2021-02-01 14:31:20 +09:00
|
|
|
/*
|
|
|
|
* ******************************************************************************
|
|
|
|
* *
|
|
|
|
* *
|
|
|
|
* * This program and the accompanying materials are made available under the
|
|
|
|
* * terms of the Apache License, Version 2.0 which is available at
|
|
|
|
* * https://www.apache.org/licenses/LICENSE-2.0.
|
|
|
|
* *
|
2021-02-01 17:47:29 +09:00
|
|
|
* * See the NOTICE file distributed with this work for additional
|
|
|
|
* * information regarding copyright ownership.
|
2021-02-01 14:31:20 +09:00
|
|
|
* * Unless required by applicable law or agreed to in writing, software
|
|
|
|
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
|
|
* * License for the specific language governing permissions and limitations
|
|
|
|
* * under the License.
|
|
|
|
* *
|
|
|
|
* * SPDX-License-Identifier: Apache-2.0
|
|
|
|
* *****************************************************************************
|
|
|
|
*/
|
2019-06-06 15:21:15 +03:00
|
|
|
|
|
|
|
package org.nd4j.linalg.learning;
|
|
|
|
|
|
|
|
|
|
|
|
import lombok.Data;
|
|
|
|
import org.nd4j.linalg.api.ndarray.INDArray;
|
|
|
|
import org.nd4j.linalg.api.shape.Shape;
|
2020-04-17 14:41:49 +10:00
|
|
|
import org.nd4j.linalg.factory.Nd4j;
|
2019-06-06 15:21:15 +03:00
|
|
|
import org.nd4j.linalg.learning.config.AdaGrad;
|
|
|
|
|
|
|
|
import java.util.Collections;
|
|
|
|
import java.util.Map;
|
|
|
|
|
|
|
|
|
|
|
|
@Data
|
|
|
|
public class AdaGradUpdater implements GradientUpdater<AdaGrad> {
|
|
|
|
public static final String GRAD_STATE = "grad";
|
|
|
|
public INDArray historicalGradient;
|
|
|
|
public int[] shape;
|
|
|
|
protected double learningRate = 1e-1; // learning rate
|
|
|
|
protected int numIterations = 0;
|
|
|
|
private double epsilon = AdaGrad.DEFAULT_ADAGRAD_EPSILON;
|
|
|
|
|
|
|
|
private char gradientReshapeOrder;
|
|
|
|
|
|
|
|
private AdaGrad config;
|
|
|
|
|
|
|
|
public AdaGradUpdater(AdaGrad config) {
|
|
|
|
this.config = config;
|
|
|
|
}
|
|
|
|
|
|
|
|
@Override
|
|
|
|
public void setState(Map<String, INDArray> stateMap, boolean initialize) {
|
|
|
|
if(!stateMap.containsKey(GRAD_STATE) || stateMap.size() != 1){
|
|
|
|
throw new IllegalStateException("State map should contain only key [" + GRAD_STATE + "] but has keys " + stateMap.keySet());
|
|
|
|
}
|
|
|
|
this.historicalGradient = stateMap.get(GRAD_STATE);
|
|
|
|
}
|
|
|
|
|
|
|
|
@Override
|
|
|
|
public Map<String, INDArray> getState() {
|
|
|
|
return Collections.singletonMap(GRAD_STATE, historicalGradient);
|
|
|
|
}
|
|
|
|
|
|
|
|
@Override
|
|
|
|
public void setStateViewArray(INDArray viewArray, long[] gradientShape, char gradientOrder, boolean initialize) {
|
|
|
|
if (!viewArray.isRowVectorOrScalar())
|
|
|
|
throw new IllegalArgumentException("Invalid input: expect row vector input");
|
|
|
|
if (initialize)
|
|
|
|
viewArray.assign(epsilon);
|
|
|
|
this.historicalGradient = viewArray;
|
|
|
|
//Reshape to match the expected shape of the input gradient arrays
|
|
|
|
this.historicalGradient = Shape.newShapeNoCopy(this.historicalGradient, gradientShape, gradientOrder == 'f');
|
|
|
|
if (historicalGradient == null)
|
|
|
|
throw new IllegalStateException("Could not correctly reshape gradient view array");
|
|
|
|
|
|
|
|
this.gradientReshapeOrder = gradientOrder;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Gets feature specific learning rates
|
|
|
|
* Adagrad keeps a history of gradients being passed in.
|
|
|
|
* Note that each gradient passed in becomes adapted over time, hence the opName adagrad
|
|
|
|
*
|
|
|
|
* @param gradient the gradient to get learning rates for
|
|
|
|
* @param iteration
|
|
|
|
*/
|
|
|
|
@Override
|
|
|
|
public void applyUpdater(INDArray gradient, int iteration, int epoch) {
|
|
|
|
if (historicalGradient == null)
|
|
|
|
throw new IllegalStateException("Updater has not been initialized with view state");
|
|
|
|
|
|
|
|
double learningRate = config.getLearningRate(iteration, epoch);
|
|
|
|
double epsilon = config.getEpsilon();
|
|
|
|
|
2020-04-17 14:41:49 +10:00
|
|
|
Nd4j.exec(new org.nd4j.linalg.api.ops.impl.updaters.AdaGradUpdater(gradient, historicalGradient, learningRate, epsilon));
|
2019-06-06 15:21:15 +03:00
|
|
|
}
|
|
|
|
}
|