cavis/libnd4j/include/ops/special_random_ops.h

847 lines
33 KiB
C
Raw Normal View History

2019-06-06 14:21:15 +02:00
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#ifndef LIBND4J_SPECIAL_RANDOM_OPS_H
#define LIBND4J_SPECIAL_RANDOM_OPS_H
#include <ops/random_ops.h>
#include <helpers/shape.h>
#include <graph/RandomGenerator.h>
#include <specials_cuda.h>
#include <execution/Threads.h>
2019-06-06 14:21:15 +02:00
namespace randomOps {
//////////////////////////////////////////////////////////////////////
template<typename T>
class Choice {
public:
method_idx
method_X
method_XY
static const bool requiresSpecial = true;
#ifdef __CUDACC__
__device__ static inline void specialOpCuda(Nd4jPointer state, T *x, Nd4jLong *xShapeBuffer, T *y, Nd4jLong *yShapeBuffer, T *z, Nd4jLong *zShapeBuffer, T *extraArguments) {
/**
* X holds data,
* Y holds probabilities
* Z will hold results
*/
// TODO: we probably might want to skip this sum, and state that probabilities array should be real probabilities, i.e. should sum to 1.0
//T probSum = extraArguments[0];
__shared__ Nd4jLong xLength;
__shared__ Nd4jLong yLength;
__shared__ Nd4jLong zLength;
__shared__ Nd4jLong xEWS;
__shared__ Nd4jLong yEWS;
__shared__ Nd4jLong zEWS;
__shared__ char xOrder;
__shared__ char yOrder;
__shared__ char zOrder;
__shared__ nd4j::graph::RandomGenerator *rng;
__shared__ unsigned char *cB;
__shared__ unsigned char *dB;
__shared__ nd4j::graph::RandomGenerator *devRng;
if (threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
rng = (nd4j::graph::RandomGenerator*) shmem;
cB = shmem;
devRng = reinterpret_cast<nd4j::graph::RandomGenerator*> (state);
dB = reinterpret_cast<unsigned char *> (state);
xLength = shape::length(xShapeBuffer);
yLength = shape::length(yShapeBuffer);
zLength = shape::length(zShapeBuffer);
xEWS = shape::elementWiseStride(xShapeBuffer);
yEWS = shape::elementWiseStride(yShapeBuffer);
zEWS = shape::elementWiseStride(zShapeBuffer);
xOrder = shape::order(xShapeBuffer);
yOrder = shape::order(yShapeBuffer);
zOrder = shape::order(zShapeBuffer);
}
__syncthreads();
// using this loop instead of memcpy
for (int e = threadIdx.x; e < sizeof(nd4j::graph::RandomGenerator); e+= blockDim.x)
2019-06-06 14:21:15 +02:00
cB[e] = dB[e];
__syncthreads();
2019-06-06 14:21:15 +02:00
int tid = blockIdx.x * blockDim.x + threadIdx.x;
if (zEWS >= 1 && xEWS >= 1 && yEWS >= 1 && xOrder == yOrder && xOrder == zOrder) {
for (Nd4jLong e = tid; e < zLength; e+=blockDim.x * gridDim.x) {
T prob = rng->relativeT<T>(e);
T cumProb = (T) 0.0f;
for (Nd4jLong f = 0; f < yLength; f++) {
T relProb = y[f * yEWS];
cumProb += relProb;
if (prob <= cumProb || f == yLength - 1) {
z[e * zEWS] = x[f * xEWS];
f += yLength;
}
// __syncthreads(); // Eliminated due RTX20xx specific
}
// __syncthreads(); // Eliminated due RTX20xx specific
}
}
2019-06-06 14:21:15 +02:00
else {
2019-06-06 14:21:15 +02:00
for (Nd4jLong i = tid; i < zLength; i+=blockDim.x * gridDim.x) {
auto zOffset2 = shape::getIndexOffset(i, zShapeBuffer);
2019-06-06 14:21:15 +02:00
T prob = rng->relativeT<T>(i);
T cumProb = (T) 0.0f;
for (Nd4jLong f = 0; f < yLength; f++) {
auto yOffset2 = shape::getIndexOffset(f, yShapeBuffer);
2019-06-06 14:21:15 +02:00
