2019-06-06 14:21:15 +02:00
|
|
|
/*******************************************************************************
|
|
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
|
|
*
|
|
|
|
* This program and the accompanying materials are made available under the
|
|
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
|
|
* License for the specific language governing permissions and limitations
|
|
|
|
* under the License.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
#include "testlayers.h"
|
|
|
|
#include <ops/declarable/CustomOperations.h>
|
|
|
|
#include <helpers/helper_hash.h>
|
|
|
|
#include <NDArray.h>
|
|
|
|
#include <array/NDArrayList.h>
|
|
|
|
|
|
|
|
|
|
|
|
using namespace nd4j;
|
|
|
|
using namespace nd4j::graph;
|
|
|
|
|
|
|
|
class DeclarableOpsTests2 : public testing::Test {
|
|
|
|
public:
|
|
|
|
|
|
|
|
DeclarableOpsTests2() {
|
|
|
|
printf("\n");
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, gather_1) {
|
|
|
|
|
|
|
|
NDArray input('c', {2,3,4}, {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24}, nd4j::DataType::FLOAT32);
|
|
|
|
NDArray indices('c', {1,6}, {0,1, 2,2, 1,2}, nd4j::DataType::INT32);
|
|
|
|
NDArray expected('c', {2,1,6,4}, {1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12, 9,10,11,12, 5, 6, 7, 8, 9,10,11,12, 13,14,15,16, 17,18,19,20, 21,22,23,24, 21,22,23,24, 17,18,19,20, 21,22,23,24}, nd4j::DataType::FLOAT32);
|
|
|
|
|
|
|
|
nd4j::ops::gather op;
|
|
|
|
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&input, &indices}, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto* output = result->at(0);
|
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
ASSERT_TRUE(expected.isSameShapeStrict(*output));
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(expected.equalsTo(output));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(DeclarableOpsTests2, gather_2) {
|
|
|
|
|
|
|
|
NDArray input('c', {2,3,4}, {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24});
|
|
|
|
//auto indices ('c', {1,6}, {0,1, 2,2, 1,2});
|
|
|
|
NDArray expected('c', {2,6,4}, {1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12, 9,10,11,12, 5, 6, 7, 8, 9,10,11,12, 13,14,15,16, 17,18,19,20, 21,22,23,24, 21,22,23,24, 17,18,19,20, 21,22,23,24});
|
|
|
|
|
|
|
|
nd4j::ops::gather op;
|
|
|
|
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&input}, {}, {1, 0,1, 2,2, 1,2}, {true});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto* output = result->at(0);
|
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
ASSERT_TRUE(expected.isSameShapeStrict(*output));
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(expected.equalsTo(output));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, gather_3) {
|
|
|
|
|
|
|
|
NDArray input ('c', {2,3,4}, {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24});
|
|
|
|
NDArray indices ('c', {1,1}, {2}, nd4j::DataType::INT32);
|
|
|
|
NDArray expected('c', {2,1,1,4}, {9,10,11,12,21,22,23,24});
|
|
|
|
|
|
|
|
nd4j::ops::gather op;
|
|
|
|
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&input, &indices}, {}, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto* output = result->at(0);
|
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
ASSERT_TRUE(expected.isSameShapeStrict(*output));
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(expected.equalsTo(output));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(DeclarableOpsTests2, gather_4) {
|
|
|
|
|
|
|
|
NDArray input('c', {2,3,4}, {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24});
|
|
|
|
//auto indices ('c', {1,1}, {2});
|
|
|
|
NDArray expected('c', {2,4}, {9,10,11,12,21,22,23,24});
|
|
|
|
|
|
|
|
nd4j::ops::gather op;
|
|
|
|
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&input}, {}, {1, 2});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto* output = result->at(0);
|
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
ASSERT_TRUE(expected.isSameShapeStrict(*output));
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(expected.equalsTo(output));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, gather_5) {
|
|
|
|
|
|
|
|
NDArray input ('c', {2,3,4}, {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24});
|
|
|
|
NDArray indices ('c', {2,3}, {0, 1, 2, 2, 1,2}, nd4j::DataType::INT32);
|
|
|
|
NDArray expected('c', {2,2,3,4}, {1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12, 9,10,11,12, 5, 6, 7, 8, 9,10,11,12, 13,14,15,16,17,18,19,20,21,22,23,24, 21,22,23,24,17,18,19,20,21,22,23,24});
|
|
|
|
|
|
|
|
nd4j::ops::gather op;
|
|
|
|
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&input, &indices}, {}, {1}, {true});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto* output = result->at(0);
|
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
ASSERT_TRUE(expected.isSameShapeStrict(*output));
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(expected.equalsTo(output));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, gather_6) {
|
|
|
|
|
|
|
|
NDArray input ('c', {3,3,4}, {1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12, 13,14,15,16,17,18,19,20,21,22,23,24, 25,26,27,28,29,30,31,32,33,34,35,36});
|
|
|
|
NDArray indices ('c', {2,3}, {0, 1, 2, 2, 1,2}, nd4j::DataType::INT32);
|
|
|
|
NDArray expected('c', {2,3,3,4}, {1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12, 13,14,15,16,17,18,19,20,21,22,23,24, 25,26,27,28,29,30,31,32,33,34,35,36, 25,26,27,28,29,30,31,32,33,34,35,36, 13,14,15,16,17,18,19,20,21,22,23,24, 25,26,27,28,29,30,31,32,33,34,35,36});
|
|
|
|
|
|
|
|
nd4j::ops::gather op;
|
|
|
|
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&input, &indices}, {}, {0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto* output = result->at(0);
|
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
ASSERT_TRUE(expected.isSameShapeStrict(*output));
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(expected.equalsTo(output));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, gather_7) {
|
|
|
|
|
|
|
|
NDArray input ('c', {2,3,4}, {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24});
|
|
|
|
NDArray indices ('c', {2,3}, {0, 1, 2, 2, 1,2}, nd4j::DataType::INT64);
|
|
|
|
NDArray expected('c', {2,3,2,3}, {1, 2, 3, 3, 2, 3, 5, 6, 7, 7, 6, 7, 9,10,11,11,10,11, 13,14,15,15,14,15, 17,18,19,19,18,19, 21,22,23,23,22,23});
|
|
|
|
|
|
|
|
nd4j::ops::gather op;
|
|
|
|
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&input, &indices}, {}, {2});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto* output = result->at(0);
|
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
ASSERT_TRUE(expected.isSameShapeStrict(*output));
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(expected.equalsTo(output));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, gather_8) {
|
|
|
|
|
|
|
|
NDArray input('c', {3,5}, {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}, nd4j::DataType::FLOAT32);
|
|
|
|
NDArray indices('c', {1}, {2}, nd4j::DataType::INT32);
|
|
|
|
NDArray expected('c', {1,5}, {11, 12, 13, 14, 15.}, nd4j::DataType::FLOAT32);
|
|
|
|
|
|
|
|
nd4j::ops::gather op;
|
|
|
|
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&input, &indices}, {}, {0});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
auto* output = result->at(0);
|
|
|
|
// output->printShapeInfo();
|
|
|
|
// output->printIndexedBuffer();
|
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
ASSERT_TRUE(expected.isSameShapeStrict(*output));
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(expected.equalsTo(output));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, gather_9) {
|
|
|
|
NDArray x('c', {2, 4, 3, 2}, nd4j::DataType::FLOAT32);
|
|
|
|
NDArray indices('c', {2}, {1, 0}, nd4j::DataType::INT32);
|
|
|
|
|
|
|
|
nd4j::ops::gather op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &indices}, {}, {-2});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, gather_10) {
|
|
|
|
NDArray x('c', {2, 2}, {1, 2, 3, 4});
|
|
|
|
NDArray e('c', {2, 2}, {3, 4, 1, 2});
|
|
|
|
|
|
|
|
nd4j::ops::gather op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x}, {}, {0, 1, 0});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.isSameShape(z));
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, gather_11) {
|
|
|
|
|
|
|
|
NDArray x('c', {2, 2}, {1, 2, 3, 4});
|
|
|
|
NDArray indices('c', {2}, {1, 0}, nd4j::DataType::INT64);
|
|
|
|
NDArray e('c', {2, 2}, {3, 4, 1, 2});
|
|
|
|
|
|
|
|
nd4j::ops::gather op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &indices}, {}, {0});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.isSameShape(z));
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, gather_12) {
|
|
|
|
|
|
|
|
NDArray input('c', {4}, {2.f, 3.f, 4.f, 5.f});
|
|
|
|
NDArray indices('c', {2}, {0, 2}, nd4j::DataType::INT32);
|
|
|
|
NDArray exp('c', {2}, {2.f, 4.f});
|
|
|
|
|
|
|
|
nd4j::ops::gather op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&input, &indices}, {}, {});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, gather_13) {
|
|
|
|
|
|
|
|
NDArray input ('c', {2,3,4,5}, nd4j::DataType::DOUBLE);
|
|
|
|
NDArray indices ('c', {2,3,4}, {0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3,0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3}, nd4j::DataType::INT32);
|
|
|
|
NDArray expected('c', {2,3, 2,3,4, 5}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
|
|
|
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
|
|
|
|
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
|
|
|
|
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
|
|
|
|
40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
|
|
|
|
40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
|
|
|
|
60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
|
|
|
|
60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
|
|
|
|
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
|
|
|
|
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
|
|
|
|
