283 lines
15 KiB
Plaintext
283 lines
15 KiB
Plaintext
|
/*******************************************************************************
|
||
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
||
|
*
|
||
|
* This program and the accompanying materials are made available under the
|
||
|
* terms of the Apache License, Version 2.0 which is available at
|
||
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||
|
* License for the specific language governing permissions and limitations
|
||
|
* under the License.
|
||
|
*
|
||
|
* SPDX-License-Identifier: Apache-2.0
|
||
|
******************************************************************************/
|
||
|
|
||
|
//
|
||
|
// @author Yurii Shyrma (iuriish@yahoo.com), created on 20.04.2018
|
||
|
//
|
||
|
|
||
|
|
||
|
#include<ops/declarable/helpers/transforms.h>
|
||
|
#include <array/ResultSet.h>
|
||
|
#include <helpers/ShapeUtils.h>
|
||
|
#include <numeric>
|
||
|
#include <NDArrayFactory.h>
|
||
|
#include <helpers/TAD.h>
|
||
|
#include <exceptions/cuda_exception.h>
|
||
|
#include <PointersManager.h>
|
||
|
#include <ConstantTadHelper.h>
|
||
|
|
||
|
namespace nd4j {
|
||
|
namespace ops {
|
||
|
namespace helpers {
|
||
|
///////////////////////////////////////////////////////////////////
|
||
|
// x - input, y - paddings, z - output
|
||
|
template<typename X, typename Y>
|
||
|
__global__ static void padCuda(const int mode,
|
||
|
const void *vx, const Nd4jLong *xShapeInfo,
|
||
|
const void *vy, const Nd4jLong *yShapeInfo,
|
||
|
void *vz, const Nd4jLong *zShapeInfo,
|
||
|
const void *vPadVal) {
|
||
|
|
||
|
const X padVal = *reinterpret_cast<const X*>(vPadVal);
|
||
|
|
||
|
const auto x = reinterpret_cast<const X*>(vx);
|
||
|
const auto y = reinterpret_cast<const Y*>(vy);
|
||
|
auto z = reinterpret_cast<X*>(vz);
|
||
|
|
||
|
__shared__ int rank, rankMinusOne;
|
||
|
__shared__ Nd4jLong zLen, yLen, totalThreads, *coords, *xShape, *zShape, *xStride, *zStride, shift1, shift2, yStride0;
|
||
|
|
||
|
if (threadIdx.x == 0) {
|
||
|
|
||
|
extern __shared__ unsigned char shmem[];
|
||
|
coords = reinterpret_cast<Nd4jLong*>(shmem);
|
||
|
zLen = shape::length(zShapeInfo);
|
||
|
xShape = shape::shapeOf(const_cast<Nd4jLong*>(xShapeInfo));
|
||
|
zShape = shape::shapeOf(const_cast<Nd4jLong*>(zShapeInfo));
|
||
|
xStride = shape::stride(const_cast<Nd4jLong*>(xShapeInfo));
|
||
|
zStride = shape::stride(const_cast<Nd4jLong*>(zShapeInfo));
|
||
|
yStride0 = shape::stride(const_cast<Nd4jLong*>(yShapeInfo))[0];
|
||
|
rank = shape::rank(xShapeInfo);
|
||
|
zLen = shape::length(zShapeInfo);
|
||
|
yLen = 2 * rank;
|
||
|
rankMinusOne = rank - 1;
|
||
|
totalThreads = gridDim.x * blockDim.x;
|
||
|
shift1 = mode == 1 ? 0 : 1; // REFLECT : SYMMETRIC
|
||
|
shift2 = mode == 1 ? 2 : 1; // REFLECT : SYMMETRIC
|
||
|
}
|
||
|
|
||
|
__syncthreads();
|
||
|
|
||
|
auto xzCoord = coords + threadIdx.x * rank; // we use xzCoord storage both for x and z arrays
|
||
|
|
||
|
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
|
||
|
|
||
|
if(mode == 0) { // CONSTANT case
|
||
|
|
||
|
for (Nd4jLong i = tid; i < zLen; i += totalThreads) {
|
||
|
|
||
|