T relProb = y[yOffset2];
cumProb += relProb;
if (prob <= cumProb || f == yLength - 1) {
auto xOffset2 = shape::getIndexOffset(f, xShapeBuffer);
2019-06-06 14:21:15 +02:00
z[zOffset2] = x[xOffset2];
f += yLength;
}
// __syncthreads(); // Eliminated due RTX20xx specific
}
// __syncthreads(); // Eliminated due RTX20xx specific
}
}
}
#endif
static inline void specialOp(Nd4jPointer state, T *x, Nd4jLong *xShapeBuffer, T *y, Nd4jLong *yShapeBuffer, T *z, Nd4jLong *zShapeBuffer, T *extraArguments) {
/**
* X holds data,
* Y holds probabilities
* Z will hold results
*/
//nd4j::random::RandomBuffer *buffer = reinterpret_cast<nd4j::random::RandomBuffer *> (state);
nd4j::graph::RandomGenerator* rng = reinterpret_cast<nd4j::graph::RandomGenerator*>(state);
// TODO: we probably might want to skip this sum, and state that probabilities array should be real probabilities, i.e. should sum to 1.0
//T probSum = extraArguments[0];
auto xLength = shape::length(xShapeBuffer);
auto yLength = shape::length(yShapeBuffer);
auto zLength = shape::length(zShapeBuffer);
2019-06-06 14:21:15 +02:00
auto xEWS = shape::elementWiseStride(xShapeBuffer);
auto yEWS = shape::elementWiseStride(yShapeBuffer);
auto zEWS = shape::elementWiseStride(zShapeBuffer);
int elementsPerThread = zLength / TAD_THRESHOLD;
int _threads = nd4j::math::nd4j_max<int>(1, elementsPerThread);
_threads = nd4j::math::nd4j_min<int>(_threads, nd4j::Environment::getInstance()->maxThreads());
2019-06-06 14:21:15 +02:00
if (zEWS >= 1 && xEWS >= 1 && yEWS >= 1) {
auto func = PRAGMA_THREADS_FOR {
for (uint64_t e = start; e < stop; e += increment) {
T prob = rng->relativeT<T>(e);
T cumProb = (T) 0.0f;
for (Nd4jLong f = 0; f < yLength; f++) {
T relProb = y[f * yEWS];
cumProb += relProb;
if (prob <= cumProb || f == yLength - 1) {
z[e * zEWS] = x[f * xEWS];
break;
}
2019-06-06 14:21:15 +02:00
}
}
};
samediff::Threads::parallel_for(func, 0, zLength, 1, _threads);
}
2019-06-06 14:21:15 +02:00
else {
auto func = PRAGMA_THREADS_FOR {
for (Nd4jLong i = 0; i < zLength; i++) {
2019-06-06 14:21:15 +02:00
auto zOffset2 = shape::getIndexOffset(i, zShapeBuffer);
T prob = rng->relativeT<T>(i);
T cumProb = (T) 0.0f;
2019-06-06 14:21:15 +02:00
for (Nd4jLong f = 0; f < yLength; f++) {
auto yOffset2 = shape::getIndexOffset(f, yShapeBuffer);
T relProb = y[yOffset2];
cumProb += relProb;
2019-06-06 14:21:15 +02:00
if (prob <= cumProb || f == yLength - 1) {
auto xOffset2 = shape::getIndexOffset(f, xShapeBuffer);
z[zOffset2] = x[xOffset2];
break;
}
2019-06-06 14:21:15 +02:00
}
}
};
samediff::Threads::parallel_for(func, 0, zLength, 1, _threads);
2019-06-06 14:21:15 +02:00
}
}
};
//////////////////////////////////////////////////////////////////////
/**
* This Op produces random values within specified boundaries. Distribuion is Gaussian
*/
template<typename T>
class GaussianDistribution {
public:
method_XY
method_X
method_idx
static const bool requiresSpecial = true;
#ifdef __CUDACC__
