2021-02-01 14:31:20 +09:00
|
|
|
/*
|
|
|
|
* ******************************************************************************
|
|
|
|
* *
|
|
|
|
* *
|
|
|
|
* * This program and the accompanying materials are made available under the
|
|
|
|
* * terms of the Apache License, Version 2.0 which is available at
|
|
|
|
* * https://www.apache.org/licenses/LICENSE-2.0.
|
|
|
|
* *
|
2021-02-01 17:47:29 +09:00
|
|
|
* * See the NOTICE file distributed with this work for additional
|
|
|
|
* * information regarding copyright ownership.
|
2021-02-01 14:31:20 +09:00
|
|
|
* * Unless required by applicable law or agreed to in writing, software
|
|
|
|
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
|
|
* * License for the specific language governing permissions and limitations
|
|
|
|
* * under the License.
|
|
|
|
* *
|
|
|
|
* * SPDX-License-Identifier: Apache-2.0
|
|
|
|
* *****************************************************************************
|
|
|
|
*/
|
2019-06-06 15:21:15 +03:00
|
|
|
|
|
|
|
package org.deeplearning4j.earlystopping.scorecalc;
|
|
|
|
|
|
|
|
import org.deeplearning4j.earlystopping.scorecalc.base.BaseScoreCalculator;
|
|
|
|
import org.deeplearning4j.nn.api.Model;
|
|
|
|
import org.deeplearning4j.nn.graph.ComputationGraph;
|
|
|
|
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
|
|
|
|
import org.nd4j.linalg.api.ndarray.INDArray;
|
|
|
|
import org.nd4j.linalg.dataset.DataSet;
|
|
|
|
import org.nd4j.linalg.dataset.MultiDataSet;
|
|
|
|
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
|
|
|
|
import org.nd4j.linalg.dataset.api.iterator.MultiDataSetIterator;
|
2022-09-20 15:40:53 +02:00
|
|
|
import com.fasterxml.jackson.annotation.JsonProperty;
|
2019-06-06 15:21:15 +03:00
|
|
|
|
|
|
|
public class DataSetLossCalculator extends BaseScoreCalculator<Model> {
|
|
|
|
|
|
|
|
@JsonProperty
|
|
|
|
private boolean average;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Calculate the score (loss function value) on a given data set (usually a test set)
|
|
|
|
*
|
|
|
|
* @param dataSetIterator Data set to calculate the score for
|
|
|
|
* @param average Whether to return the average (sum of loss / N) or just (sum of loss)
|
|
|
|
*/
|
|
|
|
public DataSetLossCalculator(DataSetIterator dataSetIterator, boolean average) {
|
|
|
|
super(dataSetIterator);
|
|
|
|
this.average = average;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**Calculate the score (loss function value) on a given data set (usually a test set)
|
|
|
|
*
|
|
|
|
* @param dataSetIterator Data set to calculate the score for
|
|
|
|
* @param average Whether to return the average (sum of loss / N) or just (sum of loss)
|
|
|
|
*/
|
|
|
|
public DataSetLossCalculator(MultiDataSetIterator dataSetIterator, boolean average) {
|
|
|
|
super(dataSetIterator);
|
|
|
|
this.average = average;
|
|
|
|
}
|
|
|
|
|
|
|
|
@Override
|
|
|
|
public String toString() {
|
|
|
|
return "DataSetLossCalculator(average=" + average + ")";
|
|
|
|
}
|
|
|
|
|
|
|
|
@Override
|
|
|
|
protected void reset() {
|
|
|
|
scoreSum = 0;
|
|
|
|
minibatchCount = 0;
|
|
|
|
exampleCount = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
@Override
|
|
|
|
protected INDArray output(Model network, INDArray input, INDArray fMask, INDArray lMask) {
|
|
|
|
return output(network, arr(input), arr(fMask), arr(lMask))[0];
|
|
|
|
}
|
|
|
|
|
|
|
|
@Override
|
|
|
|
protected INDArray[] output(Model network, INDArray[] input, INDArray[] fMask, INDArray[] lMask) {
|
|
|
|
if(network instanceof MultiLayerNetwork){
|
|
|
|
INDArray out = ((MultiLayerNetwork) network).output(input[0], false, get0(fMask), get0(lMask));
|
|
|
|
return new INDArray[]{out};
|
|
|
|
} else if(network instanceof ComputationGraph){
|
|
|
|
return ((ComputationGraph) network).output(false, input, fMask, lMask);
|
|
|
|
} else {
|
|
|
|
throw new RuntimeException("Unknown model type: " + network.getClass());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
@Override
|
|
|
|
protected double scoreMinibatch(Model network, INDArray[] features, INDArray[] labels, INDArray[] fMask, INDArray[] lMask, INDArray[] output) {
|
|
|
|
if(network instanceof MultiLayerNetwork){
|
|
|
|
return ((MultiLayerNetwork) network).score(new DataSet(get0(features), get0(labels), get0(fMask), get0(lMask)), false)
|
|
|
|
* features[0].size(0);
|
|
|
|
} else if(network instanceof ComputationGraph){
|
|
|
|
return ((ComputationGraph) network).score(new MultiDataSet(features, labels, fMask, lMask))
|
|
|
|
* features[0].size(0);
|
|
|
|
} else {
|
|
|
|
throw new RuntimeException("Unknown model type: " + network.getClass());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
@Override
|
|
|
|
protected double finalScore(double scoreSum, int minibatchCount, int exampleCount) {
|
|
|
|
if(average){
|
|
|
|
return scoreSum / exampleCount;
|
|
|
|
} else {
|
|
|
|
return scoreSum;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
@Override
|
|
|
|
public boolean minimizeScore() {
|
|
|
|
return true; //Minimize loss
|
|
|
|
}
|
|
|
|
}
|