cavis/libnd4j/include/ops/declarable/helpers/cuda/convolutions_upsampling2dBP.cu

103 lines
4.1 KiB
Plaintext
Raw Normal View History

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
* Copyright (c) 2019 Konduit K.K.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com)
//
#include <ops/declarable/helpers/convolutions.h>
#include <helpers/PointersManager.h>
namespace sd {
namespace ops {
//////////////////////////////////////////////////////////////////////////
template <typename T>
__global__ static void upsampling2dBPCuda(const void* vx, const Nd4jLong* xShapeInfo, void* vz, const Nd4jLong* zShapeInfo, const bool isNCHW) {
// x (gradO) has shape [bS, iC, factorH*iH, factorW*iW ] (NCHW) or [bS, factorH*iH, factorW*iW, iC] (NHWC)
// z (gradI) has shape [bS, iC, iH, iW] (NCHW) or [bS, iH, iW, iC] (NHWC)
const T* x = reinterpret_cast<const T*>(vx);
T* z = reinterpret_cast<T*>(vz);
__shared__ int rank, dimIH;
__shared__ uint factorH, factorW;
__shared__ Nd4jLong zLen, *sharedMem;
if (threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
sharedMem = reinterpret_cast<Nd4jLong*>(shmem);
dimIH = isNCHW ? 2 : 1;
zLen = shape::length(zShapeInfo);
rank = 4;
factorH = xShapeInfo[dimIH + 1] / zShapeInfo[dimIH + 1];
factorW = xShapeInfo[dimIH + 2] / zShapeInfo[dimIH + 2];
}
__syncthreads();
const auto zInd = threadIdx.x + blockIdx.x * blockDim.x;
if(zInd >= zLen)
return;
auto coords = sharedMem + threadIdx.x * rank;
shape::index2coords(zInd, zShapeInfo, coords);
const auto zOffset = shape::getOffset(zShapeInfo, coords);
z[zOffset] = 0;
const Nd4jLong zCoord2 = coords[dimIH] * factorH;
const Nd4jLong zCoord3 = coords[dimIH + 1] * factorW;
for(coords[dimIH] = zCoord2; coords[dimIH] < zCoord2 + factorH; ++coords[dimIH])
for(coords[dimIH + 1] = zCoord3; coords[dimIH + 1] < zCoord3 + factorW; ++coords[dimIH + 1])
z[zOffset] += x[shape::getOffset(xShapeInfo, coords)];
}
//////////////////////////////////////////////////////////////////////////
template <typename T>
static void upsampling2dBPCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream,
const void* vx, const Nd4jLong* xShapeInfo,
void* vz, const Nd4jLong* zShapeInfo,
const bool isNCHW) {
upsampling2dBPCuda<T><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(vx, xShapeInfo, vz, zShapeInfo, isNCHW);
}
//////////////////////////////////////////////////////////////////////////
void ConvolutionUtils::upsampling2dBP(sd::graph::Context& block, const NDArray& gradO, NDArray& gradI, const bool isNCHW) {
PointersManager manager(block.launchContext(), "upsampling2d_bp");
const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int blocksPerGrid = (gradI.lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
const int sharedMem = gradI.rankOf() * sizeof(Nd4jLong) * threadsPerBlock + 128;
NDArray::prepareSpecialUse({&gradI}, {&gradO});
BUILD_SINGLE_SELECTOR(gradI.dataType(), upsampling2dBPCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, block.launchContext()->getCudaStream(), gradO.getSpecialBuffer(), gradO.getSpecialShapeInfo(), gradI.specialBuffer(), gradI.specialShapeInfo(), isNCHW), FLOAT_TYPES);
NDArray::registerSpecialUse({&gradI}, {&gradO});
manager.synchronize();
}
}
}