2021-02-01 13:31:45 +01:00
|
|
|
/* ******************************************************************************
|
|
|
|
*
|
2020-01-28 16:23:07 +01:00
|
|
|
*
|
|
|
|
* This program and the accompanying materials are made available under the
|
|
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
|
|
*
|
2021-02-01 13:31:45 +01:00
|
|
|
* See the NOTICE file distributed with this work for additional
|
|
|
|
* information regarding copyright ownership.
|
2020-01-28 16:23:07 +01:00
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
|
|
* License for the specific language governing permissions and limitations
|
|
|
|
* under the License.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
//
|
|
|
|
// @author Yurii Shyrma (iuriish@yahoo.com)
|
|
|
|
//
|
|
|
|
|
|
|
|
|
|
|
|
#include "cudnnUtils.h"
|
|
|
|
#include <ops/declarable/helpers/convolutions.h>
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
namespace sd {
|
2020-01-28 16:23:07 +01:00
|
|
|
namespace ops {
|
|
|
|
namespace platforms {
|
|
|
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
PLATFORM_IMPL(avgpool3dnew, ENGINE_CUDA) {
|
|
|
|
|
|
|
|
auto input = INPUT_VARIABLE(0); // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW)
|
|
|
|
auto output = OUTPUT_VARIABLE(0); // [bS, oD, oH, oW, iC] (NDHWC) or [bS, iC, oD, oH, oW] (NCDHW)
|
|
|
|
|
|
|
|
int kD = INT_ARG(0); // filter(kernel) depth
|
|
|
|
int kH = INT_ARG(1); // filter(kernel) height
|
|
|
|
int kW = INT_ARG(2); // filter(kernel) width
|
|
|
|
int sD = INT_ARG(3); // strides depth
|
|
|
|
int sH = INT_ARG(4); // strides height
|
|
|
|
int sW = INT_ARG(5); // strides width
|
|
|
|
int pD = INT_ARG(6); // paddings depth
|
|
|
|
int pH = INT_ARG(7); // paddings height
|
|
|
|
int pW = INT_ARG(8); // paddings width
|
|
|
|
int dD = INT_ARG(9); // dilations depth
|
|
|
|
int dH = INT_ARG(10); // dilations height
|
|
|
|
int dW = INT_ARG(11); // dilations width
|
|
|
|
int paddingMode = INT_ARG(12); // 1-SAME, 0-VALID
|
|
|
|
int extraParam0 = INT_ARG(13);
|
|
|
|
int isNCDHW = block.getIArguments()->size() > 14 ? !INT_ARG(14) : 1; // 0-NCDHW, 1-NDHWC
|
|
|
|
|
|
|
|
REQUIRE_TRUE(input->rankOf() == 5, 0, "AVGPOOL3DNEW CUDNN OP: rank of input array must be equal to 5, but got %i instead !", input->rankOf());
|
|
|
|
REQUIRE_TRUE(dD != 0 && dH != 0 && dW != 0, 0, "AVGPOOL3DNEW CUDNN OP: dilation must not be zero, but got instead {%i, %i, %i}", dD, dH, dW);
|
|
|
|
|
|
|
|
int bS, iC, iD, iH, iW, oC, oD, oH, oW; // batch size, input channels, input depth/height/width, output channels, output depth/height/width;
|
|
|
|
int indIOioC, indIOioD, indWoC, indWiC, indWkD; // corresponding indexes
|
2020-03-20 10:11:27 +01:00
|
|
|
ConvolutionUtils::getSizesAndIndexesConv3d(isNCDHW, 0, *input, *output, bS, iC, iD, iH, iW, oC, oD, oH, oW, indIOioC, indIOioD, indWiC, indWoC, indWkD);
|
2020-01-28 16:23:07 +01:00
|
|
|
|
|
|
|
std::vector<Nd4jLong> expectedOutputShape = ShapeUtils::composeShapeUsingDimsAndIdx({bS,iC,oD,oH,oW, 0,indIOioC,indIOioD,indIOioD+1,indIOioD+2});
|
|
|
|
REQUIRE_TRUE(output->isSameShape(expectedOutputShape), 0, "AVGPOOL3DNEW CUDNN OP: wrong shape of output array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedOutputShape).c_str(), ShapeUtils::shapeAsString(output).c_str());
|
|
|
|
|
|
|
|
if(paddingMode) // SAME
|
|
|
|
ConvolutionUtils::calcPadding3D(pD, pH, pW, oD, oH, oW, iD, iH, iW, kD, kH, kW, sD, sH, sW, dD, dH, dW);
|
|
|
|
|
|
|
|
const cudnnPoolingMode_t mode = (extraParam0 == 0) ? CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING : CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING;
|
|
|
|
|
|
|
|
pooling3dCUDNN(block.launchContext(), input, output, kD, kH, kW, sD, sH, sW, pD, pH, pW, dD, dH, dW, isNCDHW, mode);
|
|
|
|
|
|
|
|
return Status::OK();
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
PLATFORM_CHECK(avgpool3dnew, ENGINE_CUDA) {
|
|
|
|
|
|
|
|
auto input = INPUT_VARIABLE(0);
|
|
|
|
auto output = OUTPUT_VARIABLE(0);
|
|
|
|
|
|
|
|
const auto goodType = input->dataType() == DataType::DOUBLE || input->dataType() == DataType::FLOAT32 || input->dataType() == DataType::HALF || input->dataType() == DataType::INT32;
|
|
|
|
|
|
|
|
return goodType && input->dataType() == output->dataType();
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
