63 lines
2.0 KiB
Java
Raw Normal View History

2019-06-06 15:21:15 +03:00
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.rl4j.policy;
import lombok.AllArgsConstructor;
import org.deeplearning4j.rl4j.learning.Learning;
import org.deeplearning4j.rl4j.network.dqn.DQN;
import org.deeplearning4j.rl4j.network.dqn.IDQN;
import org.deeplearning4j.rl4j.observation.Observation;
2019-06-06 15:21:15 +03:00
import org.deeplearning4j.rl4j.space.Encodable;
import org.nd4j.linalg.api.ndarray.INDArray;
import java.io.IOException;
/**
* @author rubenfiszel (ruben.fiszel@epfl.ch) 7/18/16.
*
* DQN policy returns the action with the maximum Q-value as evaluated
* by the dqn model
*/
@AllArgsConstructor
public class DQNPolicy<O extends Encodable> extends Policy<O, Integer> {
final private IDQN dqn;
public static <O extends Encodable> DQNPolicy<O> load(String path) throws IOException {
return new DQNPolicy<O>(DQN.load(path));
}
public IDQN getNeuralNet() {
return dqn;
}
@Override
public Integer nextAction(Observation obs) {
return nextAction(obs.getData());
}
2019-06-06 15:21:15 +03:00
public Integer nextAction(INDArray input) {
INDArray output = dqn.output(input);
return Learning.getMaxAction(output);
}
public void save(String filename) throws IOException {
dqn.save(filename);
}
}