shape::index2coords(rank, zShape, i, zLen, xzCoord);
|
||
|
const auto zOffset = shape::getOffset(0, zShape, zStride, xzCoord, rank);
|
||
|
|
||
|
bool within = true;
|
||
|
for(int j = rankMinusOne; j >= 0; --j) {
|
||
|
if(xShape[j] == zShape[j]) continue;
|
||
|
const auto left = y[shape::getIndexOffset(yStride0 * j, yShapeInfo, yLen)];
|
||
|
if(xzCoord[j] < left || xzCoord[j] >= left + xShape[j]) {within = false; break;}
|
||
|
else {xzCoord[j] = xzCoord[j] - left;}
|
||
|
}
|
||
|
|
||
|
if(within)
|
||
|
z[zOffset] = x[shape::getOffset(0, xShape, xStride, xzCoord, rank)];
|
||
|
else
|
||
|
z[zOffset] = padVal;
|
||
|
}
|
||
|
}
|
||
|
else { // REFLECT and SYMMETRIC cases
|
||
|
|
||
|
for (Nd4jLong i = tid; i < zLen; i += totalThreads) {
|
||
|
|
||
|
shape::index2coords(rank, zShape, i, zLen, xzCoord);
|
||
|
const auto zOffset = shape::getOffset(0, zShape, zStride, xzCoord, rank);
|
||
|
|
||
|
for(int j = rankMinusOne; j >= 0; --j) {
|
||
|
|
||
|
if(xShape[j] == zShape[j]) continue;
|
||
|
xzCoord[j] = xzCoord[j] - y[shape::getIndexOffset(yStride0 * j, yShapeInfo, yLen)]; // are ready to fill middle (within input dimension range)
|
||
|
if(xzCoord[j] < 0) xzCoord[j] = -xzCoord[j] - shift1; // means fill from left
|
||
|
else if(xzCoord[j] >= xShape[j]) xzCoord[j] = 2 * xShape[j] - xzCoord[j] - shift2; // means fill from right
|
||
|
}
|
||
|
|
||
|
const auto xOffset = shape::getOffset(0, xShape, xStride, xzCoord, rank);
|
||
|
z[zOffset] = x[xOffset];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
///////////////////////////////////////////////////////////////////
|
||
|
template<typename X, typename Y>
|
||
|
static void padCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream,
|
||
|
const int mode,
|
||
|
const void *vx, const Nd4jLong *xShapeInfo,
|
||
|
const void *vy, const Nd4jLong *yShapeInfo,
|
||
|
void *vz, const Nd4jLong *zShapeInfo,
|
||
|
const void* padVal) {
|
||
|
|
||
|
padCuda<X,Y><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(mode, vx, xShapeInfo, vy, yShapeInfo, vz, zShapeInfo, padVal);
|
||
|
}
|
||
|
BUILD_DOUBLE_TEMPLATE(template void padCudaLauncher, (const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, const int mode, const void *vx, const Nd4jLong *xShapeInfo, const void *vy, const Nd4jLong *yShapeInfo, void *vz, const Nd4jLong *zShapeInfo, const void* vPadVal), LIBND4J_TYPES, INTEGER_TYPES);
|
||
|
|
||
|
///////////////////////////////////////////////////////////////////
|
||
|
void pad(nd4j::LaunchContext * context, const int mode, const NDArray& input, const NDArray& paddings, NDArray& output, const NDArray& padValue) {
|
||
|
|
||
|
PointersManager manager(context, "pad");
|
||
|
|
||
|
NDArray::prepareSpecialUse({&output}, {&input, &paddings, &padValue});
|
||
|
|
||
|
const int threadsPerBlock = MAX_NUM_THREADS / 4;
|
||
|
const int blocksPerGrid = (output.lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
|
||
|
const int sharedMem = 8 * threadsPerBlock * output.rankOf() + 128;
|
||
|
|
||
|
const auto xType = input.dataType();
|
||
|
const auto yType = paddings.dataType();
|
||
|
|
||
|