__device__ static inline void specialOpCuda(Nd4jPointer state, T *x, Nd4jLong *xShapeBuffer, T *y, Nd4jLong *yShapeBuffer, T *z, Nd4jLong *zShapeBuffer, T *extraArguments) {
__shared__ T epsilon;
__shared__ T two_pi;
__shared__ Nd4jLong zLength;
__shared__ Nd4jLong zEWS;
__shared__ Nd4jLong yEWS;
__shared__ T mean;
__shared__ T stddev;
__shared__ int step;
__shared__ T *tZ;
__shared__ nd4j::graph::RandomGenerator* rng;
__shared__ unsigned char *cB;
__shared__ unsigned char *dB;
__shared__ nd4j::graph::RandomGenerator *devRng;
if (threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
rng = reinterpret_cast<nd4j::graph::RandomGenerator*>(shmem);
cB = shmem;
devRng = reinterpret_cast<nd4j::graph::RandomGenerator *> (state);
dB = reinterpret_cast<unsigned char *> (state);
tZ = reinterpret_cast<T *>(shmem + sizeof(nd4j::graph::RandomGenerator));
zLength = shape::length(zShapeBuffer);
zEWS = shape::elementWiseStride(zShapeBuffer);
yEWS = shape::elementWiseStride(yShapeBuffer);
epsilon = static_cast<T>(1e-5);
two_pi = static_cast<T>(2.0f) * static_cast<T>(3.14159265358979323846);
mean = extraArguments[0];
stddev = extraArguments[1];
step = (blockDim.x * gridDim.x);
}
__syncthreads();
// using this loop instead of memcpy
for (int e = threadIdx.x; e < sizeof(nd4j::graph::RandomGenerator); e+= blockDim.x)
cB[e] = dB[e];
__syncthreads();
2019-06-06 14:21:15 +02:00
int tid = blockIdx.x * blockDim.x + threadIdx.x;
int middle = zLength % 2 == 0 ? zLength / 2 : zLength / 2 + 1;
T t(-2.0f);
for (int e = tid; e < middle; e += step) {
auto epm = e + middle;
// we need to get random values
T r0 = rng->relativeT<T>(e, epsilon, static_cast<T>(1.0f));
T r1 = rng->relativeT<T>(epm, epsilon, static_cast<T>(1.0f));
T realMean0 = y == z ? mean : y[e * yEWS];
z[e * zEWS] = (nd4j::math::nd4j_sqrt<T,T>(t * nd4j::math::nd4j_log<T,T>(r0)) * nd4j::math::nd4j_cos<T,T>(two_pi * r1)) * stddev + realMean0;
if (epm < zLength) {
T realMean1 = y == z ? mean : y[epm * yEWS];
z[epm * zEWS] = (nd4j::math::nd4j_sqrt<T,T>(t * nd4j::math::nd4j_log<T,T>(r0)) * nd4j::math::nd4j_sin<T,T>(two_pi * r1)) * stddev + realMean1;
}
}
}
#endif
static inline void
specialOp(Nd4jPointer state, T *x, Nd4jLong *xShapeBuffer, T *y, Nd4jLong *yShapeBuffer, T *z, Nd4jLong *zShapeBuffer, T *extraArguments) {
const T two_pi = static_cast<T>(2.0f) * static_cast<T>(3.14159265358979323846);
auto zLength = shape::length(zShapeBuffer);
auto yEWS = shape::elementWiseStride(yShapeBuffer);
auto zEWS = shape::elementWiseStride(zShapeBuffer);
auto middle = zLength % 2 + zLength / 2;
int elementsPerThread = middle / TAD_THRESHOLD;
int _threads = nd4j::math::nd4j_max<int>(1, elementsPerThread);
_threads = nd4j::math::nd4j_min<int>(_threads, nd4j::Environment::getInstance()->maxThreads());
2019-06-06 14:21:15 +02:00
int span = (middle / _threads) + 8;
// we're enforcing even chunks, since it's mandatory for this algorithm
span -= span % 2;
//nd4j::random::RandomBuffer *buffer = reinterpret_cast<nd4j::random::RandomBuffer *> (state);
nd4j::graph::RandomGenerator* rng = reinterpret_cast<nd4j::graph::RandomGenerator*>(state);
const T mean = extraArguments[0];
const T stddev = extraArguments[1];
const T epsilon = static_cast<T>(1e-5);
auto func = PRAGMA_THREADS_FOR {
for (uint64_t e = start; e < stop; e += increment) {
auto epm = e + middle;
2019-06-06 14:21:15 +02:00
// we need to get random values
T r0 = rng->relativeT<T>(e, epsilon, static_cast<T>(1.0f));