PLATFORM_IMPL(avgpool3dnew_bp, ENGINE_CUDA) {
|
|
|
|
|
|
|
|
auto input = INPUT_VARIABLE(0); // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW)
|
|
|
|
auto gradO = INPUT_VARIABLE(1); // [bS, oD, oH, oW, oC] (NDHWC) or [bS, oC, oD, oH, oW] (NCDHW), epsilon_next
|
|
|
|
auto gradI = OUTPUT_VARIABLE(0); // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW), epsilon
|
|
|
|
|
|
|
|
const int kD = INT_ARG(0); // filter(kernel) depth
|
|
|
|
const int kH = INT_ARG(1); // filter(kernel) height
|
|
|
|
const int kW = INT_ARG(2); // filter(kernel) width
|
|
|
|
const int sD = INT_ARG(3); // strides depth
|
|
|
|
const int sH = INT_ARG(4); // strides height
|
|
|
|
const int sW = INT_ARG(5); // strides width
|
|
|
|
int pD = INT_ARG(6); // paddings depth
|
|
|
|
int pH = INT_ARG(7); // paddings height
|
|
|
|
int pW = INT_ARG(8); // paddings width
|
|
|
|
const int dD = INT_ARG(9); // dilations depth
|
|
|
|
const int dH = INT_ARG(10); // dilations height
|
|
|
|
const int dW = INT_ARG(11); // dilations width
|
|
|
|
const int isSameMode = INT_ARG(12); // 1-SAME, 0-VALID
|
|
|
|
const int extraParam0 = INT_ARG(13); // define what divisor to use while averaging
|
|
|
|
const int isNCDHW = block.getIArguments()->size() > 14 ? !INT_ARG(14) : 1; // 0-NCDHW, 1-NDHWC
|
|
|
|
|
|
|
|
REQUIRE_TRUE(input->rankOf() == 5, 0, "AVGPOOL3DNEW_BP CUDNN OP: input should have rank of 5, but got %i instead", input->rankOf());
|
|
|
|
REQUIRE_TRUE(dD != 0 && dH != 0 && dW != 0, 0, "AVGPOOL3DNEW_BP CUDNN OP: dilation must not be zero, but got instead {%i, %i, %i}", dD, dH, dW);
|
|
|
|
|
|
|
|
int bS, iC, iD, iH, iW, oC, oD, oH, oW; // batch size, input channels, input depth/height/width, output channels, output depth/height/width;
|
|
|
|
int indIOioC, indIOioD, indWoC, indWiC, indWkD; // corresponding indexes
|
2020-03-20 10:11:27 +01:00
|
|
|
ConvolutionUtils::getSizesAndIndexesConv3d(isNCDHW, 0, *input, *gradO, bS, iC, iD, iH, iW, oC, oD, oH, oW, indIOioC, indIOioD, indWiC, indWoC, indWkD);
|
2020-01-28 16:23:07 +01:00
|
|
|
|
|
|
|
std::vector<Nd4jLong> expectedGradOShape = ShapeUtils::composeShapeUsingDimsAndIdx({bS,iC,oD,oH,oW, 0,indIOioC,indIOioD,indIOioD+1,indIOioD+2});
|
|
|
|
std::vector<Nd4jLong> expectedGradIShape = ShapeUtils::composeShapeUsingDimsAndIdx({bS,iC,iD,iH,iW, 0,indIOioC,indIOioD,indIOioD+1,indIOioD+2});
|
|
|
|
REQUIRE_TRUE(gradO->isSameShape(expectedGradOShape), 0, "AVGPOOL3DNEW_BP CUDNN: wrong shape of output's gradients array (next epsilon), expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedGradOShape).c_str(), ShapeUtils::shapeAsString(gradO).c_str());
|
|
|
|
REQUIRE_TRUE(gradI->isSameShape(expectedGradIShape), 0, "AVGPOOL3DNEW_BP CUDNN: wrong shape of input's gradients array (epsilon), expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedGradIShape).c_str(), ShapeUtils::shapeAsString(gradI).c_str());
|
|
|
|
|
|
|
|
if(isSameMode) // SAME
|
|
|
|
ConvolutionUtils::calcPadding3D(pD, pH, pW, oD, oH, oW, iD, iH, iW, kD, kH, kW, sD, sH, sW, dD, dH, dW);
|
|
|
|
|
|
|
|
const cudnnPoolingMode_t mode = (extraParam0 == 0) ? CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING : CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING;
|
|
|
|
|
|
|
|
pooling3dBpCUDNN(block.launchContext(), input, gradO, gradI, kD, kH, kW, sD, sH, sW, pD, pH, pW, dD, dH, dW, isNCDHW, mode);
|
|
|
|
|
|
|
|
return Status::OK();
|
|
|
|
}
|
|
|
|
|
|
|
|
PLATFORM_CHECK(avgpool3dnew_bp, ENGINE_CUDA) {
|
|
|
|
|
|
|
|
auto input = INPUT_VARIABLE(0); // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW)
|
|
|
|
auto gradO = INPUT_VARIABLE(1); // [bS, oD, oH, oW, oC] (NDHWC) or [bS, oC, oD, oH, oW] (NCDHW), epsilon_next
|
|
|
|
auto gradI = OUTPUT_VARIABLE(0); // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW), epsilon
|
|
|
|
|
|
|
|
const auto goodType = input->dataType() == DataType::DOUBLE || input->dataType() == DataType::FLOAT32 || input->dataType() == DataType::HALF || input->dataType() == DataType::INT32;
|
|
|
|
|
|
|
|
return goodType && (input->dataType() == gradO->dataType())
|
|
|
|
&& (input->dataType() == gradI->dataType())
|
2020-05-09 07:06:14 +02:00
|
|
|
&& shape::haveSameShapeAndStrides(input->shapeInfo(), gradI->shapeInfo());
|
2020-01-28 16:23:07 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|