100,101,102,103,104, 105,106,107,108,109, 110,111,112,113,114, 115,116,117,118,119, 100,101,102,103,104, 105,106,107,108,109, 110,111,112,113,114, 115,116,117,118,119, 100,101,102,103,104, 105,106,107,108,109, 110,111,112,113,114, 115,116,117,118,119,
|
|
|
|
100,101,102,103,104, 105,106,107,108,109, 110,111,112,113,114, 115,116,117,118,119, 100,101,102,103,104, 105,106,107,108,109, 110,111,112,113,114, 115,116,117,118,119, 100,101,102,103,104, 105,106,107,108,109, 110,111,112,113,114, 115,116,117,118,119});
|
|
|
|
|
|
|
|
input.linspace(0);
|
|
|
|
|
|
|
|
nd4j::ops::gather op;
|
|
|
|
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&input, &indices}, {}, {2}, {true});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto* output = result->at(0);
|
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
ASSERT_TRUE(expected.isSameShapeStrict(*output));
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(expected.equalsTo(output));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
2019-11-26 18:29:09 +01:00
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, gather_14) {
|
|
|
|
|
|
|
|
NDArray input ('c', {2,3,4}, {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24});
|
|
|
|
NDArray indices ('c', {2,3}, {0, 10, 2, 20, 1,2}, nd4j::DataType::INT32);
|
|
|
|
NDArray output('c', {2,2,3,4});
|
|
|
|
|
|
|
|
nd4j::ops::gather op;
|
|
|
|
|
|
|
|
ASSERT_ANY_THROW(op.execute({&input, &indices}, {&output}, {}, {1}, {true}));
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, gather_15) {
|
|
|
|
|
|
|
|
NDArray input ('c', {2,3,4,5}, nd4j::DataType::DOUBLE);
|
|
|
|
NDArray indices ('c', {2,3,4}, {0, 10, 2, 3, 0, 1, 20, 3, 0, 1, 2, 3,0, 1, 2, 3, 0, 1, 2, 30, 0, 1, 2, 3}, nd4j::DataType::INT32);
|
|
|
|
NDArray output('c', {2,3, 2,3,4, 5});
|
|
|
|
|
|
|
|
nd4j::ops::gather op;
|
|
|
|
|
|
|
|
ASSERT_ANY_THROW(op.execute({&input, &indices}, {&output}, {}, {2}, {true}));
|
|
|
|
}
|
|
|
|
|
2019-08-02 19:01:03 +02:00
|
|
|
TEST_F(DeclarableOpsTests2, BroadcastGradientArgs_1) {
|
|
|
|
|
|
|
|
NDArray input ('c', {3,3,4}, {1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12, 13,14,15,16,17,18,19,20,21,22,23,24, 25,26,27,28,29,30,31,32,33,34,35,36}, nd4j::DataType::INT32);
|
|
|
|
NDArray indices ('c', {2,3}, {0, 1, 2, 2, 1,2}, nd4j::DataType::INT32);
|
|
|
|
|
|
|
|
nd4j::ops::broadcastgradientargs op;
|
|
|
|
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&input, &indices}, {}, {});
|
2019-08-02 19:01:03 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_KERNEL_FAILURE, result->status());
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(DeclarableOpsTests2, NLP_Cbow_Test_1) {
|
|
|
|
auto exp0 = NDArrayFactory::create<double>('c', {1, 10});
|
|
|
|
auto exp1 = NDArrayFactory::create<double>('c', {1, 10});
|
|
|
|
auto exp2 = NDArrayFactory::create<double>('c', {1, 10});
|
|
|
|
|
|
|
|
exp0.assign(0.0095);
|
|
|
|
exp1.assign(0.019875);
|
|
|
|
exp2.assign(0.02);
|
|
|
|
|
|
|
|
auto target = NDArrayFactory::create<int>(0);
|
|
|
|
auto ngStarter = NDArrayFactory::empty<int>();
|
|
|
|
auto context = NDArrayFactory::create<int>('c', {3}, {0, 1, 2});
|
|
|
|
auto locked = NDArrayFactory::create<int>('c', {3});
|
|
|
|
auto indices = NDArrayFactory::create<int>('c', {2}, {4, 5});
|
|
|
|
auto codes = NDArrayFactory::create<int8_t>('c', {2}, {1, 1});
|
|
|
|
auto syn0 = NDArrayFactory::create<double>('c', {100, 10});
|
|
|
|
auto syn1 = NDArrayFactory::create<double>('c', {100, 10});
|
|
|
|
auto syn1Neg = NDArrayFactory::empty<double>();
|
|
|
|
auto expTable = NDArrayFactory::create<double>('c', {10000});
|
|
|
|
auto negTable = NDArrayFactory::empty<double>();
|
|
|
|
auto numWords = NDArrayFactory::create<int>('c', {1}, {1});
|
|
|
|
|
|
|
|
syn0.assign(0.01);
|
|
|
|
syn1.assign(0.02);
|
|
|
|
expTable.assign(0.5);
|
|
|
|
|
|
|
|
auto alpha = NDArrayFactory::create<double>(0.025);
|
|
|
|
auto randomValue = NDArrayFactory::create<Nd4jLong>(2L);
|
|
|
|
auto inferenceVector = NDArrayFactory::empty<double>();
|
|
|
|
|
|
|
|
nd4j::ops::cbow op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&target, &ngStarter, &context, &indices, &codes, &syn0, &syn1, &syn1Neg, &expTable, &negTable, &alpha, &randomValue, &numWords, &locked, &inferenceVector}, {}, {}, {true}, {}, true);
|
2019-08-02 19:01:03 +02:00
|
|
|
ASSERT_EQ(Status::OK(), result->status());
|
|
|
|
|
|
|
|
auto row_s0_0 = syn0({0,1, 0,0}, true);
|
|
|
|
auto row_s0_1 = syn0({1,2, 0,0}, true);
|
|
|
|
auto row_s0_2 = syn0({2,3, 0,0}, true);
|
|
|
|
|
|
|
|
auto row_s1_4 = syn1({4,5, 0,0}, true);
|
|
|
|
auto row_s1_5 = syn1({5,6, 0,0}, true);
|
|
|
|
auto row_s1_6 = syn1({6,7, 0,0}, true);
|
|
|
|
|
|
|
|
ASSERT_EQ(exp0, row_s0_0);
|
|
|
|
ASSERT_EQ(exp0, row_s0_1);
|
|
|
|
ASSERT_EQ(exp0, row_s0_2);
|
|
|
|
|
|
|
|
ASSERT_EQ(exp1, row_s1_4);
|
|
|
|
ASSERT_EQ(exp1, row_s1_5);
|
|
|
|
ASSERT_EQ(exp2, row_s1_6);
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
TEST_F(DeclarableOpsTests2, YetAnotherMatmulTest_1) {
|
|
|
|
auto A = NDArrayFactory::create<float>('c', {3, 3});
|
|
|
|
auto B = NDArrayFactory::create<float>('c', {3, 1});
|
2019-11-30 14:02:07 +01:00
|
|
|
auto exp = NDArrayFactory::create<float>('c', {3, 1}, {14.00f, 32.00f, 50.00f});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
A.linspace(1);
|
|
|
|
B.linspace(1);
|
|
|
|
|
|
|
|
nd4j::ops::matmul op;
|
|
|
|
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&A, &B}, {}, {});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(DeclarableOpsTests2, Test_Squeeze_1) {
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {2, 1, 3, 1, 1, 1, 4});
|
|
|
|
x.linspace(1);
|
|
|
|
auto exp = x.reshape('c', {2, 3, 4});
|
|
|
|
|
|
|
|
nd4j::ops::squeeze op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x}, {}, {});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
Merge master to upstream (#7945)
* Shugeo strided slice zeros (#14)
* Modified strided_slice op to properly work with empty-like shapes.
* Fixed test for reduce_mean with empty-like input.
* [WIP] Last merge (#15)
* correct logsoftmax looss (#2)
* Small SameDiff listener fix (#4)
* Various fixes (#6)
* #7839 Fix for asXMatrix and tests
* #7866 EmbeddingSequenceLayer dtype fix + test
* #7856 SameDiff save/load stream methods
* #7859 RegressionEvaluation rank 4 fix + tests + axis configuration
* EvaluationBinary 3d/4d
* More evaluation 3d/4d tests
* #7847 Evaluation empty checks
* Small test ifx
* #7848 Fix median edge case
* Improve DL4J samediff layer tests
* [WIP] FastText wrapper implemented (#8)
* FastText implemented
* Some fixes
* Fix shapes for wordsNearest
* Validation of input vectors
* Fixes
* Fixed test
* Thread tagged
* Some tweaks
* setContextClassLoader for DeallocatorServiceThread
* Numpy format tests (#1)
* Various fixes (#11)
* #7852 SameDiff gather fix
* #7892 SameDiff placeholder to constant conversion
* #7890 validate input rank for MLN/CG init methods
* Fix broken permute shape calculation
* Permute and gather fixes
* Tests
* #7850 LogSumExp fix + test
* Handful of test fixes
* Empty arrays with non-scalar shapes (#10)
* minor rearrangements for lambdas
* empty tensors with non-scalar shapes
* numpy empty tensors with non-scalar shapes
* few more empty tweaks
* Small fixes
* conv3d signature update
* micro fix in batchnorm mkldnn
* Import fixes
* Fix
* MKL-DNN update
* Small fill fix
* fill with empty input + test
* Fixes
* Small error improvement
* Fix
* one special test
* couple of fixes for lstm
* Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone
* Fixes
* FP16
* Unsigned
* BFloat16
* Fill op - empty tweaks
* - couple of fixes for empty arrays construction
- stack updated
* strided slice fix
* one transform test
* provide method for reducing shapeInfo in case of input array is empty
* Fixed reduceAlongDimensions to use empty input properly.
* couple of broadcast tests
* couple of tests broadcast tests + tweak to make them pass
* add check of non-empty to methods producing sub-arrays
* Fixed reshapeC with zeros in shape.
* complete empty check in reduce_... legacy ops
* Concat and cumsum/prod
* Tweak to empty shape inference on import
* add empty check to the rest of reduce legacy ops
* one more test
* correct typo in evalReduceShapeInfoEmpty
* Added tests for reduce_* ops to tests with zero shapes.
* few more tests for empty reductions
* Fixed strided_slice op with empty case and tests.
* one more empty reduction test
* Fixed strided_slice test.
* add empty check to NDArray::reshapei
* infOrMax
* empty min/max with infinity tests
* made unstack working correctly with empty arrays
* few IndexReduce tests + tweaks for empty shapes
* add test for empty concat
* few tests fixed
* Validation fix for reductions on empty shapes
* Reverse fix
* Reduction shape calc fixes
* SameDiff.generateOutputVariable: don't use shape function to determine number of outputs
* Range fix
* - NDArray constructor updated for scalars/empty arrays
- few tests fixed
* More fixes
* Empty creator fixes
* concat fix
* concat fix
* TF import tests: allow 'both all NaN' and 'both all inf' to pass
* Slice, zero fraction, and reshape fixes
* transpose, gather
* Zero fraction
* scalar cast fix
* Empty reduction axis support
* few more tests fixed
* Fixed input checks conforming with TF for concat op and tests.
* few tests fixed
* matmul scalar shape fix
* Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats.
* broadcast bool fix
* few more tests
* few more tests
* correct evalReduceShapeInfoEmpty
* argmax/argmin + tests
* one more empty edge case + one more test
* argmax/argmin/realdiv_bp tweaks
* empty reshape test + fix
* Helper fixes
* Small fixes
* Gather test fix
* Gather test fix
* Small fixes
* reduce scalar zero values
* scalar mean workaround
* Remove debug code
* along dim mean workaround
* one more test
* - equalsTo() tweak for empty arrays
- one more test
* broadcast tweaks
* [WIP] Fixing outstanding issues for NLP (#9)
* Avoid using not-inited objects
* Test fixed.