T r1 = rng->relativeT<T>(epm, epsilon, static_cast<T>(1.0f));
2019-06-06 14:21:15 +02:00
T realMean0 = y == z ? mean : y[e * yEWS];
2019-06-06 14:21:15 +02:00
auto z0 = (nd4j::math::nd4j_sqrt<T, T>(static_cast<T>(-2.0f) * nd4j::math::nd4j_log<T, T>(r0)) *
nd4j::math::nd4j_cos<T, T>(two_pi * r1)) * stddev + realMean0;
z[e * zEWS] = z0;
2019-06-06 14:21:15 +02:00
if (epm < zLength) {
T realMean1 = y == z ? mean : y[epm * yEWS];
auto z1 = (nd4j::math::nd4j_sqrt<T, T>(static_cast<T>(-2.0f) * nd4j::math::nd4j_log<T, T>(r0)) *
nd4j::math::nd4j_sin<T, T>(two_pi * r1)) * stddev + realMean1;
z[epm * zEWS] = z1;
}
2019-06-06 14:21:15 +02:00
}
};
samediff::Threads::parallel_for(func, 0, middle, 1, _threads);
2019-06-06 14:21:15 +02:00
}
};
//////////////////////////////////////////////////////////////////////
/**
* This Op produces random values within [0..N], Distribuion is binomial
*/
template<typename T>
class BinomialDistribution {
public:
method_XY
method_X
method_idx
static const bool requiresSpecial = true;
#ifdef __CUDACC__
__device__ static inline void specialOpCuda(Nd4jPointer state, T *x, Nd4jLong *xShapeBuffer, T *y, Nd4jLong *yShapeBuffer, T *z, Nd4jLong *zShapeBuffer, T *extraArguments) {
int trials = (int) extraArguments[0];
T prob = extraArguments[1];
__shared__ Nd4jLong zLength;
__shared__ int yEWS;
__shared__ int zEWS;
__shared__ nd4j::graph::RandomGenerator* rng;
__shared__ unsigned char *cB;
__shared__ unsigned char *dB;
__shared__ nd4j::graph::RandomGenerator *devRng;
if (threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
rng = reinterpret_cast<nd4j::graph::RandomGenerator*>(shmem);
cB = shmem;
devRng = reinterpret_cast<nd4j::graph::RandomGenerator*>(state);
dB = reinterpret_cast<unsigned char *> (state);
zLength = shape::length(zShapeBuffer);
yEWS = shape::elementWiseStride(yShapeBuffer);
zEWS = shape::elementWiseStride(zShapeBuffer);
}
__syncthreads();
// using this loop instead of memcpy
for (int e = threadIdx.x; e < sizeof(nd4j::graph::RandomGenerator); e+= blockDim.x)
2019-06-06 14:21:15 +02:00
cB[e] = dB[e];
__syncthreads();
2019-06-06 14:21:15 +02:00
int tid = blockIdx.x * blockDim.x + threadIdx.x;
for (Nd4jLong e = tid; e < zLength; e += blockDim.x * gridDim.x) {
int success = 0;
for (int t = 1; t <= trials; t++) {
T randVal = rng->relativeT<T>((e+1) * t);
if (y != z) {
// we're using external probs
prob = y[(t-1) * yEWS];
}
if (randVal < prob)
success++;
}
// if trials is set to 0, effectively we just have successful memset
z[e * zEWS] = static_cast<T>(success);
}
}
#endif
static inline void specialOp(Nd4jPointer state, T *x, Nd4jLong *xShapeBuffer, T *y, Nd4jLong *yShapeBuffer, T *z, Nd4jLong *zShapeBuffer, T *extraArguments) {
int trials = (int) extraArguments[0];
Nd4jLong zLength = shape::length(zShapeBuffer);
auto yEWS = shape::elementWiseStride(yShapeBuffer);
auto zEWS = shape::elementWiseStride(zShapeBuffer);
int elementsPerThread = zLength / TAD_THRESHOLD;
int _threads = nd4j::math::nd4j_max<int>(1, elementsPerThread);
_threads = nd4j::math::nd4j_min<int>(_threads, nd4j::Environment::getInstance()->maxThreads());
2019-06-06 14:21:15 +02:00
T prob = extraArguments[1];
2019-06-06 14:21:15 +02:00
