cavis/libnd4j/include/graph/execution/impl/LogicWhile.cpp

147 lines
6.0 KiB
C++
Raw Normal View History

2021-02-01 13:31:45 +01:00
/* ******************************************************************************
*
2019-06-06 14:21:15 +02:00
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
2021-02-01 13:31:45 +01:00
* See the NOTICE file distributed with this work for additional
* information regarding copyright ownership.
2019-06-06 14:21:15 +02:00
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// Created by raver119 on 20.10.2017.
//
#include <graph/execution/LogicWhile.h>
#include <graph/execution/LogicReturn.h>
#include <graph/GraphExecutioner.h>
2019-06-06 14:21:15 +02:00
#include <graph/execution/LogicExecutor.h>
#include <graph/Status.h>
2019-06-06 14:21:15 +02:00
namespace sd {
2019-06-06 14:21:15 +02:00
namespace graph {
Nd4jStatus LogicWhile::processNode(Graph *graph, Node *node) {
auto __variableSpace = graph->getVariableSpace();
nd4j_debug("Starting on WHILE loop: [%i]\n", node->id());
// total number of inputs. 2 last inputs are scopes
int inputs = node->input()->size();
if (inputs < 3) {
nd4j_printf("While [%i]: loop should have at least 1 external variable announced\n", node->id());
return ND4J_STATUS_BAD_INPUT;
}
for (int e = 0; e < inputs - 2; e++) {
std::pair<int, int> pair(node->id(), e);
if (!__variableSpace->hasVariable(pair)) {
__variableSpace->putVariable(pair, new Variable(nullptr, nullptr, node->id(), e));
}
auto va = node->input()->at(e);
auto inputVar = __variableSpace->getVariable(va);
auto innerVar = __variableSpace->getVariable(pair);
if (innerVar->hasNDArray()) {
// TODO: ???
} else {
// FIXME: in some cases it's possible to have no NDArray
if (inputVar->hasNDArray())
Shyrma temp (#131) * - specifying template instantiation for certain types in float16 and bloat16 Signed-off-by: Yurii <iuriish@yahoo.com> * - polishing bfloat16 and float16 member functions template specialization Signed-off-by: Yurii <iuriish@yahoo.com> * - rewrite and overload array +-*/ scalar and scalar +-*/ arr in NDAray class Signed-off-by: Yurii <iuriish@yahoo.com> * - make corrections which have to do with and rvalue lvalue conversions Signed-off-by: Yurii <iuriish@yahoo.com> * - provide move semantic in NDArray operators array +-/* array Signed-off-by: Yurii <iuriish@yahoo.com> * float16/bfloat16 tweaks Signed-off-by: raver119 <raver119@gmail.com> * one more tweak Signed-off-by: raver119 <raver119@gmail.com> * - make float16 and bfloat16 to compile successfully on cuda Signed-off-by: Yurii <iuriish@yahoo.com> * - do not use resources of view-like arrays when move semantics is applied Signed-off-by: Yurii <iuriish@yahoo.com> * - get rid of pointers in signatures NDArray methods 1 Signed-off-by: Yurii <iuriish@yahoo.com> * - correction of signature of NDArray::dup method Signed-off-by: Yurii <iuriish@yahoo.com> * - correction of signature of NDArray::reduceAlongDimension method Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyIndexReduce and applyTrueBroadcast methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyReduce3 and varianceAlongDimension methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::tensorsAlongDimension and diagonal methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::allTensorsAlongDimension Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::reduceAlongDimension 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyTransform 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyPairwiseTransform 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyBroadcast 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyTrueBroadcast 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyScalar and applyScalarArr Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::lambda methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::reduce3 methods 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of following NDArray methods: add/sub/mul/div row/column and fillAsTriangular Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::tileToShape methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::isShapeSameStrict