BUILD_DOUBLE_SELECTOR(xType, yType, padCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, context->getCudaStream(), mode, input.getSpecialBuffer(), input.getSpecialShapeInfo(), paddings.getSpecialBuffer(), paddings.getSpecialShapeInfo(), output.getSpecialBuffer(), output.getSpecialShapeInfo(), padValue.getSpecialBuffer()), LIBND4J_TYPES, INTEGER_TYPES);
|
||
|
|
||
|
NDArray::registerSpecialUse({&output}, {&input, &paddings, &padValue});
|
||
|
manager.synchronize();
|
||
|
}
|
||
|
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
template <typename T>
|
||
|
static __global__ void mirrorPadLinearKernel(void const* vx, Nd4jLong* xShape, void* vz, Nd4jLong* zShape, Nd4jLong leftSide, Nd4jLong leftSideCorrected, Nd4jLong xLen, Nd4jLong len, Nd4jLong zLen) {
|
||
|
|
||
|
__shared__ T const* x;
|
||
|
__shared__ T* z;
|
||
|
if (threadIdx.x == 0) {
|
||
|
x = reinterpret_cast<T const*>(vx);
|
||
|
z = reinterpret_cast<T*>(vz);
|
||
|
}
|
||
|
__syncthreads();
|
||
|
auto start = blockIdx.x * blockDim.x + threadIdx.x;
|
||
|
auto step = blockDim.x * gridDim.x;
|
||
|
|
||
|
for(int i = start; i < zLen; i+= step) {
|
||
|
auto zIndex = shape::getIndexOffset(i, zShape, zLen);
|
||
|
auto xIndex = shape::getIndexOffset(len - i, xShape, xLen);
|
||
|
|
||
|
if (i < leftSide) // left side
|
||
|
xIndex = shape::getIndexOffset(leftSideCorrected - i, xShape, xLen);
|
||
|
|
||
|
else if(i >= leftSide && i < leftSide + xLen) // middle
|
||
|
xIndex = shape::getIndexOffset(i - leftSide, xShape, xLen);
|
||
|
|
||
|
// else // right side
|
||
|
// z[i] = x[len - i];
|
||
|
z[zIndex] = x[xIndex];
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
template <typename F, typename I>
|
||
|
static __global__ void mirrorPadKernel(void const* vx, Nd4jLong* xShape, void* vz, Nd4jLong* zShape, Nd4jLong outLen, void const* paddings, Nd4jLong* paddingShape, int reflBorder) {
|
||
|
|
||
|
__shared__ F const* x;
|
||
|
__shared__ I const* pads;
|
||
|
__shared__ F* z;
|
||
|
__shared__ Nd4jLong zRank, rank;
|
||
|
__shared__ Nd4jLong* xShapeOf, *xStrideOf, *padsShapeOf, *padsStrideOf;
|
||
|
__shared__ Nd4jLong* zShapeOf, *zStrideOf;
|
||
|
__shared__ Nd4jLong* xIdx;
|
||
|
if (threadIdx.x == 0) {
|
||
|
extern __shared__ unsigned char shmem[];
|
||
|
xIdx = reinterpret_cast<Nd4jLong*>(shmem);
|
||
|
rank = shape::rank(xShape);
|
||
|
|
||
|
x = reinterpret_cast<F const*>(vx);//
|
||
|
pads = reinterpret_cast<I const*>(paddings);
|
||
|
z = reinterpret_cast<F*>(vz);
|
||
|
xShapeOf = shape::shapeOf(xShape);
|
||
|
xStrideOf = shape::stride(xShape);
|
||
|
zShapeOf = shape::shapeOf(zShape);
|
||
|
zRank = shape::rank(zShape);
|
||
|
zStrideOf = shape::stride(zShape);
|
||
|
padsShapeOf = shape::shapeOf(paddingShape);
|
||
|
padsStrideOf = shape::stride(paddingShape);
|
||
|
}
|
||
|
__syncthreads();
|
||
|
auto start = threadIdx.x + blockIdx.x * blockDim.x;
|
||
|
auto step = blockDim.x * gridDim.x;
|
||
|
|
||
|
for(Nd4jLong i = start; i < outLen; i+= step) {
|
||
|
auto xzCoord = xIdx + threadIdx.x * rank;
|
||
|
//auto zxCoord = xIdx + (threadIdx.x + threadIdx.x % 2 + 1) * rank;
|
||
|
|
||
|
shape::index2coords(rank, zShapeOf, i, xzCoord);
|
||
|