nd4j::graph::RandomGenerator* rng = reinterpret_cast<nd4j::graph::RandomGenerator*>(state);
auto func = PRAGMA_THREADS_FOR {
for (Nd4jLong e = start; e < stop; e += increment) {
2019-06-06 14:21:15 +02:00
int success = 0;
for (int t = 1; t <= trials; t++) {
T randVal = rng->relativeT<T>((e+1) * t);
if (y != z) {
// we're using external probs
prob = y[(t-1) * yEWS];
}
if (randVal < prob)
success++;
}
// if trials is set to 0, effectively we just have successful memset
z[e * zEWS] = static_cast<T>(success);
}
};
samediff::Threads::parallel_for(func, 0, zLength, 1, _threads);
2019-06-06 14:21:15 +02:00
}
};
//////////////////////////////////////////////////////////////////////
/**
* This Op produces random values within [0..N], Distribuion is binomial
*/
template<typename T>
class BinomialDistributionEx {
public:
method_XY
method_X
method_idx
static const bool requiresSpecial = true;
#ifdef __CUDACC__
__device__ static inline void specialOpCuda(Nd4jPointer state, T *x, Nd4jLong *xShapeBuffer, T *y, Nd4jLong *yShapeBuffer, T *z, Nd4jLong *zShapeBuffer, T *extraArguments) {
int trials = (int) extraArguments[0];
T prob = extraArguments[1];
__shared__ Nd4jLong zLength;
__shared__ int yEWS;
__shared__ int zEWS;
__shared__ nd4j::graph::RandomGenerator* rng;
__shared__ unsigned char *cB;
__shared__ unsigned char *dB;
__shared__ nd4j::graph::RandomGenerator *devRng;
if (threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
rng = (nd4j::graph::RandomGenerator*) shmem;
cB = shmem;
devRng = reinterpret_cast<nd4j::graph::RandomGenerator*> (state);
dB = reinterpret_cast<unsigned char *> (state);
zLength = shape::length(zShapeBuffer);
yEWS = shape::elementWiseStride(yShapeBuffer);
zEWS = shape::elementWiseStride(zShapeBuffer);
}
__syncthreads();
// using this loop instead of memcpy
for (int e = threadIdx.x; e < sizeof(nd4j::graph::RandomGenerator); e+= blockDim.x)
2019-06-06 14:21:15 +02:00
cB[e] = dB[e];
__syncthreads();
2019-06-06 14:21:15 +02:00
int tid = blockIdx.x * blockDim.x + threadIdx.x;
for (Nd4jLong e = tid; e < zLength; e += blockDim.x * gridDim.x) {
int success = 0;
for (int t = 1; t <= trials; t++) {
T randVal = rng->relativeT<T>((e+1) * t);
if (y != z) {
// we're using external probs
prob = y[e * yEWS];
}
if (randVal < prob)
success++;
}
// if trials is set to 0, effectively we just have successful memset
z[e * zEWS] = (T) success;
}
}
#endif
static inline void specialOp(Nd4jPointer state, T *x, Nd4jLong *xShapeBuffer, T *y, Nd4jLong *yShapeBuffer, T *z, Nd4jLong *zShapeBuffer, T *extraArguments) {
int trials = (int) extraArguments[0];
Nd4jLong zLength = shape::length(zShapeBuffer);
auto yEWS = shape::elementWiseStride(yShapeBuffer);
auto zEWS = shape::elementWiseStride(zShapeBuffer);
int elementsPerThread = zLength / TAD_THRESHOLD;
int _threads = nd4j::math::nd4j_max<int>(1, elementsPerThread);
_threads = nd4j::math::nd4j_min<int>(_threads, nd4j::Environment::getInstance()->maxThreads());
2019-06-06 14:21:15 +02:00
T prob = extraArguments[1];
2019-06-06 14:21:15 +02:00
//nd4j::random::RandomBuffer *buffer = reinterpret_cast<nd4j::random::RandomBuffer *> (state);
nd4j::graph::RandomGenerator* rng = reinterpret_cast<nd4j::graph::RandomGenerator*>(state);