* Redundant method avoided for models like FastText
* KMeans++ implementation
* KMeans++ implementation
* Disable parallel execution
* KMeans++
* Tests
* Dev branch merge (#16)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Fix some issues on master (#17)
* Fix DataVec test issue
* Fix issue with dl4j SameDiff output layer
* Dtype fix for lambda layers
* #7912 BertIterator dtype fix (use float32 not global default)
* [WIP] Next set of CUDA stuff (#7)
New CUDA implementations and improvements
* bad file
* Dev branch master merge (#23)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Compatibility of deserialization (#18)
Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
* SameDiff: add activation gradient checking support for debugging (#19)
* SameDiff gradient checker: first pass on activation gradient checks
* Fixes + tests for activation gradient checking
* Javadoc
* [WIP] Some nd4j data type corrections (#20)
* Adjust data type
* Set correct Data type.
* Size of proper data type.
* fix averaged cpu load (#22)
* SameDiff ops, TF import and fixes (#24)
* CheckNumerics tests + fixes + misc fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fake quant
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* FakeQuantWithMinMaxArgs
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* CheckNumerics fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix libnd4j ALL_INTS and ALL_FLOATS declaration (uint and bfloat types)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Small fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Javadoc
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Exception tweak
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix for out of scope stack allocated var use
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Ignores
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Ignore for known failing test (already logged issue)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Merge upstream to fork (#25)
* Add thousand-separator commas to TotalParams (#7915)
* Add thousand-separator commas to TotalParams
The number of parameters can be quite large, and it would help the reading of the summary printout to have the TotalParams column & values at the bottom have thousand-separator-commas in them.
* Add thousand-separator commas to MultiLayerNetwork
Corresponding change to MultiLayerNetwork
Signed-off-by: Jxtps Jxtps <jxtps435@gmail.com>
* Update contributing and issue/PR templates (#7934)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix link to AdaDelta paper (#7942)
Fix link to AdaDelta paper hosted on matthewzeiler.com
Signed-off-by: Jxtps
* Fixes, and ignores for known/logged failing issues (#7943)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* SameDiff + DL4J/SameDiff: Multiple fixes (#28)
* #7919 HDF5 attribute buffer length fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7909 Arbiter constructor exception ux improvements
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7925 RNN output layer length checks
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7939 Add listener for validating inputs are not incorrectly modified
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7939 Integrate NonInplaceValidationListener into tests
* #7844 DL4J SameDiff fixes for variable minibatch size
* DL4J SameDiff fixes - ensure gradient for input placeholder is available
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Tweaks to ExternalErrorsFunction - use placeholders, make more robust
* Another fix
* More fixes
* More SameDiff/DL4J fixes
* Scope out scalar array creation in BaseScalarOp
* Remove debug code
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] Final dev branch merge (#29)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Compatibility of deserialization (#18)
Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
* SameDiff: add activation gradient checking support for debugging (#19)
* SameDiff gradient checker: first pass on activation gradient checks
* Fixes + tests for activation gradient checking
* Javadoc
* [WIP] Some nd4j data type corrections (#20)
* Adjust data type
* Set correct Data type.
* Size of proper data type.
* fix averaged cpu load (#22)
* [WIP] Multiple dataset iterators (#27)
* Splitting dataset into arbitrary number
* Fixes
* Multiple split of iterator
* Test
* Test
* Some fixes
* signature change
* one more tweak
Signed-off-by: raver119 <raver119@gmail.com>
* one more test for sequential use of DataSetIteratorSplitter
Signed-off-by: raver119 <raver119@gmail.com>
* Fixes
* Fixes
* one more test for Alexander
Signed-off-by: raver119 <raver119@gmail.com>
* Some fixes
* Some fixes
* one more test for Alexander
Signed-off-by: raver119 <raver119@gmail.com>
* minor test fix
Signed-off-by: raver119 <raver119@gmail.com>
* Some fixes
* Some fixes
* couple of assertions tweaked
Signed-off-by: raver119 <raver119@gmail.com>
* MDS splitter test :/
Signed-off-by: raver119 <raver119@gmail.com>
* Minor refactoring
* Multi dataset
* Some fixes
* More tests
* Small number of test fixes/improvements (failures on CI) (#31)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] More CUDA stuff (#26)
* initial commit
Signed-off-by: raver119 <raver119@gmail.com>
* LRN BP CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* less memory
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed bug with crop_and_resize op helper.
* get rid of unnecessary index-calculation dunction
Signed-off-by: Yurii <yurii@skymind.io>
* Fixed sort with nth_element cuda-based helper.
* Refactored nth_element.
* Refactored nth_element op and tests.
* Modified usage of dim array with sortTad routine.
* Refactored main routine of helper for non_max_image_suppression op.
* non_max_image_suppression op helper with cuda kernel implementation. Initial revision.
* fix vol2col cuda kernel
* meh
Signed-off-by: raver119 <raver119@gmail.com>
* topK concept
Signed-off-by: raver119 <raver119@gmail.com>
* unsorted topK with scanWitdh of 1
Signed-off-by: raver119 <raver119@gmail.com>
* correct vol2col tests
* sorted/unsorted topK
Signed-off-by: raver119 <raver119@gmail.com>
* implementation and fixing col2im/col2vol
* Corrected usage flags with input/output with reverse op.
* dup is const now
Signed-off-by: raver119 <raver119@gmail.com>
* percentile op
Signed-off-by: raver119 <raver119@gmail.com>
* group tests for mapool2d
Signed-off-by: Yurii <yurii@skymind.io>
* special test for george
Signed-off-by: raver119 <raver119@gmail.com>
* less threads for sortTad
Signed-off-by: raver119 <raver119@gmail.com>
* provide conv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* remove auther in sort tad kernel code
Signed-off-by: Yurii <yurii@skymind.io>
* provide depthwise_conv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* - max_pooling_with_argmax
- null check for special use
Signed-off-by: raver119 <raver119@gmail.com>
* dts cuda
Signed-off-by: raver119 <raver119@gmail.com>
* provide sconv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* std cuda
Signed-off-by: raver119 <raver119@gmail.com>
* Refactored non_max_suppression op to conform TF implementation.
* Improved suppression helper.
* provide pooling3d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* minor lstm rearrangements
Signed-off-by: raver119 <raver119@gmail.com>
* more of minor lstm rearrangements
Signed-off-by: raver119 <raver119@gmail.com>
* (bi)dynamic_rnn
Signed-off-by: raver119 <raver119@gmail.com>
* templates init order
Signed-off-by: raver119 <raver119@gmail.com>
* Refactored non_max_suppression op.
* Added cuda kernel for non_max_suppression.
* CPU sort by key/value
Signed-off-by: raver119 <raver119@gmail.com>
* CPU sort TAD by key/value
Signed-off-by: raver119 <raver119@gmail.com>
* CPU sort TAD by key/value tests
Signed-off-by: raver119 <raver119@gmail.com>
* Eliminate compiler error with cuda implementation.
* - repaired gradCheck in cuda
- provide conv2d_bp for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* missed signature
Signed-off-by: raver119 <raver119@gmail.com>
* provide depthwise_conv2d_bp for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* Implementation of lup helper with cuda kernel. Initial commit.
* further work on backprops for convolutions
Signed-off-by: Yurii <yurii@skymind.io>
* CUDA linear sort by key/val
Signed-off-by: raver119 <raver119@gmail.com>
* CUDA tad sort by key/val
Signed-off-by: raver119 <raver119@gmail.com>
* start providing of backprop for pooling2d/3d
Signed-off-by: Yurii <yurii@skymind.io>
* Added atomicAdd for bool datatype.
* dynamic partition concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic partition concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic partition scalar CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* important comment
Signed-off-by: raver119 <raver119@gmail.com>
* fix pooling2d/3d backprop helpers
Signed-off-by: Yurii <yurii@skymind.io>
* Added non-linear test with dynamic_partition.
* Improved test for dynamic_partition.
* dynamic_partition TAD concept
Signed-off-by: raver119 <raver119@gmail.com>
* - dynamic_partition TAD CUDA impl
- dynamic_partition TAD CPU fix
Signed-off-by: raver119 <raver119@gmail.com>
* - rewrite cpu code for usampling2d/3d
- write cuda code for usampling2d/3d
Signed-off-by: Yurii <yurii@skymind.io>
* dynamic_stitch CUDA vector case
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic_stitch CUDA TAD case concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic_stitch CUDA TAD case impl
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for dynamic_stitch 3D-4D cases.
* minor tests tweaks
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed type check for dynamic stitch.
* min/max bp
Signed-off-by: raver119 <raver119@gmail.com>
* rewrite code for upsampling2d/3d cpu
Signed-off-by: Yurii <yurii@skymind.io>
* reduce min/max/norm_max bp
Signed-off-by: raver119 <raver119@gmail.com>
* lup implementation. Additional enhancements.
* provide code for upsamling2d/3d backprop
Signed-off-by: Yurii <yurii@skymind.io>
* weightedCrossEntropyWithLogits
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed template math atomicMul for 64bit ints.
* Refactored dynamic_partition_bp op.
* inverseBroadcast fix
Signed-off-by: raver119 <raver119@gmail.com>
* DynamicPartitionBP test datatype fixed.
