cur) : cur );
// ct.applyTransform(transform::Tanh, &gct);
// ///////////////// backward
// // bR, *grad_brt_ptr = inGradHt * (g_ct - xt) * (1.0f - rt) * rt;
// // ftMinus = -ft + (T)1.;
// NDArray ftMinus = 1. - ft;
// NDArray rtMinus = 1. - rt;
// NDArray gradBRt = inGradHt * (gct - xt) * rtMinus * rt;
2019-07-12 10:51:51 +02:00
// // bF, TODO - tanh
2019-06-06 14:21:15 +02:00
// NDArray gradTanh = 1. - gct * gct;
// NDArray gradCt = inGradHt * rt * gradTanh;
// NDArray gradBFt = (gradCt + *inGradCt) * (ct_1 - zt) * ftMinus * ft;
// // x_t (highway connection), gradHXt = inGradHt * (1.0f - rt);
// NDArray gradHXt = inGradHt * rtMinus;
// // U_t, gradUZt = (inGradHt * rt * grad_tanh + inGradCt) * (1.0f - ft);
// NDArray gradUZt = (inGradHt * rt * gradTanh + *inGradCt) * ftMinus;
// // c_{t-1}, inGradCt = (gradCt + inGradCt) * ft;
// *inGradCt = (gradCt + *inGradCt) * ft;
2019-07-12 10:51:51 +02:00
// // save results
2019-06-06 14:21:15 +02:00
// gradBias({0,0, 0,inSize, t,t+1}, true).assign(gradBFt);
// gradBias({0,0, inSize,2*inSize, t,t+1}, true).assign(gradBRt);
// gradU({0,0, 0,inSize, t,t+1}, true).assign(gradUZt);
// gradU({0,0, inSize,2*inSize, t,t+1}, true).assign(gradBFt);
// gradU({0,0, 2*inSize, 3*inSize, t,t+1}, true).assign(gradBRt);
// gradHX({0,0, 0,0, t,t+1}, true).assign(gradHXt);
// }
// // gradInit
// gradInit->assign(inGradCt);
2019-07-12 10:51:51 +02:00
// // gradX
2019-06-06 14:21:15 +02:00
// w->transposei(); // [inSize x 3K]
// gradX->assign( mmul(*w, gradU) + gradHX);
// if(mask)
// gradX->applyBroadcast(broadcast::Multiply, {0,1}, mask, gradX, nullptr); // apply mask
2019-07-12 10:51:51 +02:00
// // gradB
2019-12-20 20:35:39 +01:00
// gradBias.reduceAlongDimension(reduce::Sum, *gradB, {0,2}, false, true); // [1 x 2K]
2019-06-06 14:21:15 +02:00
// // gradW [bS x 3K x inSize]
// x->permutei({0, 2, 1}); // [bS x time x inSize]
// gradW->assign( mmul(gradU, *x) );
2019-07-12 10:51:51 +02:00
2019-06-06 14:21:15 +02:00
// return Status::OK();
// }
// DECLARE_TYPES(sru_bp_logic) {
// getOpDescriptor()
// ->setAllowedInputTypes(nd4j::DataType::ANY)
// ->setAllowedOutputTypes({ALL_FLOATS});
// }
// DECLARE_SHAPE_FN(sru_bp_logic) {
// auto inShape = inputShape->at(0); // [bS x inSize x time]
// auto bS = inShape[1];
// auto inSize = inShape[2];
// auto time = inShape[3];
// char order = shape::order(inShape);
// ShapeDescriptor descriptor1(ArrayOptions::dataType(inShape), order, {bS, inSize, time});
// ShapeDescriptor descriptor2(ArrayOptions::dataType(inShape), order, {bS, 3 * inSize, inSize});
// ShapeDescriptor descriptor3(ArrayOptions::dataType(inShape), order, {1, 2 * inSize});
// ShapeDescriptor descriptor4(ArrayOptions::dataType(inShape), order, {bS, inSize});
// return SHAPELIST(ConstantShapeHelper::getInstance()->createShapeInfo(descriptor1), ConstantShapeHelper::getInstance()->createShapeInfo(descriptor2), ConstantShapeHelper::getInstance()->createShapeInfo(descriptor3), ConstantShapeHelper::getInstance()->createShapeInfo(descriptor4));
2019-07-12 10:51:51 +02:00
// }