auto func = PRAGMA_THREADS_FOR {
for (uint64_t e = start; e < stop; e += increment) {
2019-06-06 14:21:15 +02:00
int success = 0;
for (int t = 1; t <= trials; t++) {
T randVal = rng->relativeT<T>((e+1) * t);
if (y != z) {
// we're using external probs
prob = y[e * yEWS];
}
if (randVal < prob)
success++;
}
// if trials is set to 0, effectively we just have successful memset
z[e * zEWS] = static_cast<T>(success);
}
};
samediff::Threads::parallel_for(func, 0, zLength, 1, _threads);
2019-06-06 14:21:15 +02:00
}
};
//////////////////////////////////////////////////////////////////////
2019-06-06 14:21:15 +02:00
// This Op produces random Gaussian values within [mean-2*stddev,mean+2*stddev]
template<typename T>
class TruncatedNormalDistribution {
private:
static inline _CUDA_HD T step(nd4j::graph::RandomGenerator* rng, T mean, T stddev, Nd4jLong e, Nd4jLong middle, T& z) {
auto epm = e + middle;
const T two_pi = static_cast<T>(2.0f) * static_cast<T>(3.14159265358979323846);
const T epsilon = static_cast<T>(1.e-5f);
// we need to get random values
T r0 = rng->relativeT<T>(e, epsilon, static_cast<T>(1.0f));
T r1 = rng->relativeT<T>(epm, epsilon, static_cast<T>(1.0f));
T realMean0 = mean;
auto z0 = (nd4j::math::nd4j_sqrt<T,T>(static_cast<T>(-2.0f) * nd4j::math::nd4j_log<T,T>(r0)) * nd4j::math::nd4j_cos<T,T>(two_pi * r1)) * stddev + realMean0;
z = z0;
if (epm < middle) {
T realMean1 = mean;
auto z1 = (nd4j::math::nd4j_sqrt<T, T>(static_cast<T>(-2.0f) * nd4j::math::nd4j_log<T, T>(r0)) *
nd4j::math::nd4j_sin<T, T>(two_pi * r1)) * stddev + realMean1;
z = z1;
}
return z;
}
public:
method_XY
method_X
method_idx
static const bool requiresSpecial = true;
#ifdef __CUDACC__
__device__ static inline void specialOpCuda(Nd4jPointer state, T *x, Nd4jLong *xShapeBuffer, T *y, Nd4jLong *yShapeBuffer, T *z, Nd4jLong *zShapeBuffer, T *extraArguments) {
__shared__ T epsilon;
__shared__ T two_pi;
__shared__ Nd4jLong zLength;
__shared__ Nd4jLong zEWS;
__shared__ Nd4jLong yEWS;
__shared__ T mean;
__shared__ T stddev;
__shared__ int step;
__shared__ T *tZ;
__shared__ nd4j::graph::RandomGenerator* rng;
__shared__ unsigned char *cB;
__shared__ unsigned char *dB;
__shared__ nd4j::graph::RandomGenerator* devRng;
__shared__ Nd4jLong middle;
if (threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
rng = reinterpret_cast<nd4j::graph::RandomGenerator*>(shmem);
cB = shmem;
devRng = reinterpret_cast<nd4j::graph::RandomGenerator*> (state);
dB = reinterpret_cast<unsigned char *> (state);
tZ = reinterpret_cast<T*>(shmem + sizeof(nd4j::graph::RandomGenerator));
zLength = shape::length(zShapeBuffer);
zEWS = shape::elementWiseStride(zShapeBuffer);
yEWS = shape::elementWiseStride(yShapeBuffer);
epsilon = static_cast<T>(1e-6f);
two_pi = static_cast<T>(2.0f) * static_cast<T>(3.14159265358979323846);
mean = extraArguments[0];
stddev = extraArguments[1];
step = (blockDim.x * gridDim.x);
middle = zLength / 2 + (zLength % 2);
}
__syncthreads();
// using this loop instead of memcpy
for (int e = threadIdx.x; e < sizeof(nd4j::graph::RandomGenerator); e+= blockDim.x)
2019-06-06 14:21:15 +02:00
cB[e] = dB[e];
__syncthreads();
2019-06-06 14:21:15 +02:00
int tid = blockIdx.x * blockDim.x + threadIdx.x;
