113 lines
4.0 KiB
Plaintext
113 lines
4.0 KiB
Plaintext
|
/*******************************************************************************
|
||
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
||
|
*
|
||
|
* This program and the accompanying materials are made available under the
|
||
|
* terms of the Apache License, Version 2.0 which is available at
|
||
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||
|
* License for the specific language governing permissions and limitations
|
||
|
* under the License.
|
||
|
*
|
||
|
* SPDX-License-Identifier: Apache-2.0
|
||
|
******************************************************************************/
|
||
|
|
||
|
//
|
||
|
// @author sgazeos@gmail.com
|
||
|
//
|
||
|
|
||
|
#include <op_boilerplate.h>
|
||
|
#include <NDArray.h>
|
||
|
#include <helpers/ShapeUtils.h>
|
||
|
|
||
|
|
||
|
namespace nd4j {
|
||
|
namespace ops {
|
||
|
namespace helpers {
|
||
|
|
||
|
template <typename T>
|
||
|
void maximumBPFunctor_(NDArray* x, NDArray* y, NDArray* epsNext, NDArray* gradX, NDArray* gradY) {
|
||
|
|
||
|
auto lambdaX = LAMBDA_TTT(_e, _x, _y) {
|
||
|
return _x >= _y ? _e : (T) 0.;
|
||
|
};
|
||
|
|
||
|
auto lambdaY = LAMBDA_TTT(_e, _x, _y) {
|
||
|
return _x <= _y ? _e : (T) 0.;
|
||
|
};
|
||
|
|
||
|
|
||
|
if (x->isSameShape(y)) {
|
||
|
// PWT case case
|
||
|
|
||
|
// X gradient
|
||
|
epsNext->applyTriplewiseLambda(x, y, lambdaX, gradX);
|
||
|
|
||
|
// Y gradient
|
||
|
epsNext->applyTriplewiseLambda(x, y, lambdaY, gradY);
|
||
|
|
||
|
} else if (y->isScalar()) {
|
||
|
T s = y->e<T>(0);
|
||
|
auto lambdaS = LAMBDA_TT(_e, _x, s) {
|
||
|
return _x >= s ? _e : (T) 0.;
|
||
|
};
|
||
|
|
||
|
// scalar case
|
||
|
auto tmp = epsNext->reduceNumber(reduce::Sum);
|
||
|
if (x <= y)
|
||
|
gradY->assign(tmp);
|
||
|
else
|
||
|
gradY->assign(0.0f);
|
||
|
|
||
|
epsNext->applyPairwiseLambda(x, lambdaS, gradX);
|
||
|
} else {
|
||
|
// broadcast case
|
||
|
|
||
|
// in this case we want to boost our X and Y shapes to the size of FF pass output (or epsNext, which has the same shape)
|
||
|
auto preX = x->dup();
|
||
|
auto preY = y->dup();
|
||
|
|
||
|
auto targetShape = epsNext->getShapeAsVector();
|
||
|
|
||
|
preX->tileToShape(targetShape);
|
||
|
preY->tileToShape(targetShape);
|
||
|
|
||
|
epsNext->applyTriplewiseLambda(preX, preY, lambdaX, preX);
|
||
|
epsNext->applyTriplewiseLambda(preX, preY, lambdaY, preY);
|
||
|
|
||
|
auto axisX = ShapeUtils::evalBroadcastBackwardAxis(x->shapeInfo(), epsNext->shapeInfo());
|
||
|
auto axisY = ShapeUtils::evalBroadcastBackwardAxis(y->shapeInfo(), epsNext->shapeInfo());
|
||
|
|
||
|
if (axisX.size() > 0) {
|
||
|
auto sum = preX->reduceAlongDimension(reduce::Sum, axisX);
|
||
|
gradX->assign(sum);
|
||
|
delete sum;
|
||
|
} else
|
||
|
gradX->assign(preX);
|
||
|
|
||
|
if (axisY.size() > 0) {
|
||
|
auto sum = preY->reduceAlongDimension(reduce::Sum, axisY);
|
||
|
gradY->assign(sum);
|
||
|
delete sum;
|
||
|
} else
|
||
|
gradY->assign(preY);
|
||
|
|
||
|
|
||
|
delete preX;
|
||
|
delete preY;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void maximumBPFunctor(nd4j::LaunchContext * context, NDArray* x, NDArray* y, NDArray* epsNext, NDArray* gradX, NDArray* gradY) {
|
||
|
NDArray::prepareSpecialUse({gradX, gradY}, {x, y, epsNext});
|
||
|
|
||
|
BUILD_SINGLE_SELECTOR(x->dataType(), maximumBPFunctor_, (x, y, epsNext, gradX, gradY), NUMERIC_TYPES);
|
||
|
|
||
|
NDArray::registerSpecialUse({gradX, gradY}, {x, y, epsNext});
|
||
|
}
|
||
|
|
||
|
}
|
||
|
}
|
||
|
}
|