method Signed-off-by: Yurii <iuriish@yahoo.com> * minor corrections in tests Signed-off-by: Yurii <iuriish@yahoo.com> * - replace reduce op in batchnorm mkldnn Signed-off-by: Yurii <iuriish@yahoo.com> * - add explicit templates instantiations for operator+(NDArray&&. const scalar) Signed-off-by: Yurii <iuriish@yahoo.com> * - corrections of casts in float16/bfloat16 Signed-off-by: Yurii <iuriish@yahoo.com> * - provide move semantics in following NDArray methods: transform, applyTrueBroadcast, transpose, reshape, permute Signed-off-by: Yurii <iuriish@yahoo.com> * - get rid of input array A duplicate in svd cuda op Signed-off-by: Yurii <iuriish@yahoo.com> * - avoid available bug in svd cuda API Signed-off-by: Yurii <iuriish@yahoo.com> * - add temporary global memory buffer in svd cuda when calcUV = false and m != n Signed-off-by: Yurii <iuriish@yahoo.com> * - remove test with blfoat16 type for betainC Signed-off-by: Yurii <iuriish@yahoo.com> * - resolve conflicts after master has been merged in Signed-off-by: Yurii <iuriish@yahoo.com> * - changed type of affected input array in fused_batch_norm Signed-off-by: Yurii <iuriish@yahoo.com> * - add several explicit type castings Signed-off-by: Yurii <iuriish@yahoo.com> * - add ND4J_EXPORT to operators Signed-off-by: Yurii <iuriish@yahoo.com> * - add explicit template types in instantiations of template arithm operators of NDArray class Signed-off-by: Yurii <iuriish@yahoo.com> * - one more test fix Signed-off-by: Yurii <iuriish@yahoo.com> Co-authored-by: raver119 <raver119@gmail.com>
2019-12-20 20:35:39 +01:00
innerVar->setNDArray(new NDArray(inputVar->getNDArray()->dup()));
2019-06-06 14:21:15 +02:00
}
}
int scopeConditionIndex = node->input()->at(inputs - 2).first;
int scopeBodyIndex = node->input()->at(inputs - 1).first;
nd4j_debug("While [%i]: got [%i] inputs\n", node->id(), node->input()->size());
// we're running condition nodes now
auto scope = graph->scopeById(scopeConditionIndex);
int breaker = 0;
while (true && breaker < 10000000) {
int lastNode = 0;
// we're running condition scope first
nd4j_debug("While [%i]: got [%i] ops in condition scope [%i]\n", node->id(), scope->nodes()->size(), scopeConditionIndex);
for (Node* v: *scope->nodes()) {
//v->getBlock()->updateVariables();
if (v->opType() == OpType_LOGIC) {
nd4j_debug("Falling back to logic\n","");
LogicExecutor::processNode(graph, v);
} else {
nd4j_debug("Op [<%s>]\n", v->getName()->c_str());
Nd4jStatus status = GraphExecutioner::executeFlatNode(graph, v, __variableSpace);
if (status != ND4J_STATUS_OK)
return status;
}
lastNode = v->id();
}
if (!__variableSpace->hasVariable(lastNode)) {
nd4j_printf("While [%i]: got no results out of conditional loop\n", node->id());
return ND4J_STATUS_KERNEL_FAILURE;
}
// now we should take result of the Scope run, and evaluate it
auto result = __variableSpace->getVariable(lastNode)->getNDArray();
if (Environment::getInstance().isDebugAndVerbose())
2019-06-06 14:21:15 +02:00
result->printBuffer("Result of the last node:");
// if result evaluates to 0.0 - condition returned FALSE
if (result->e<int>(0) == 0)
break;
else {
auto scopeBody = graph->scopeById(scopeBodyIndex);
int lastNode = 0;
int e = 0;
nd4j_debug("While [%i] got [%i] ops in body scope [%i]\n", node->id(), scopeBody->nodes()->size(), scopeBodyIndex);
for (; e < scopeBody->nodes()->size() - 1; e++) {
Node* v = scopeBody->nodes()->at(e);
if (v->opType() == OpType_LOGIC) {
nd4j_debug("Falling back to logic\n","");
LogicExecutor::processNode(graph, v);
} else {
nd4j_debug("Op [<%s>]\n", v->getName()->c_str());
//v->getBlock()->updateVariables();
Nd4jStatus status = GraphExecutioner::executeFlatNode(graph, v, __variableSpace);
if (status != ND4J_STATUS_OK)
return status;
}
lastNode = v->id();
}
// now execute return statement
Node* ret = scopeBody->nodes()->at(e);
LogicReturn::processNode(graph, ret);
}
breaker++;
}
// if we've hit breaker limit - we should notify about that
if (breaker >= 10000000) {
nd4j_printf("While condition seems to be never ending, aborting...\n", breaker);
return ND4J_STATUS_KERNEL_FAILURE;
}
return sd::Status::OK();
2019-06-06 14:21:15 +02:00
}
}
}