cavis/libnd4j/include/ops/declarable/helpers/cpu/convolutions_upsampling3d.cpp

92 lines
4.0 KiB
C++
Raw Normal View History

2021-02-01 13:31:45 +01:00
/* ******************************************************************************
*
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
2021-02-01 13:31:45 +01:00
* See the NOTICE file distributed with this work for additional
* information regarding copyright ownership.
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 18.09.2018
//
#include <ops/declarable/helpers/convolutions.h>
#include <execution/Threads.h>
namespace sd {
namespace ops {
//////////////////////////////////////////////////////////////////////////
template <typename T>
static void upsampling3d_(const NDArray& input, NDArray& output, const int factorD, const int factorH, const int factorW, const bool isNCDHW) {
// input has shape [bS, iC, iD, iH, iW] (NCDHW) or [bS, iD, iH, iW, iC] (NDHWC)
// output has shape [bS, iC, factorD*iD, factorH*iH, factorW*iW ] (NCDHW) or [bS, factorD*iD, factorH*iH, factorW*iW, iC] (NDHWC)
const T* x = input.bufferAsT<T>();
T* z = output.bufferAsT<T>();
const uint dimID = isNCDHW ? 2 : 1;
const uint dimIC = isNCDHW ? 1 : 4;
const uint bS = input.sizeAt(0);
const uint iC = input.sizeAt(dimIC);
const uint oD = output.sizeAt(dimID);
const uint oH = output.sizeAt(dimID + 1);
const uint oW = output.sizeAt(dimID + 2);
const Nd4jLong xStride0 = input.stridesOf()[0];
const Nd4jLong xStride1 = input.stridesOf()[dimIC];
const Nd4jLong xStride2 = input.stridesOf()[dimID];
const Nd4jLong xStride3 = input.stridesOf()[dimID + 1];
const Nd4jLong xStride4 = input.stridesOf()[dimID + 2];
const Nd4jLong zStride0 = output.stridesOf()[0];
const Nd4jLong zStride1 = output.stridesOf()[dimIC];
const Nd4jLong zStride2 = output.stridesOf()[dimID];
const Nd4jLong zStride3 = output.stridesOf()[dimID + 1];
const Nd4jLong zStride4 = output.stridesOf()[dimID + 2];
// loop through output array
auto func = PRAGMA_THREADS_FOR_3D {
uint xCoord2, xCoord3, xCoord4;
for (uint b = start_x; b < stop_x; b += inc_x) {
for (uint c = start_y; c < stop_y; c += inc_y) {
for (uint d = start_z; d < stop_z; d += inc_z) {
for (uint h = 0; h < oH; ++h) {
for (uint w = 0; w < oW; ++w) {
xCoord2 = d / factorD;
xCoord3 = h / factorH;
xCoord4 = w / factorW;
z[b * zStride0 + c * zStride1 + d * zStride2 + h * zStride3 + w * zStride4] = x[
b * xStride0 + c * xStride1 + xCoord2 * xStride2 + xCoord3 * xStride3 +
xCoord4 * xStride4];
}
}
}
}
}
};
samediff::Threads::parallel_for(func, 0, bS, 1, 0, iC, 1, 0, oD, 1);
}
void ConvolutionUtils::upsampling3d(sd::graph::Context& block, const NDArray& input, NDArray& output, const int factorD, const int factorH, const int factorW, const bool isNCDHW) {
BUILD_SINGLE_SELECTOR(input.dataType(), upsampling3d_, (input, output, factorD, factorH, factorW, isNCDHW), FLOAT_TYPES);
}
}
}