* - nd4j_atomicMul Windows fix
- cpu/NDArrayLambda.hpp excluded from CUDA
Signed-off-by: raver119 <raver119@gmail.com>
2019-06-27 17:37:04 +02:00
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(DeclarableOpsTests2, Test_Squeeze_2) {
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {2, 3, 4});
|
|
|
|
x.linspace(1);
|
2019-12-20 20:35:39 +01:00
|
|
|
auto exp = new NDArray(x.dup());
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
nd4j::ops::squeeze op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x}, {}, {});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp->isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp->equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
delete exp;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(DeclarableOpsTests2, Test_FloorMod_1) {
|
2019-11-30 14:02:07 +01:00
|
|
|
auto x = NDArrayFactory::create<float>('c', {1, 3}, {2.0f, 6.0f, -3.0f});
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {1, 3}, {-3.0f, 2.0f, -2.0f});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {1, 3}, {-1.f, 0.f, -1.f});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
nd4j::ops::floormod op;
|
|
|
|
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &y}, {}, {});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
2019-08-02 19:01:03 +02:00
|
|
|
TEST_F(DeclarableOpsTests2, Test_FloorDiv_1) {
|
2019-11-30 14:02:07 +01:00
|
|
|
auto x = NDArrayFactory::create<float>('c', {1, 3}, {3.0f, 6.0f, -3.0f});
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {1, 3}, {-2.0f, 2.0f, -2.0f});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {1, 3}, {-2.f, 3.f, 1.f});
|
2019-08-02 19:01:03 +02:00
|
|
|
|
|
|
|
nd4j::ops::floordiv op;
|
|
|
|
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &y}, {}, {});
|
2019-08-02 19:01:03 +02:00
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
// z->printShapeInfo("FloorDiv1 shape");
|
|
|
|
// z->printIndexedBuffer("FloorDiv1");
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(DeclarableOpsTests2, Test_FloorDiv_2) {
|
2019-11-30 14:02:07 +01:00
|
|
|
auto x = NDArrayFactory::create<float>('c', {1, 3}, {3.0f, 6.0f, -3.0f});
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {1, 3}, {-2.0f, 2.0f, -2.0f});
|
|
|
|
auto eps = NDArrayFactory::create<float>('c', {1, 3}, {1.f, 2.f, 3.f});
|
2019-08-15 12:54:47 +02:00
|
|
|
|
2019-08-08 17:05:21 +02:00
|
|
|
auto exp1 = NDArrayFactory::create<float>('c', {1, 3}, {0.f, 0.f, 0.f});
|
|
|
|
auto exp2 = NDArrayFactory::create<float>('c', {1, 3}, {0.f, 0.f, 0.f});
|
2019-08-02 19:01:03 +02:00
|
|
|
|
|
|
|
nd4j::ops::floordiv_bp op;
|
|
|
|
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &y, &eps}, {}, {});
|
2019-08-02 19:01:03 +02:00
|
|
|
ASSERT_EQ(result->status(), Status::OK());
|
|
|
|
auto z1 = result->at(0);
|
|
|
|
auto z2 = result->at(1);
|
|
|
|
// z->printShapeInfo("FloorDiv1 shape");
|
|
|
|
// z1->printIndexedBuffer("FloorDiv2_1");
|
|
|
|
// z2->printIndexedBuffer("FloorDiv2_2");
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp1.equalsTo(z1));
|
|
|
|
ASSERT_TRUE(exp2.equalsTo(z2));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
TEST_F(DeclarableOpsTests2, Test_CRelu_1) {
|
2019-11-30 14:02:07 +01:00
|
|
|
auto x = NDArrayFactory::create<float>('c', {2, 2}, {1.0f, 2.0f, 3.0f, 4.0f});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {2, 4}, {1.0f, 2.0f, 0.f, 0.f, 3.0f, 4.0f, 0.f, 0.f});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
nd4j::ops::crelu op;
|
|
|
|
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x}, {}, {});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(DeclarableOpsTests2, Test_CRelu_BP_2) {
|
2019-11-30 14:02:07 +01:00
|
|
|
auto x = NDArrayFactory::create<float>('c', {2, 2}, {1.0f, 2.0f, -3.0f, 4.0f});
|
|
|
|
auto eps = NDArrayFactory::create<float>('c', {2, 4}, {1.0f, 2.0f, 4.f, 3.f, 3.0f, 4.0f, 2.f, 1.f});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {2, 2}, {1.f, 2.f, -2.f, 4.f});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
nd4j::ops::crelu_bp op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &eps});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
ASSERT_EQ(1, result->size());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(DeclarableOpsTests2, Test_Concat_BP_1) {
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {2, 2});
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {2, 2});
|
2019-11-30 14:02:07 +01:00
|
|
|
auto eps = NDArrayFactory::create<float>('c', {2, 4}, {1.0f, 2.0f, 0.f, 1.f, 3.0f, 4.0f, 0.f, 1.f});
|
|
|
|
auto expEX = NDArrayFactory::create<float>('c', {2, 2}, {1.f, 2.f, 3.f, 4.f});
|
|
|
|
auto expEY = NDArrayFactory::create<float>('c', {2, 2}, {0.f, 1.f, 0.f, 1.f});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
nd4j::ops::concat_bp op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &y, &eps}, {}, {-1});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
ASSERT_EQ(2, result->size());
|
|
|
|
|
|
|
|
auto epsX = result->at(0);
|
|
|
|
auto epsY = result->at(1);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expEX.isSameShape(epsX));
|
|
|
|
ASSERT_TRUE(expEX.equalsTo(epsX));
|
|
|
|
|
|
|
|
ASSERT_TRUE(expEY.isSameShape(epsY));
|
|
|
|
ASSERT_TRUE(expEY.equalsTo(epsY));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, TestTensorDot5) {
|
|
|
|
|
2019-11-30 14:02:07 +01:00
|
|
|
auto x = NDArrayFactory::create<double>('c', {2,3,4}, {1,3,5,7,9,11,13,15, 1,3,5,7,9,11,13,15, 1,3,5,7,9,11,13,15});
|
|
|
|
auto y = NDArrayFactory::create<double>('c', {2,4,3}, {2,4,6,8,10,12,14,16, 2,4,6,8,10,12,14,16, 2,4,6,8,10,12,14,16});
|
|
|
|
auto expected = NDArrayFactory::create<double>('c', {2,4,2,4}, {44,110,160, 66,132, 38, 88,154, 68,170,224,102,204, 82,136,238, 92,230,288,138,276,126,184,322, 116,290,352,174,348,170,232,406, 76,190,160,114,228,182,152,266, 100,250,224,150,300,226,200,350, 124,310,288,186,372,270,248,434, 148,370,352,222,444,314,296,518});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
nd4j::ops::tensormmul op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&x, &y}, {}, {1,1,1,2});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, TestTensorDot6) {
|
|
|
|
|
2019-11-30 14:02:07 +01:00
|
|
|
auto x = NDArrayFactory::create<double>('c', {2,3,4}, {1,3,5,7,9,11,13,15, 1,3,5,7,9,11,13,15, 1,3,5,7,9,11,13,15});
|
|
|
|
auto y = NDArrayFactory::create<double>('f', {2,4,3}, {2,4,6,8,10,12,14,16, 2,4,6,8,10,12,14,16, 2,4,6,8,10,12,14,16});
|
|
|
|
auto expected = NDArrayFactory::create<double>('c', {2,4,2,4}, {22, 66,110,154, 44, 88,132,176, 34,102,170,238, 68,136,204,272, 46,138,230,322, 92,184,276,368, 58,174,290,406,116,232,348,464, 38,114,190,266, 76,152,228,304, 50,150,250,350,100,200,300,400, 62,186,310,434,124,248,372,496, 74,222,370,518,148,296,444,592});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
nd4j::ops::tensormmul op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&x, &y}, {}, {1,1,1,2});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, TestTensorDot7) {
|
|
|
|
|
2019-11-30 14:02:07 +01:00
|
|
|
auto x = NDArrayFactory::create<double>('f', {2,3,4}, {1,3,5,7,9,11,13,15, 1,3,5,7,9,11,13,15, 1,3,5,7,9,11,13,15});
|
|
|
|
auto y = NDArrayFactory::create<double>('c', {2,4,3}, {2,4,6,8,10,12,14,16, 2,4,6,8,10,12,14,16, 2,4,6,8,10,12,14,16});
|
|
|
|
auto expected = NDArrayFactory::create<double>('c', {2,4,2,4}, {76,166,112,106,196, 62,136,226, 60,174,208, 98,212,230,136,250, 76,214,336,122,260,174,168,306, 124,286,240,178,340,150,232,394, 100,226,176,142,268,106,184,310, 84,234,272,134,284,274,184,334, 100,274,400,158,332,218,216,390, 148,346,304,214,412,194,280,478});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
nd4j::ops::tensormmul op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&x, &y}, {}, {1,1,1,2});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, TestTensorDot8) {
|
|
|
|
|
2019-11-30 14:02:07 +01:00
|
|
|
auto x = NDArrayFactory::create<double>('f', {2,3,4}, {1,3,5,7,9,11,13,15, 1,3,5,7,9,11,13,15, 1,3,5,7,9,11,13,15});
|
|
|
|
auto y = NDArrayFactory::create<double>('f', {2,4,3}, {2,4,6,8,10,12,14,16, 2,4,6,8,10,12,14,16, 2,4,6,8,10,12,14,16});
|
|
|
|
auto expected = NDArrayFactory::create<double>('c', {2,4,2,4}, {30, 90,150,210, 60,120,180,240, 38,114,190,266, 76,152,228,304, 46,138,230,322, 92,184,276,368, 54,162,270,378,108,216,324,432, 42,126,210,294, 84,168,252,336, 50,150,250,350,100,200,300,400, 58,174,290,406,116,232,348,464, 66,198,330,462,132,264,396,528});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
nd4j::ops::tensormmul op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&x, &y}, {}, {1,1,1,2});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, TestTensorDot9) {
|
|
|
|
|
|
|
|
// NDArray z('f',{2,2,3}, nd4j::DataType::DOUBLE);
|
|
|
|
// z.linspace(1);
|
|
|
|
// z.printShapeInfo();
|
|
|
|
// z.printIndexedBuffer();
|
|
|
|
// z.reshapei('c', {4,3});
|
|
|
|
// z.printShapeInfo();
|
|
|
|
// z.printIndexedBuffer();
|
|
|
|
|
2019-11-30 14:02:07 +01:00
|
|
|
auto x = NDArrayFactory::create<double>('f', {2,3,4}, {1,3,5,7,9,11,13,15, 1,3,5,7,9,11,13,15, 1,3,5,7,9,11,13,15});
|
|
|
|
auto y = NDArrayFactory::create<double>('f', {2,4,3}, {2,4,6,8,10,12,14,16, 2,4,6,8,10,12,14,16, 2,4,6,8,10,12,14,16});
|
|
|
|
auto expected = NDArrayFactory::create<double>('c', {3,4,4,3}, {14, 14, 14, 30, 30, 30, 46, 46, 46, 62, 62, 62, 86, 86, 86,198,198,198,310,310,310,422,422,422, 62, 62, 62,142,142,142,222,222,222,302,302,302, 38, 38, 38, 86, 86, 86,134,134,134,182,182,182, 38, 38, 38, 86, 86, 86,134,134,134,182,182,182, 14, 14, 14, 30, 30, 30, 46, 46, 46, 62, 62, 62, 86, 86, 86,198,198,198,310,310,310,422,422,422, 62, 62, 62,142,142,142,222,222,222,302,302,302, 62, 62, 62,142,142,142,222,222,222,302,302,302, 38, 38, 38, 86, 86, 86,134,134,134,182,182,182, 14, 14, 14, 30, 30, 30, 46, 46, 46, 62, 62, 62, 86, 86, 86,198,198,198,310,310,310,422,422,422});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
nd4j::ops::tensormmul op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&x, &y}, {}, {1,0,1,0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, TestTensorDot10) {
|
|
|
|
|
2019-11-30 14:02:07 +01:00
|
|
|
auto x = NDArrayFactory::create<double>('f', {2,3,4}, {1,3,5,7,9,11,13,15, 1,3,5,7,9,11,13,15, 1,3,5,7,9,11,13,15});
|
|
|
|
auto y = NDArrayFactory::create<double>('f', {2,4,3}, {2,4,6,8,10,12,14,16, 2,4,6,8,10,12,14,16, 2,4,6,8,10,12,14,16});
|
|
|
|
auto expected = NDArrayFactory::create<double>('c', {4,4}, {114,258,402,546, 138,314,490,666, 162,370,578,786, 186,426,666,906});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
nd4j::ops::tensormmul op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&x, &y}, {}, {2,0,1, 2,0,2});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, TestTensorDot11) {
|
|
|
|
|
2019-11-30 14:02:07 +01:00
|
|
|
auto x = NDArrayFactory::create<double>('c', {2,3,4}, {1,3,5,7,9,11,13,15, 1,3,5,7,9,11,13,15, 1,3,5,7,9,11,13,15});
|
|
|
|
auto y = NDArrayFactory::create<double>('f', {2,4,3}, {2,4,6,8,10,12,14,16, 2,4,6,8,10,12,14,16, 2,4,6,8,10,12,14,16});
|
|
|
|
auto expected = NDArrayFactory::create<double>('c', {4,4}, {98,218,338,458, 134,302,470,638, 170,386,602,818, 206,470,734,998});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
nd4j::ops::tensormmul op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&x, &y}, {}, {2,0,1, 2,0,2});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, TestTensorDot12) {
|
|
|
|
|
2019-11-30 14:02:07 +01:00
|
|
|
auto x = NDArrayFactory::create<double>('c', {2,3,4}, {1,3,5,7,9,11,13,15, 1,3,5,7,9,11,13,15, 1,3,5,7,9,11,13,15});
|
|
|
|
auto y = NDArrayFactory::create<double>('c', {2,4,3}, {2,4,6,8,10,12,14,16, 2,4,6,8,10,12,14,16, 2,4,6,8,10,12,14,16});
|
|
|
|
auto expected = NDArrayFactory::create<double>('c', {4,4}, {272,292,312,332, 368,396,424,452, 464,500,536,572, 560,604,648,692});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
nd4j::ops::tensormmul op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&x, &y}, {}, {2,0,1, 2,0,2});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, TestTensorDot13) {
|
|
|
|
|
2019-11-30 14:02:07 +01:00
|
|
|
auto x = NDArrayFactory::create<double>('c', {2,3,4}, {1,3,5,7,9,11,13,15, 1,3,5,7,9,11,13,15, 1,3,5,7,9,11,13,15});
|
|
|
|
auto y = NDArrayFactory::create<double>('c', {4,2,3}, {2,4,6,8,10,12,14,16, 2,4,6,8,10,12,14,16, 2,4,6,8,10,12,14,16});