GaussianDistribution<T>::specialOpCuda(state, x, xShapeBuffer, y, yShapeBuffer, z, zShapeBuffer, extraArguments);
__syncthreads();
T ds = nd4j::math::nd4j_abs<T>(stddev) * static_cast<T>(2.0f);
for (Nd4jLong e = tid; e < zLength; e += step) {
if (z[e] > mean + ds || z[e] < mean - ds) {
z[e] = TruncatedNormalDistribution<T>::step(rng, mean, stddev, e, middle, z[e]);
if (z[e] > mean + ds || z[e] < mean - ds)
z[e] = mean + nd4j::DataTypeUtils::min<T>();
}
}
}
#endif
static inline void
specialOp(Nd4jPointer state, T *x, Nd4jLong *xShapeBuffer, T *y, Nd4jLong *yShapeBuffer, T *z, Nd4jLong *zShapeBuffer, T *extraArguments) {
GaussianDistribution<T>::specialOp(state, x, xShapeBuffer, y, yShapeBuffer, z, zShapeBuffer, extraArguments);
Nd4jLong zLength = shape::length(zShapeBuffer);
//auto yEWS = shape::elementWiseStride(yShapeBuffer);
//auto zEWS = shape::elementWiseStride(zShapeBuffer);
nd4j::graph::RandomGenerator* rng = reinterpret_cast<nd4j::graph::RandomGenerator*>(state);
T mean = extraArguments[0];
T stddev = extraArguments[1];
T ds = nd4j::math::nd4j_abs<T>(stddev) * (T) 2.0f;
Nd4jLong middle = zLength / 2 + (zLength % 2);
int elementsPerThread = middle / TAD_THRESHOLD;
int _threads = nd4j::math::nd4j_max<int>(1, elementsPerThread);
_threads = nd4j::math::nd4j_min<int>(_threads, nd4j::Environment::getInstance()->maxThreads());
2019-06-06 14:21:15 +02:00
const T epsilon = static_cast<T>(1e-5);
auto func = PRAGMA_THREADS_FOR {
for (uint64_t e = start; e < stop; e += increment) {
if (z[e] > mean + ds || z[e] < mean - ds) {
z[e] = step(rng, mean, stddev, e, middle, z[e]);
2019-06-06 14:21:15 +02:00
if (z[e] > mean + ds || z[e] < mean - ds)
z[e] = mean + nd4j::DataTypeUtils::min<T>();
}
2019-06-06 14:21:15 +02:00
}
};
samediff::Threads::parallel_for(func, 0, zLength, 1, _threads);
2019-06-06 14:21:15 +02:00
}
};
//////////////////////////////////////////////////////////////////////
// This Op produces random Log-normal distribution
template<typename T>
class LogNormalDistribution {
public:
method_XY
method_X
method_idx
static const bool requiresSpecial = true;
#ifdef __CUDACC__
__device__ static inline void specialOpCuda(Nd4jPointer state, T *x, Nd4jLong *xShapeBuffer, T *y, Nd4jLong *yShapeBuffer, T *z, Nd4jLong *zShapeBuffer, T *extraArguments) {
__shared__ T epsilon;
__shared__ T two_pi;
__shared__ Nd4jLong zLength;
__shared__ Nd4jLong zEWS;
__shared__ Nd4jLong yEWS;
__shared__ T mean;
__shared__ T stddev;
__shared__ int step;
__shared__ T *tZ;
__shared__ nd4j::graph::RandomGenerator* rng;
__shared__ unsigned char *cB;
__shared__ unsigned char *dB;
__shared__ nd4j::graph::RandomGenerator* devRng;
if (threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
rng = reinterpret_cast<nd4j::graph::RandomGenerator*>(state);
cB = shmem;
devRng = reinterpret_cast<nd4j::graph::RandomGenerator*>(state);
dB = reinterpret_cast<unsigned char *> (state);
tZ = reinterpret_cast<T*>(shmem + sizeof(nd4j::graph::RandomGenerator));
zLength = shape::length(zShapeBuffer);
zEWS = shape::elementWiseStride(zShapeBuffer);
yEWS = shape::elementWiseStride(yShapeBuffer);
epsilon = static_cast<T>(1e-5);
two_pi = static_cast<T>(2.0f) * static_cast<T>(3.14159265358979323846);
