cavis/libnd4j/include/ops/declarable/helpers/cuda/randomShuffle.cu

230 lines
8.0 KiB
Plaintext
Raw Normal View History

2021-02-01 13:31:45 +01:00
/* ******************************************************************************
*
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
2021-02-01 13:31:45 +01:00
* See the NOTICE file distributed with this work for additional
* information regarding copyright ownership.
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com)
// implemented algorithm is GPU adaptation of algorithm described in following article:
// "MergeShuffle: A Very Fast, Parallel Random Permutation Algorithm", https://arxiv.org/abs/1508.03167
//
#include<ops/declarable/helpers/transforms.h>
#include <array/ResultSet.h>
#include <numeric>
#include <execution/Threads.h>
#include <helpers/ShapeUtils.h>
#include <helpers/PointersManager.h>
namespace sd {
namespace ops {
namespace helpers {
//////////////////////////////////////////////////////////////////////////
template <typename T>
static __global__ void fisherYatesCuda(sd::graph::RandomGenerator* rng, void* vx, const Nd4jLong ews, const Nd4jLong len, const int power) {
T* x = reinterpret_cast<T*>(vx);
__shared__ T* shmem, temp;
__shared__ Nd4jLong ind, blockOffset, lenPerBlock;
if (threadIdx.x == 0) {
extern __shared__ unsigned char sharedMemory[];
shmem = reinterpret_cast<T*>(sharedMemory);
blockOffset = (len * blockIdx.x) >> power;
lenPerBlock = ((len * (blockIdx.x + 1)) >> power) - blockOffset;
ind = blockOffset;
}
__syncthreads();
// copy from global memory to shared memory
if(threadIdx.x < lenPerBlock)
shmem[threadIdx.x] = x[(blockOffset + threadIdx.x) * ews];
__syncthreads();
// *** apply Fisher-Yates shuffle to lenPerBlock number of elements
if (threadIdx.x == 0) {
for(Nd4jLong i = lenPerBlock - 1; i > 0; --i) {
const Nd4jLong j = rng->relativeLong(ind++) % (i + 1);
if(i != j) {
temp = shmem[i];
shmem[i] = shmem[j];
shmem[j] = temp;
}
}
}
__syncthreads();
// copy from shared memory to global memory
if(threadIdx.x < lenPerBlock)
x[(blockOffset + threadIdx.x) * ews] = shmem[threadIdx.x];
}
template <typename T>
static __global__ void mergeShuffleCuda(sd::graph::RandomGenerator* rng, void* vx, const Nd4jLong ews, const Nd4jLong len, const int power, const Nd4jLong iterNum) {
T* x = reinterpret_cast<T*>(vx);
__shared__ Nd4jLong ind, blockOffset, factor, beg, mid, totLen, iterExp;
// *** apply mergeShuffle algorithm
if(threadIdx.x == 0) {
factor = blockIdx.x << iterNum;
iterExp = 1 << (iterNum - 1);
blockOffset = (len * factor) >> power;
mid = ((len * (factor + iterExp)) >> power) - blockOffset; // middle
totLen = ((len * (factor + 2*iterExp)) >> power) - blockOffset;
ind = iterNum * len + blockOffset;
beg = 0; // beginning
// printf("m %lld, blockIdx.x %lld, factor %lld, blockOffset %lld, mid %lld, totLen %lld \n", m,k,factor,blockOffset,mid,totLen);
while (true) {
if(rng->relativeLong(ind++) % 2) {
if(mid == totLen)
break;
math::nd4j_swap<T>(x[(blockOffset + beg) * ews], x[(blockOffset + mid++) * ews]);
} else {
if(beg == mid)
break;
}
++beg;
}
// Fisher-Yates
while (beg < totLen) {
const Nd4jLong e = rng->relativeLong(ind++) % (beg + 1);
if(beg != e)
math::nd4j_swap<T>(x[(blockOffset + beg) * ews], x[(blockOffset + e) * ews]);
++beg;
}
}
}