|
|
|
|
auto expected = NDArrayFactory::create<double>('c', {3,3}, {640,560,640, 576,624,576, 640,560,640});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
nd4j::ops::tensormmul op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&x, &y}, {}, {2,0,2, 2,1,0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, TestTensorDot14) {
|
|
|
|
|
2019-11-30 14:02:07 +01:00
|
|
|
auto x = NDArrayFactory::create<double>('f', {2,3,4}, {1,3,5,7,9,11,13,15, 1,3,5,7,9,11,13,15, 1,3,5,7,9,11,13,15});
|
|
|
|
auto y = NDArrayFactory::create<double>('c', {4,2,3}, {2,4,6,8,10,12,14,16, 2,4,6,8,10,12,14,16, 2,4,6,8,10,12,14,16});
|
|
|
|
auto expected = NDArrayFactory::create<double>('c', {3,3}, {648,600,520, 648,536,648, 520,600,648});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
nd4j::ops::tensormmul op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&x, &y}, {}, {2,0,2, 2,1,0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, TestTensorDot15) {
|
|
|
|
|
2019-11-30 14:02:07 +01:00
|
|
|
auto x = NDArrayFactory::create<double>('f', {2,3,4}, {1,3,5,7,9,11,13,15, 1,3,5,7,9,11,13,15, 1,3,5,7,9,11,13,15});
|
|
|
|
auto y = NDArrayFactory::create<double>('f', {4,2,3}, {2,4,6,8,10,12,14,16, 2,4,6,8,10,12,14,16, 2,4,6,8,10,12,14,16});
|
|
|
|
auto expected = NDArrayFactory::create<double>('c', {3,3}, {624,624,624, 656,656,656, 624,624,624});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
nd4j::ops::tensormmul op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&x, &y}, {}, {2,0,2, 2,1,0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, absolute_difference_loss_test_1) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto predictions = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto weights = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto expected = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
|
|
|
|
labels.linspace(1);
|
|
|
|
predictions.linspace(2);
|
|
|
|
weights.assign(0.5f);
|
|
|
|
expected.assign(0.5f);
|
|
|
|
|
|
|
|
nd4j::ops::absolute_difference_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, absolute_difference_loss_test_2) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto predictions = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto weights = NDArrayFactory::create<float>('c', {1,1,4,5});
|
|
|
|
auto expected = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
|
|
|
|
labels.linspace(1);
|
|
|
|
predictions.linspace(2);
|
|
|
|
weights.assign(0.5f);
|
|
|
|
expected.assign(0.5f);
|
|
|
|
|
|
|
|
nd4j::ops::absolute_difference_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
// result->printIndexedBuffer("ADL test2");
|
|
|
|
// expected.printIndexedBuffer("ADL expec");
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, absolute_difference_loss_test_3) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto predictions = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto weights = NDArrayFactory::create<float>('c', {1,1,1,5});
|
|
|
|
auto expected = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
|
|
|
|
labels.linspace(1);
|
|
|
|
predictions.linspace(2);
|
|
|
|
weights.assign(0.5f);
|
|
|
|
expected.assign(0.5f);
|
|
|
|
|
|
|
|
nd4j::ops::absolute_difference_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, absolute_difference_loss_test_4) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto predictions = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto weights = NDArrayFactory::create<float>('c', {2,1,1,5});
|
|
|
|
auto expected = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
|
|
|
|
labels.linspace(1);
|
|
|
|
predictions.linspace(2);
|
|
|
|
weights.assign(0.5f);
|
|
|
|
expected.assign(0.5f);
|
|
|
|
|
|
|
|
nd4j::ops::absolute_difference_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, absolute_difference_loss_test_5) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto predictions = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto weights = NDArrayFactory::create<float>('c', {1,1});
|
|
|
|
auto expected = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
|
|
|
|
labels.linspace(1);
|
|
|
|
predictions.linspace(2);
|
|
|
|
weights.assign(0.5f);
|
|
|
|
expected.assign(0.5f);
|
|
|
|
|
|
|
|
nd4j::ops::absolute_difference_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, absolute_difference_loss_test_6) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto predictions = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto weights = NDArrayFactory::create<float>('c', {1,1});
|
|
|
|
auto expected = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
|
|
|
|
labels.linspace(1);
|
|
|
|
predictions.linspace(2);
|
|
|
|
weights.assign(0.f);
|
|
|
|
expected.assign(0.f);
|
|
|
|
|
|
|
|
nd4j::ops::absolute_difference_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, absolute_difference_loss_test_7) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto predictions = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto weights = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
|
|
|
|
labels.linspace(1);
|
|
|
|
predictions.linspace(2);
|
|
|
|
weights.assign(0.5f);
|
|
|
|
|
|
|
|
nd4j::ops::absolute_difference_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_TRUE(result->e<float>(0) == 60.f);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, absolute_difference_loss_test_8) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto predictions = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto weights = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
|
|
|
|
labels.linspace(1);
|
|
|
|
predictions.linspace(2);
|
|
|
|
weights.assign(0.f);
|
|
|
|
|
|
|
|
nd4j::ops::absolute_difference_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_TRUE(result->e<float>(0) == 0.f);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, absolute_difference_loss_test_9) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto predictions = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto weights = NDArrayFactory::create<float>('c', {2,1,4,1});
|
|
|
|
|
|
|
|
labels.linspace(1);
|
|
|
|
predictions.linspace(2);
|
|
|
|
weights.assign(0.5f);
|
|
|
|
|
|
|
|
nd4j::ops::absolute_difference_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_TRUE(result->e<float>(0) == 60.);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, absolute_difference_loss_test_10) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto predictions = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto weights = NDArrayFactory::create<float>('c', {1,1});
|
|
|
|
|
|
|
|
labels.linspace(1);
|
|
|
|
predictions.linspace(2);
|
|
|
|
weights.assign(0.5f);
|
|
|
|
|
|
|
|
nd4j::ops::absolute_difference_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_TRUE(result->e<float>(0) == 60.f);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, absolute_difference_loss_test_11) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto predictions = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto weights = NDArrayFactory::create<float>('c', {1,1});
|
|
|
|
|
|
|
|
labels.linspace(1);
|
|
|
|
predictions.linspace(2);
|
|
|
|
weights.assign(0.5f);
|
|
|
|
|
|
|
|
nd4j::ops::absolute_difference_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {2});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_TRUE(result->e<float>(0) == 1.f);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, absolute_difference_loss_test_12) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto predictions = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto weights = NDArrayFactory::create<float>('c', {1,1});
|
|
|
|
|
|
|
|
labels.linspace(1);
|
|
|
|
predictions.linspace(2);
|
|
|
|
weights.assign(0.f);
|
|
|
|
|
|
|
|
nd4j::ops::absolute_difference_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {2});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_TRUE(result->e<float>(0) == 0.f);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, absolute_difference_loss_test_13) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto predictions = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto weights = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
|
|
|
|
labels.linspace(1);
|
|
|
|
predictions.linspace(2);
|
|
|
|
weights.assign(0.5f);
|
|
|
|
|
|
|
|
nd4j::ops::absolute_difference_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {2});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_TRUE(result->e<float>(0) == 1.f);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, absolute_difference_loss_test_14) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto predictions = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto weights = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
|
|
|
|
labels.linspace(1);
|
|
|
|
predictions.linspace(2);
|
|
|
|
weights.assign(0.5);
|
|
|
|
weights.p(1, 0.f);
|
|
|
|
weights.p(2, 0.f);
|
|
|
|
|
|
|
|
nd4j::ops::absolute_difference_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {2});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_TRUE(result->e<float>(0) == 1.f);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, absolute_difference_loss_test_15) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto predictions = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto weights = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
|
|
|
|
labels.linspace(1);
|
|
|
|
predictions.linspace(3);
|
|
|
|
weights.assign(0.5f);
|
|
|
|
|
|
|
|
nd4j::ops::absolute_difference_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {2});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_TRUE(result->e<float>(0) == 2.f);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, absolute_difference_loss_test_16) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto predictions = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto weights = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
|
|
|
|
labels.linspace(1);
|
|
|
|
predictions.linspace(3);
|
|
|
|
weights.assign(0.5f);
|
|
|
|
predictions.p(0, 0.f);
|
|
|
|
predictions.p(1, 0.f);
|
|
|
|
predictions.p(2, 0.f);
|
|
|
|
predictions.p(3, 0.f);
|
|
|
|
|
|
|
|
nd4j::ops::absolute_difference_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {2});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 2.01667, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, absolute_difference_loss_test_17) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto predictions = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto weights = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
|
|
|
|
labels.linspace(1);
|
|
|
|
predictions.linspace(3);
|
|
|
|
weights.assign(0.5f);
|
|
|
|
predictions.p(0, 0.f);
|
|
|
|
predictions.p(1, 0.f);
|
|
|
|
predictions.p(2, 0.f);
|
|
|
|
predictions.p(3, 0.f);
|
|
|
|
labels.p(0, 0.f);
|
|
|
|
labels.p(1, 0.f);
|
|
|
|
labels.p(2, 0.f);
|
|
|
|
labels.p(3, 0.f);
|
|
|
|
|
|
|
|
nd4j::ops::absolute_difference_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {2});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<float>(0), 1.93333, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, absolute_difference_loss_test_18) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto predictions = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto weights = NDArrayFactory::create<float>('c', {2,1,1,5});
|
|
|
|
|
|
|
|
labels.linspace(1);
|
|
|
|
predictions.linspace(3);
|
|
|
|
weights.assign(0.5f);
|
|
|
|
predictions.p(0, 0.f);
|
|
|
|
predictions.p(1, 0.f);
|
|
|
|
predictions.p(2, 0.f);
|
|
|
|
predictions.p(3, 0.);
|
|
|
|
labels.p(0, 0.f);
|
|
|
|
labels.p(1, 0.f);
|
|
|
|
labels.p(2, 0.f);
|
|
|
|
labels.p(3, 0.f);
|
|
|
|
|
|
|
|
nd4j::ops::absolute_difference_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {2});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<float>(0), 1.93333f, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, absolute_difference_loss_test_19) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto predictions = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto weights = NDArrayFactory::create<float>('c', {1,1});
|
|
|
|
|
|
|
|
labels.linspace(1);
|
|
|
|