mean = extraArguments[0];
stddev = extraArguments[1];
step = (blockDim.x * gridDim.x);
}
__syncthreads();
// using this loop instead of memcpy
for (int e = threadIdx.x; e < sizeof(nd4j::graph::RandomGenerator); e+= blockDim.x)
2019-06-06 14:21:15 +02:00
cB[e] = dB[e];
__syncthreads();
2019-06-06 14:21:15 +02:00
int tid = blockIdx.x * blockDim.x + threadIdx.x;
int middle = zLength % 2 == 0 ? zLength / 2 : zLength / 2 + 1;
for (Nd4jLong e = tid; e < middle; e += step) {
auto epm = e + middle;
// we need to get random values
T r0 = rng->relativeT<T>(e, epsilon, static_cast<T>(1.0f));
T r1 = rng->relativeT<T>(epm, epsilon, static_cast<T>(1.0f));
T realMean = y == z ? mean : y[e * yEWS];
z[e *zEWS] = nd4j::math::nd4j_exp<T,T>((nd4j::math::nd4j_sqrt<T,T>(static_cast<T>(-2.0f) * nd4j::math::nd4j_log<T,T>(r0)) * nd4j::math::nd4j_cos<T,T>(two_pi * r1)) * stddev + realMean);
if (epm < zLength) {
realMean = y == z ? mean : y[epm * yEWS];
z[epm *zEWS] = nd4j::math::nd4j_exp<T,T>((nd4j::math::nd4j_sqrt<T,T>(static_cast<T>(-2.0f) * nd4j::math::nd4j_log<T,T>(r0)) * nd4j::math::nd4j_sin<T,T>(two_pi * r1)) * stddev + realMean);
}
}
}
#endif
static inline void
specialOp(Nd4jPointer state, T *x, Nd4jLong *xShapeBuffer, T *y, Nd4jLong *yShapeBuffer, T *z, Nd4jLong *zShapeBuffer, T *extraArguments) {
const T two_pi = static_cast<T>(2.0f) * static_cast<T>(3.14159265358979323846);
Nd4jLong zLength = shape::length(zShapeBuffer);
auto yEWS = shape::elementWiseStride(yShapeBuffer);
auto zEWS = shape::elementWiseStride(zShapeBuffer);
auto middle = zLength % 2 == 0 ? zLength / 2 : zLength / 2 + 1;
int elementsPerThread = middle / TAD_THRESHOLD;
int _threads = nd4j::math::nd4j_max<int>(1, elementsPerThread);
_threads = nd4j::math::nd4j_min<int>(_threads, nd4j::Environment::getInstance()->maxThreads());
2019-06-06 14:21:15 +02:00
int span = (zLength / _threads) + 8;
// we're enforcing even chunks, since it's mandatory for this algorithm
span -= span % 2;
// auto buffer = reinterpret_cast<nd4j::random::RandomBuffer *> (state);
nd4j::graph::RandomGenerator* rng = reinterpret_cast<nd4j::graph::RandomGenerator*>(state);
const T mean = extraArguments[0];
const T stddev = extraArguments[1];
const T epsilon = static_cast<T>(1e-5);
auto func = PRAGMA_THREADS_FOR {
2019-06-06 14:21:15 +02:00
PRAGMA_OMP_SIMD
for (uint64_t e = start; e < stop; e += increment) {
2019-06-06 14:21:15 +02:00
auto epm = e + middle;
// we need to get random values
T r0 = rng->relativeT<T>(e, epsilon, static_cast<T>(1.0f));
T r1 = rng->relativeT<T>(epm, epsilon, static_cast<T>(1.0f));
T realMean = y == z ? mean : y[e * yEWS];
z[e * zEWS] = nd4j::math::nd4j_exp<T,T>((nd4j::math::nd4j_sqrt<T,T>(static_cast<T>(-2.0f) * nd4j::math::nd4j_log<T,T>(r0)) * nd4j::math::nd4j_cos<T,T>(two_pi * r1)) * stddev + realMean);
if (epm < zLength) {
realMean = y == z ? mean : y[epm * yEWS];
z[epm * zEWS] = nd4j::math::nd4j_exp<T,T>((nd4j::math::nd4j_sqrt<T,T>(static_cast<T>(-2.0f) * nd4j::math::nd4j_log<T,T>(r0)) * nd4j::math::nd4j_sin<T,T>(two_pi * r1)) * stddev + realMean);
}
}
};
samediff::Threads::parallel_for(func, 0, middle, 1, _threads);
2019-06-06 14:21:15 +02:00
}
};
}
#endif //LIBND4J_SPECIAL_RANDOM_OPS_H