auto outOffset = shape::getOffset(0, zShapeOf, zStrideOf, xzCoord, rank);
|
||
|
// auto intStep = blockDim.y * gridDim.y;
|
||
|
for(int j = 0; j < rank; j++) {
|
||
|
|
||
|
const Nd4jLong inLen = shape::sizeAt(xShape, j);
|
||
|
Nd4jLong coords[2] = {j, 0};
|
||
|
auto padOffset = shape::getOffset(0, padsShapeOf, padsStrideOf, coords, 2); // padding already has rank 2
|
||
|
const auto leftSide = pads[padOffset];
|
||
|
const auto leftSideCorrected = leftSide - reflBorder;
|
||
|
const Nd4jLong len = 2 * (inLen - 1) + leftSide + reflBorder;
|
||
|
|
||
|
if(xzCoord[j] < leftSide) // left side
|
||
|
xzCoord[j] = leftSideCorrected - xzCoord[j];
|
||
|
|
||
|
else if(xzCoord[j] >= leftSide && xzCoord[j] < leftSide + inLen) // middle
|
||
|
xzCoord[j] = xzCoord[j] - leftSide;
|
||
|
|
||
|
else if (len > xzCoord[j]) // right side
|
||
|
xzCoord[j] = len - xzCoord[j];
|
||
|
else
|
||
|
xzCoord[j] = xzCoord[j] - len;
|
||
|
}
|
||
|
|
||
|
auto inOffset = shape::getOffset(0, xShapeOf, xStrideOf, xzCoord, rank);
|
||
|
z[outOffset] = x[inOffset];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template<typename F, typename I>
|
||
|
static void mirrorPad_(nd4j::LaunchContext * context, const NDArray& input, const NDArray& paddings, NDArray& output, const int mode) {
|
||
|
// mode: 0 - REFLECT, else - SYMMETRIC
|
||
|
const int reflBorder = (bool)mode ? 1 : 0;
|
||
|
const int rank = input.rankOf();
|
||
|
const Nd4jLong outLen = output.lengthOf();
|
||
|
auto stream = context->getCudaStream();
|
||
|
NDArray::prepareSpecialUse({&output}, {&input, &paddings});
|
||
|
|
||
|
if(rank <= 1) {
|
||
|
|
||
|
const Nd4jLong inLen = input.lengthOf();
|
||
|
const auto leftSide = paddings.e<Nd4jLong>(0);
|
||
|
const auto leftSideCorrected = leftSide - reflBorder;
|
||
|
const Nd4jLong len = 2*(inLen-1) + leftSide + reflBorder;
|
||
|
|
||
|
mirrorPadLinearKernel<F><<<256, 512, 256, *stream>>>(input.getSpecialBuffer(), input.getSpecialShapeInfo(), output.specialBuffer(), output.specialShapeInfo(), leftSide, leftSideCorrected, inLen, len, outLen);
|
||
|
nd4j::DebugHelper::checkErrorCode(stream, "helpers::mirrorPadLinearKernel(...) failed");
|
||
|
}
|
||
|
else {
|
||
|
mirrorPadKernel<F, I><<<256, 256, 8192, *stream>>>(input.getSpecialBuffer(), input.getSpecialShapeInfo(), output.specialBuffer(), output.specialShapeInfo(), outLen, paddings.getSpecialBuffer(), paddings.getSpecialShapeInfo(), reflBorder);
|
||
|
nd4j::DebugHelper::checkErrorCode(stream, "helpers::mirrorPadKernel(...) failed");
|
||
|
}
|
||
|
NDArray::registerSpecialUse({&output}, {&input, &paddings});
|
||
|
}
|
||
|
|
||
|
void mirrorPad(nd4j::LaunchContext * context, const NDArray& input, const NDArray& paddings, NDArray& output, const int mode) {
|
||
|
BUILD_DOUBLE_SELECTOR(input.dataType(), paddings.dataType(), mirrorPad_, (context, input, paddings, output, mode), LIBND4J_TYPES, INTEGER_TYPES);
|
||
|
}
|
||
|
|
||
|
BUILD_DOUBLE_TEMPLATE(template void mirrorPad_, (nd4j::LaunchContext * context, const NDArray& input, const NDArray& paddings, NDArray& output, const int mode), LIBND4J_TYPES, INTEGER_TYPES);
|
||
|
|
||
|
|
||
|
}
|
||
|
}
|
||
|
}
|