90 lines
3.9 KiB
C++
90 lines
3.9 KiB
C++
|
/*******************************************************************************
|
||
|
* Copyright (c) 2019 Konduit K.K.
|
||
|
*
|
||
|
* This program and the accompanying materials are made available under the
|
||
|
* terms of the Apache License, Version 2.0 which is available at
|
||
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||
|
* License for the specific language governing permissions and limitations
|
||
|
* under the License.
|
||
|
*
|
||
|
* SPDX-License-Identifier: Apache-2.0
|
||
|
******************************************************************************/
|
||
|
|
||
|
#include <ops/declarable/helpers/adjust_hue.h>
|
||
|
#include <ops/declarable/helpers/color_models_conv.h>
|
||
|
#include <helpers/ConstantTadHelper.h>
|
||
|
#include <execution/Threads.h>
|
||
|
|
||
|
namespace nd4j {
|
||
|
namespace ops {
|
||
|
namespace helpers {
|
||
|
|
||
|
//local
|
||
|
template <typename T, typename Op>
|
||
|
FORCEINLINE static void triple_transformer(const NDArray* input, NDArray* output, const int dimC, Op op) {
|
||
|
|
||
|
const int rank = input->rankOf();
|
||
|
|
||
|
const T* x = input->bufferAsT<T>();
|
||
|
T* z = output->bufferAsT<T>();
|
||
|
|
||
|
if (dimC == rank - 1 && input->ews() == 1 && output->ews() == 1 && input->ordering() == 'c' && output->ordering() == 'c') {
|
||
|
|
||
|
auto func = PRAGMA_THREADS_FOR{
|
||
|
for (auto i = start; i < stop; i += increment) {
|
||
|
op(x[i], x[i + 1], x[i + 2], z[i], z[i + 1], z[i + 2]);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
samediff::Threads::parallel_for(func, 0, input->lengthOf(), 3);
|
||
|
}
|
||
|
else {
|
||
|
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), dimC);
|
||
|
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), dimC);
|
||
|
|
||
|
const Nd4jLong numOfTads = packX.numberOfTads();
|
||
|
const Nd4jLong xDimCstride = input->stridesOf()[dimC];
|
||
|
const Nd4jLong zDimCstride = output->stridesOf()[dimC];
|
||
|
|
||
|
auto func = PRAGMA_THREADS_FOR{
|
||
|
for (auto i = start; i < stop; i += increment) {
|
||
|
const T* xTad = x + packX.platformOffsets()[i];
|
||
|
T* zTad = z + packZ.platformOffsets()[i];
|
||
|
op(xTad[0], xTad[xDimCstride], xTad[2 * xDimCstride], zTad[0], zTad[zDimCstride], zTad[2 * zDimCstride]);
|
||
|
|
||
|
}
|
||
|
};
|
||
|
|
||
|
samediff::Threads::parallel_tad(func, 0, numOfTads);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
template <typename T>
|
||
|
FORCEINLINE static void hsv_rgb(const NDArray* input, NDArray* output, const int dimC) {
|
||
|
auto op = nd4j::ops::helpers::hsvToRgb<T>;
|
||
|
return triple_transformer<T>(input, output, dimC, op);
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
FORCEINLINE static void rgb_hsv(const NDArray* input, NDArray* output, const int dimC) {
|
||
|
auto op = nd4j::ops::helpers::rgbToHsv<T>;
|
||
|
return triple_transformer<T>(input, output, dimC, op);
|
||
|
}
|
||
|
|
||
|
void transform_hsv_rgb(nd4j::LaunchContext* context, const NDArray* input, NDArray* output, const int dimC) {
|
||
|
BUILD_SINGLE_SELECTOR(input->dataType(), hsv_rgb, (input, output, dimC), FLOAT_TYPES);
|
||
|
}
|
||
|
|
||
|
void transform_rgb_hsv(nd4j::LaunchContext* context, const NDArray* input, NDArray* output, const int dimC) {
|
||
|
BUILD_SINGLE_SELECTOR(input->dataType(), rgb_hsv, (input, output, dimC), FLOAT_TYPES);
|
||
|
}
|
||
|
|
||
|
}
|
||
|
}
|
||
|
}
|