predictions.linspace(3);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::absolute_difference_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {3});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_TRUE(result->e<double>(0) == 1.);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, absolute_difference_loss_test_20) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto predictions = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto weights = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
|
|
|
|
labels.linspace(1);
|
|
|
|
predictions.linspace(3);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::absolute_difference_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {3});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_TRUE(result->e<double>(0) == 1.);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, absolute_difference_loss_test_21) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto predictions = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto weights = NDArrayFactory::create<float>('c', {2,3,1,1});
|
|
|
|
|
|
|
|
labels.linspace(1);
|
|
|
|
predictions.linspace(3);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::absolute_difference_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {3});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_TRUE(result->e<float>(0) == 1.f);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, absolute_difference_loss_test_22) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto predictions = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto weights = NDArrayFactory::create<float>('c', {1,1});
|
|
|
|
|
|
|
|
labels.linspace(1);
|
|
|
|
predictions.linspace(3);
|
|
|
|
weights.assign(0.);
|
|
|
|
|
|
|
|
nd4j::ops::absolute_difference_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {3});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_TRUE(result->e<float>(0) == 0.);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, absolute_difference_loss_test_23) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto predictions = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
auto weights = NDArrayFactory::create<float>('c', {2,3,4,5});
|
|
|
|
|
|
|
|
labels.linspace(1);
|
|
|
|
predictions.linspace(3);
|
|
|
|
weights.assign(0.5);
|
|
|
|
predictions.p(0, 0.);
|
|
|
|
predictions.p(1, 0.);
|
|
|
|
predictions.p(2, 0.);
|
|
|
|
predictions.p(3, 0.);
|
|
|
|
labels.p(0, 0.);
|
|
|
|
labels.p(1, 0.);
|
|
|
|
labels.p(2, 0.);
|
|
|
|
labels.p(3, 0.);
|
|
|
|
weights.p(40+0, 0.);
|
|
|
|
weights.p(40+1, 0.);
|
|
|
|
weights.p(40+2, 0.);
|
|
|
|
weights.p(40+3, 0.);
|
|
|
|
|
|
|
|
nd4j::ops::absolute_difference_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {3});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 0.965517, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, cosine_distance_loss_test1) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<float>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<float>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<float>('c', {1,3,4});
|
2019-11-30 14:02:07 +01:00
|
|
|
auto expected = NDArrayFactory::create<float>('c', {1,3,4}, {-91.5f, -107.5f, -125.5f, -145.5f, -167.5f, -191.5f, -217.5f, -245.5f, -275.5f, -307.5f, -341.5f, -377.5f});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
labels.linspace(1);
|
|
|
|
predictions.linspace(2);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::cosine_distance_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {0,0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, cosine_distance_loss_test2) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<float>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<float>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<float>('c', {2,1,4});
|
2019-11-30 14:02:07 +01:00
|
|
|
auto expected = NDArrayFactory::create<float>('c', {2,1,4}, {-3.25f, -4.f, -4.75f, -5.5f, -12.25f, -13.f, -13.75f, -14.5f});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
labels.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
predictions.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::cosine_distance_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {0,1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, cosine_distance_loss_test3) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<float>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<float>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<float>('c', {2,3,1});
|
2019-11-30 14:02:07 +01:00
|
|
|
auto expected = NDArrayFactory::create<float>('c', {2,3,1}, {-2.f, -6.f,-10.f,-14.f,-18.f,-22.f});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
labels.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
predictions.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::cosine_distance_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {0,2});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, cosine_distance_loss_test4) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<float>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<float>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<float>('c', {1,1});
|
2019-11-30 14:02:07 +01:00
|
|
|
auto expected = NDArrayFactory::create<float>('c', {2,3,1}, {-2.f, -6.f,-10.f,-14.f,-18.f,-22.f});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
labels.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
predictions.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::cosine_distance_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {0,2});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, cosine_distance_loss_test5) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<float>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<float>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<float>('c', {2,1,4});
|
|
|
|
|
|
|
|
labels.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
predictions.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::cosine_distance_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {1,1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_TRUE(result->e<double>(0) == -71.);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, cosine_distance_loss_test6) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<float>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<float>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<float>('c', {1,1});
|
|
|
|
|
|
|
|
labels.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
predictions.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::cosine_distance_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {1,1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
2019-12-06 09:10:44 +01:00
|
|
|
ASSERT_TRUE(result->e<float>(0) == -71.f);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
delete results;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, cosine_distance_loss_test7) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<float>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<float>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<float>('c', {1,1,4});
|
|
|
|
|
|
|
|
labels.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
predictions.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::cosine_distance_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {1,0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
2019-12-06 09:10:44 +01:00
|
|
|
ASSERT_TRUE(result->e<float>(0) == -69.f);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
delete results;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, cosine_distance_loss_test8) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<float>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<float>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<float>('c', {2,3,1});
|
|
|
|
|
|
|
|
labels.linspace(1);
|
2019-12-06 09:10:44 +01:00
|
|
|
weights.assign(0.5f);
|
|
|
|
predictions.assign(0.5f);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
nd4j::ops::cosine_distance_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {2,2});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
2019-12-06 09:10:44 +01:00
|
|
|
ASSERT_TRUE(result->e<float>(0) == -24.f);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
delete results;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, cosine_distance_loss_test9) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<float>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<float>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<float>('c', {1,1});
|
|
|
|
|
|
|
|
labels.linspace(1);
|
2019-12-06 09:10:44 +01:00
|
|
|
weights.assign(0.5f);
|
|
|
|
predictions.assign(0.5f);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
nd4j::ops::cosine_distance_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {2,2});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_TRUE(result->e<double>(0) == -24.);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, cosine_distance_loss_test10) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<float>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<float>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<float>('c', {2,3,1});
|
|
|
|
|
|
|
|
labels.linspace(1);
|
2019-12-06 09:10:44 +01:00
|
|
|
weights.assign(0.5f);
|
|
|
|
predictions.assign(0.5f);
|
|
|
|
weights.p(0, 0.f);
|
|
|
|
weights.p(1, 0.f);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
nd4j::ops::cosine_distance_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {2,2});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_TRUE(result->e<double>(0) == -32.);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, hinge_loss_test1) {
|
|
|
|
|
2019-11-30 14:02:07 +01:00
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4},{0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0});
|
|
|
|
auto logits = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto expected = NDArrayFactory::create<double>('c', {2,3,4}, {1., 0. , 0., 2.5,0., 3.5, 0., 4.5,0., 5.5, 0., 6.5, 0., 7.5, 0., 8.5,0., 9.5,10., 0. ,0.,11.5, 0.,12.5});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
logits.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::hinge_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&logits, &weights, &labels}, {}, {0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
// result->printBuffer();
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, hinge_loss_test2) {
|
|
|
|
|
2019-11-30 14:02:07 +01:00
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4},{0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0});
|
|
|
|
auto logits = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {1,1});
|
|
|
|
auto expected = NDArrayFactory::create<double>('c', {2,3,4}, {1., 0. , 0., 2.5,0., 3.5, 0., 4.5,0., 5.5, 0., 6.5, 0., 7.5, 0., 8.5,0., 9.5,10., 0. ,0.,11.5, 0.,12.5});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
logits.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::hinge_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&logits, &weights, &labels}, {}, {0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
// result->printBuffer();
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, hinge_loss_test3) {
|
|
|
|
|
2019-11-30 14:02:07 +01:00
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4},{0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0});
|
|
|
|
auto logits = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {1,3,1});
|
|
|
|
auto expected = NDArrayFactory::create<double>('c', {2,3,4}, {1., 0. , 0., 2.5,0., 3.5, 0., 4.5,0., 5.5, 0., 6.5, 0., 7.5, 0., 8.5,0., 9.5,10., 0. ,0.,11.5, 0.,12.5});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
logits.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::hinge_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&logits, &weights, &labels}, {}, {0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
// result->printBuffer();
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, hinge_loss_test4) {
|
|
|
|
|
2019-11-30 14:02:07 +01:00
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4},{0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0});
|
|
|
|
auto logits = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,3,4});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
logits.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
|
|
|
|
nd4j::ops::hinge_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&logits, &weights, &labels}, {}, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_TRUE(result->e<double>(0) == 83.);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, hinge_loss_test5) {