//////////////////////////////////////////////////////////////////////////
// Fisher-Yates shuffle
template <typename T>
static void fisherYates(sd::graph::RandomGenerator& rng, T* buff, const Nd4jLong& len, const Nd4jLong& ews, Nd4jLong ind) {
for(Nd4jLong i = len-1; i > 0; --i) {
const Nd4jLong j = rng.relativeLong(ind++) % (i + 1);
if(i != j)
math::nd4j_swap<T>(buff[i*ews], buff[j*ews]);
}
}
//////////////////////////////////////////////////////////////////////////
template <typename T>
static void randomShuffle_(sd::LaunchContext* context, NDArray& input, NDArray& output, sd::graph::RandomGenerator& rng, const bool isInplace) {
const int firstDim = input.sizeAt(0);
int temp;
if(input.lengthOf() == 1 || firstDim == 1) {
if(!isInplace)
output.assign(input);
}
else if (shape::isCommonVector(input.shapeInfo(), temp)) {
NDArray* arr = &input;
if (!isInplace) {
output.assign(input);
arr = &output;
}
const Nd4jLong len = arr->lengthOf();
const int threadsPerBlock = MAX_NUM_THREADS;
int power = 0;
while ((len >> power) > threadsPerBlock)
++power;
const int blocksPerGrid = 1 << power;
const int sharedMem = threadsPerBlock * input.sizeOfT() + 256;
PointersManager manager(context, "NDArray::randomShuffle cuda");
sd::graph::RandomGenerator* pRng = reinterpret_cast<sd::graph::RandomGenerator*>(manager.replicatePointer(&rng, sizeof(sd::graph::RandomGenerator)));
NDArray::prepareSpecialUse({arr}, {arr});
fisherYatesCuda<T><<<blocksPerGrid, threadsPerBlock, sharedMem, *context->getCudaStream()>>>(pRng, arr->specialBuffer(), arr->ews(), len, power);
for (Nd4jLong j = 1, i = 1; j < blocksPerGrid; j += j, ++i)
mergeShuffleCuda<T><<<blocksPerGrid/(2*j), threadsPerBlock, 256, *context->getCudaStream()>>>(pRng, arr->specialBuffer(), arr->ews(), len, power, i);
NDArray::registerSpecialUse({arr}, {arr});
manager.synchronize();
rng.rewindH((len + 1) * power);
}
else {
auto dimsToExclude = ShapeUtils::evalDimsToExclude(input.rankOf(), {0});
if(isInplace) {
auto subArrsList = input.allTensorsAlongDimension(dimsToExclude);
// Fisher-Yates shuffle
for(int i = firstDim - 1; i > 0; --i) {
const int j = rng.relativeInt(i) % (i + 1);
if(i != j)
subArrsList.at(i)->swapUnsafe(*subArrsList.at(j));
}
}
else {
auto subArrsListIn = input.allTensorsAlongDimension(dimsToExclude);
auto subArrsListOut = output.allTensorsAlongDimension(dimsToExclude);
std::vector<int> indices(firstDim);
std::iota(indices.begin(), indices.end(), 0); // 0,1,2,3, ... firstDim-1
// shuffle indices
fisherYates<int>(rng, indices.data(), firstDim, 1, 0);
auto func = PRAGMA_THREADS_FOR {
for (auto i = start; i < stop; ++i)
subArrsListOut.at(i)->assign(subArrsListIn.at(indices[i]));
};
samediff::Threads::parallel_for(func, 0, firstDim);
}
rng.rewindH(firstDim-1);
}
}
/////////////////////////////////////////////////////////////////////////
void randomShuffle(sd::LaunchContext * context, NDArray& input, NDArray& output, sd::graph::RandomGenerator& rng, const bool isInplace) {
BUILD_SINGLE_SELECTOR(input.dataType(), randomShuffle_, (context, input, output, rng, isInplace), LIBND4J_TYPES);
}
// BUILD_SINGLE_TEMPLATE(template void randomShuffle_, (sd::LaunchContext* context, NDArray& input, NDArray& output, sd::graph::RandomGenerator& rng, const bool isInplace), LIBND4J_TYPES);
}
}
}