|
|
|
|
|
2019-11-30 14:02:07 +01:00
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4},{0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0});
|
|
|
|
auto logits = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {1,1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
logits.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
|
|
|
|
nd4j::ops::hinge_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&logits, &weights, &labels}, {}, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_TRUE(result->e<double>(0) == 83.);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, hinge_loss_test6) {
|
|
|
|
|
2019-11-30 14:02:07 +01:00
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4},{0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0});
|
|
|
|
auto logits = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,1,1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
logits.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
|
|
|
|
nd4j::ops::hinge_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&logits, &weights, &labels}, {}, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_TRUE(result->e<double>(0) == 83.);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, hinge_loss_test7) {
|
|
|
|
|
2019-11-30 14:02:07 +01:00
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4},{0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0});
|
|
|
|
auto logits = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,3,4});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
logits.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
|
|
|
|
nd4j::ops::hinge_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&logits, &weights, &labels}, {}, {2});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 6.91667, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, hinge_loss_test8) {
|
|
|
|
|
2019-11-30 14:02:07 +01:00
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4},{0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0});
|
|
|
|
auto logits = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {1,1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
logits.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
|
|
|
|
nd4j::ops::hinge_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&logits, &weights, &labels}, {}, {2});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 6.91667, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, hinge_loss_test9) {
|
|
|
|
|
2019-11-30 14:02:07 +01:00
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4},{0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0});
|
|
|
|
auto logits = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {1,1,4});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
logits.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
|
|
|
|
nd4j::ops::hinge_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&logits, &weights, &labels}, {}, {2});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 6.91667, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, hinge_loss_test10) {
|
|
|
|
|
2019-11-30 14:02:07 +01:00
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4},{0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0});
|
|
|
|
auto logits = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,3,4});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
logits.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
|
|
|
|
nd4j::ops::hinge_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&logits, &weights, &labels}, {}, {3});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 3.45833, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, hinge_loss_test11) {
|
|
|
|
|
2019-11-30 14:02:07 +01:00
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4},{0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0});
|
|
|
|
auto logits = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,1,4});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
logits.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
|
|
|
|
nd4j::ops::hinge_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&logits, &weights, &labels}, {}, {3});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 3.45833, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, hinge_loss_test12) {
|
|
|
|
|
2019-11-30 14:02:07 +01:00
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4},{0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0});
|
|
|
|
auto logits = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,3,4});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
logits.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
weights.p(0, 0.);
|
|
|
|
weights.p(1, 0.);
|
|
|
|
weights.p(2, 0.);
|
|
|
|
weights.p(3, 0.);
|
|
|
|
|
|
|
|
|
|
|
|
nd4j::ops::hinge_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&logits, &weights, &labels}, {}, {3});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 3.975, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, hinge_loss_test13) {
|
|
|
|
|
2019-11-30 14:02:07 +01:00
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4},{0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0});
|
|
|
|
auto logits = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {1,1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
logits.linspace(1);
|
|
|
|
weights.assign(0.);
|
|
|
|
|
|
|
|
|
|
|
|
nd4j::ops::hinge_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&logits, &weights, &labels}, {}, {3});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_TRUE(result->e<double>(0) == 0.);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, huber_loss_test1) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto expected = NDArrayFactory::create<double>('c', {2,3,4}, {0.0425 ,0.0875 ,0.13250001,0.17749999,0.22250001,0.26750001,0.31250003,0.35749999,0.4025 ,0.44749999,0.49249998,0.53750002, 0.58249998,0.6275 ,0.67250001,0.71749997,0.76249999,0.8075 ,0.85250002,0.89749998,0.9425 ,0.98749995,1.03250015,1.0775001});
|
|
|
|
|
|
|
|
labels.linspace(0.1, 0.1);
|
|
|
|
predictions.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::huber_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {0.1}, {0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, huber_loss_test2) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,3,1});
|
|
|
|
auto expected = NDArrayFactory::create<double>('c', {2,3,4}, {0.0425 ,0.0875 ,0.13250001,0.17749999,0.22250001,0.26750001,0.31250003,0.35749999,0.4025 ,0.44749999,0.49249998,0.53750002, 0.58249998,0.6275 ,0.67250001,0.71749997,0.76249999,0.8075 ,0.85250002,0.89749998,0.9425 ,0.98749995,1.03250015,1.0775001});
|
|
|
|
|
|
|
|
labels.linspace(0.1, 0.1);
|
|
|
|
predictions.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::huber_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {0.1}, {0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, huber_loss_test3) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {1,1});
|
|
|
|
auto expected = NDArrayFactory::create<double>('c', {2,3,4}, {0.0425 ,0.0875 ,0.13250001,0.17749999,0.22250001,0.26750001,0.31250003,0.35749999,0.4025 ,0.44749999,0.49249998,0.53750002, 0.58249998,0.6275 ,0.67250001,0.71749997,0.76249999,0.8075 ,0.85250002,0.89749998,0.9425 ,0.98749995,1.03250015,1.0775001});
|
|
|
|
|
|
|
|
labels.linspace(0.1, 0.1);
|
|
|
|
predictions.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::huber_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {0.1}, {0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, huber_loss_test4) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
|
|
|
|
labels.linspace(0.1, 0.1);
|
|
|
|
predictions.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::huber_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {0.1}, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 13.44, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, huber_loss_test5) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {1,1});
|
|
|
|
|
|
|
|
labels.linspace(0.1, 0.1);
|
|
|
|
predictions.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::huber_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {0.1}, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 13.44, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, huber_loss_test6) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
|
|
|
|
labels.linspace(0.1, 0.1);
|
|
|
|
predictions.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::huber_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {0.1}, {2});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 1.12, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, huber_loss_test7) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,1,1});
|
|
|
|
|
|
|
|
labels.linspace(0.1, 0.1);
|
|
|
|
predictions.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::huber_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {0.1}, {2});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 1.12, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, huber_loss_test8) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
|
|
|
|
labels.linspace(0.1, 0.1);
|
|
|
|
predictions.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
weights.p(0, 0.);
|
|
|
|
weights.p(1, 0.);
|
|
|
|
weights.p(2, 0.);
|
|
|
|
weights.p(3, 0.);
|
|
|
|
|
|
|
|
nd4j::ops::huber_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {0.1}, {2});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 1.3, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, huber_loss_test9) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
|
|
|
|
labels.linspace(0.1, 0.1);
|
|
|
|
predictions.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::huber_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {0.1}, {3});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 0.56, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, huber_loss_test10) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {1,1});
|
|
|
|
|
|
|
|
labels.linspace(0.1, 0.1);
|
|
|
|
predictions.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::huber_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {0.1}, {3});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 0.56, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, huber_loss_test11) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
|
|
|
|
labels.linspace(0.1, 0.1);
|
|
|
|
predictions.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
weights.p(0, 0.);
|
|
|
|
weights.p(1, 0.);
|
|
|
|
weights.p(2, 0.);
|
|
|
|
weights.p(3, 0.);
|
|
|
|
|
|
|
|
nd4j::ops::huber_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {0.1}, {3});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 0.65, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, log_loss_test1) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto expected = NDArrayFactory::create<double>('c', {2,3,4}, {1.60943663, 2.48403668, 3.05256081, 3.40363169, 3.57730675, 3.59525585, 3.46986699, 3.20791793, 2.81228209, 2.28273821, 1.61630058, 0.80721998, -0.15329313, -1.27764463, -2.5828433 , -4.09208679, -5.83734226, -7.8636713 ,-10.23689461,-13.05822182,-16.49509811,-20.85659218,-26.82411766,-36.52717209});
|
|
|
|
|
|
|
|
predictions.linspace(0.04, 0.04);
|
|
|
|
labels.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::log_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {1e-7}, {0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, log_loss_test2) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,1,4});
|
|
|
|
auto expected = NDArrayFactory::create<double>('c', {2,3,4}, {1.60943663, 2.48403668, 3.05256081, 3.40363169, 3.57730675, 3.59525585, 3.46986699, 3.20791793, 2.81228209, 2.28273821, 1.61630058, 0.80721998, -0.15329313, -1.27764463, -2.5828433 , -4.09208679, -5.83734226, -7.8636713 ,-10.23689461,-13.05822182,-16.49509811,-20.85659218,-26.82411766,-36.52717209});
|
|
|
|
|
|
|
|
predictions.linspace(0.04, 0.04);
|
|
|
|
labels.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::log_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {1e-7}, {0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, log_loss_test3) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
NDArray weights(nd4j::DataType::DOUBLE);
|
|
|
|
auto expected = NDArrayFactory::create<double>('c', {2,3,4}, {1.60943663, 2.48403668, 3.05256081, 3.40363169, 3.57730675, 3.59525585, 3.46986699, 3.20791793, 2.81228209, 2.28273821, 1.61630058, 0.80721998, -0.15329313, -1.27764463, -2.5828433 , -4.09208679, -5.83734226, -7.8636713 ,-10.23689461,-13.05822182,-16.49509811,-20.85659218,-26.82411766,-36.52717209});
|
|
|
|
|
|
|
|
predictions.linspace(0.04, 0.04);
|
|
|
|
labels.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::log_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {1e-7}, {0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, log_loss_test4) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
|
|
|
|
predictions.linspace(0.04, 0.04);
|
|
|
|
labels.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::log_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {1e-7}, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), -113.886429, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, log_loss_test5) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {1,3,1});
|
|
|
|
|
|
|
|
predictions.linspace(0.04, 0.04);
|
|
|
|
labels.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::log_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {1e-7}, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), -113.886429, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, log_loss_test6) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
NDArray weights(nd4j::DataType::DOUBLE);
|
|
|
|
|
|
|
|
predictions.linspace(0.04, 0.04);
|
|
|
|
labels.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::log_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {1e-7}, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), -113.886429, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, log_loss_test7) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
|
|
|
|
predictions.linspace(0.04, 0.04);
|
|
|
|
labels.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::log_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {1e-7}, {2});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), -9.490536, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, log_loss_test8) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {1,3,1});
|
|
|
|
|
|
|
|
predictions.linspace(0.04, 0.04);
|
|
|
|
labels.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::log_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {1e-7}, {2});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), -9.490536, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, log_loss_test9) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
NDArray weights(nd4j::DataType::DOUBLE);
|
|
|
|
|
|
|
|
predictions.linspace(0.04, 0.04);
|
|
|
|
labels.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::log_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {1e-7}, {2});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), -9.490536, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, log_loss_test10) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
|
|
|
|
predictions.linspace(0.04, 0.04);
|
|
|
|
labels.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
weights.p(0, 0.);
|
|
|
|
weights.p(1, 0.);
|
|
|
|
weights.p(2, 0.);
|
|
|
|
weights.p(3, 0.);
|
|
|
|
|
|
|
|
nd4j::ops::log_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {1e-7}, {2});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), -12.443609, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, log_loss_test11) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
|
|
|
|
predictions.linspace(0.04, 0.04);
|
|
|
|
labels.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::log_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {1e-7}, {3});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), -4.745268, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, log_loss_test12) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {1,1});
|
|
|
|
|
|
|
|
predictions.linspace(0.04, 0.04);
|
|
|
|
labels.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::log_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {1e-7}, {3});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), -4.745268, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, log_loss_test13) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
|
|
|
|
predictions.linspace(0.04, 0.04);
|
|
|
|
labels.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
weights.p(0, 0.);
|
|
|
|
weights.p(1, 0.);
|
|
|
|
weights.p(2, 0.);
|
|
|
|
weights.p(3, 0.);
|
|
|
|
|
|
|
|
nd4j::ops::log_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {1e-7}, {3});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), -6.221805, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, mean_pairwssqerr_loss_test1) {
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {1,3}, {0., 0.5, 1.});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {1,3}, {1., 1., 1.});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {1,1}, {1});
|
|
|
|
auto expected = NDArrayFactory::create<double>('c', {1,1}, {1.});
|
|
|
|
|
|
|
|
nd4j::ops::mean_pairwssqerr_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, mean_pairwssqerr_loss_test2) {
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {10,4}, {-0.5533444483384939, -0.4045807428083095, -0.38990808632111873, -1.3367815555936828, 2.2110825342567204, -0.3322538938773163, 0.5683588435736076, 1.401524673423209, -0.2216208609234102, -0.23645194877057543, -1.9319189398422172, 0.6106128799796062, 1.6973842275926025, -2.8306371397325553E-4, -1.1550401544465256, -0.08357706614294765, -0.27784822018757077, 0.8290894318337857, 1.6484476009013025, -0.7752524785358668, -0.9700596207063842, 3.0809371469543207, -0.23684959888998405, 0.22403535560739518, 0.6146150452128438, -1.1250088686147994, -0.5915314787415693, -0.0944090155356556, 0.7995514825959854, -1.2290496239142903, -1.8329592004926936, -0.1694821152623061, -1.7614978090471403, 0.07929168376086736, 0.4086255139492943, 2.045562727396195, -0.48701853719962834, 0.10304152395720723, -0.8993147347502636, -0.49078404206110715});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {10,4}, {-0.5982871220907984, 1.2010665656903237, 0.30243355682445544, -0.2070857400459659, 0.6962389393180044, -0.5878034128580758, 0.8325626284025988, -0.3555823702782838, -0.7099759151434476, 1.7971905051128672, -1.1018498592680859, 0.008705918349147959, -1.713038986676157, 0.5029671900704719, 0.7491261275031563, -0.34800067781360444, -1.3529065441284513, -0.6075230577852321, -0.6153583973120907, 1.6014780660677996, 0.6444219215516616, 0.7925830851904783, -0.5006063079380708, 1.7812300901376552, 0.4736193941708224, 1.411502849640833, 0.9555142545037492, -0.03936687661890644, 1.31661624967917, 0.7344531724786305, 0.8388550872918745, 0.7010030219905558, -0.5442944240155373, 0.4437344837841118, -1.7502823958671712, -1.9271369730241665, 0.9256612923554498, 1.9065401403827893, 0.42450175148842717, -0.11783183865542822});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {1,1}, {1});
|
|
|
|
auto expected = NDArrayFactory::create<double>('c', {10,1}, {1.9665822560405073, 3.806679563402927, 6.185624212589066, 20.237895345263905, 16.739700814450472, 13.655430201400929, 6.473256392322658, 3.9337379694106325, 22.509455553531062, 1.4741234749089487});
|
|
|
|
|
|
|
|
nd4j::ops::mean_pairwssqerr_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, mean_pairwssqerr_loss_test3) {
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {10,4}, {0.9165069946629816, 0.166426191704143, 0.13873357227527264, -0.5986162145785378, 0.4763504550662989, 1.2259816058633732, -0.4653205175596491, -1.7447031523970766, 1.349525448316014, 2.433089865629357, -2.54858150221601, -0.6060282162911894, 0.2625377104613349, -0.5007107584102752, 0.9576065700956302, -0.35787770401703584, -0.2608532564720665, 0.65688909921908, -0.1705876431948587, 1.2052884124800949, -0.976783296084278, 1.1163504624016534, -0.10545986164581109, -1.0632271027867568, 0.26460250034147065, -0.2299030354616135, -0.418989869909565, 0.7954060747536896, 0.37934127200736545, 0.8550487997440007, 0.2984909806904042, 0.1329065864221682, 1.478600294413247, 0.05421279873635542, -1.0552978360622536, -0.743808639782604, -1.3371851696151362, 2.7752972493355963, -1.6107187893743549, 1.5030902829432997});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {10,4}, {-3.398114657004427, 0.40587455906092945, 1.587706448479039, 0.27394335709083156, 1.0463122023764637, -0.6552570653663903, -0.26929204111727345, -2.710461824817806, 0.9141296064806023, -0.7632270851454939, -0.4077235519855459, 0.5555107559107472, -0.6776140976423888, 1.2422270521180823, 0.2372445100636733, 0.08522757123963924, -2.708523129389936, 0.09738215252575103, -0.8797837670498875, 0.8714091607391934, -0.628958978867591, 0.49380147969660415, -0.6663578349373824, 0.14570184758600965, -0.4710388511314244, 0.7708214742640788, 0.06836525442683238, -1.2786368797129386, -0.5077556003990912, 0.45383439418987664, 1.1686877788409553, -0.3078567969393852, -2.2375730522738198, 1.0108200459611192, 0.21955367964983963, 1.2268011099696847, 0.48061693077695455, -0.5306373077054981, 1.5005367299570744, -2.1005486985463966});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {10,1}, {0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 3.0, 3.0, 4.0, 4.0});
|
|
|
|
auto expected = NDArrayFactory::create<double>('c', {10,1}, {0.0, 0.0, 21.748459867092496, 6.090581568657439, 7.51315897553838, 5.999534225166869, 22.58050883748054, 6.8600435676788605, 107.5976928688877, 191.56864939172544});
|
|
|
|
|
|
|
|
nd4j::ops::mean_pairwssqerr_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, mean_pairwssqerr_loss_test4) {
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {10,4}, {-1.9540657282602247, -0.37099621218123746, 0.24959541842365968, 0.4125896396216978, -0.8661959659606203, 0.3651479206362867, -1.7475031047706964, -1.0962133982440159, 0.8451229874730279, 0.6876932162478913, 1.2598782790596628, 0.9372328828104118, 1.383555504464105, -0.816048166961237, 0.009041816630426176, -0.004376554457540983, -0.2386352931506252, -0.6494407817111416, 1.7888273635934742, -1.2157303560822368, -0.2446697859467434, -0.3040881765177774, -0.25843499040765916, -0.16479617511053568, 1.8063435075905592, 0.36002291874022285, -0.43317974028771883, 1.070086390817373, -1.0788479808458253, -0.3364318348487324, -0.859106579072977, 0.43984270049845064, -0.23662331183489546, -1.263417124724063, -0.3123732566483939, -0.125249623799724, -1.951308433393268, -0.4925779190927575, -1.081735149025745, -1.9910331435034687});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {10,4}, {-1.7053977111021588, 1.7704125629388408, -0.0876171627499475, 0.9428762101237441, 0.9080108618240852, -0.478732892339118, -0.8189639230649537, 1.3359668242925342, -0.07499867017894829, 0.6169780756804321, -1.1891117691972148, -0.319354110980483, -1.4287263424900434, -0.3556443786879834, 0.6389682186473912, 0.3161742985911756, 0.9047447733840537, -1.9974117226910393, 2.1067775658502326, 0.17035521714679938, -1.1393894489992826, 1.4570837278971687, 0.6312249731754015, -0.42793125692777634, -1.0685964336386844, -0.3590636581851568, -0.19147354841437528, -0.10128937266756889, -0.5714869078294972, 0.2682604831358205, 0.6608524575561853, 0.35658907103040305, -0.7053263272861181, -0.6318441042427088, 2.131292677079184, -0.3624048087249232, 1.6008209804575328, 0.1245980660014825, 1.0685424462364297, -0.5672594432046791});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {1,1}, {1});
|
|
|
|
|
|
|
|
nd4j::ops::mean_pairwssqerr_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 60.74394998193965, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, mean_pairwssqerr_loss_test5) {
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {10,4}, {0.9165069946629816, 0.166426191704143, 0.13873357227527264, -0.5986162145785378, 0.4763504550662989, 1.2259816058633732, -0.4653205175596491, -1.7447031523970766, 1.349525448316014, 2.433089865629357, -2.54858150221601, -0.6060282162911894, 0.2625377104613349, -0.5007107584102752, 0.9576065700956302, -0.35787770401703584, -0.2608532564720665, 0.65688909921908, -0.1705876431948587, 1.2052884124800949, -0.976783296084278, 1.1163504624016534, -0.10545986164581109, -1.0632271027867568, 0.26460250034147065, -0.2299030354616135, -0.418989869909565, 0.7954060747536896, 0.37934127200736545, 0.8550487997440007, 0.2984909806904042, 0.1329065864221682, 1.478600294413247, 0.05421279873635542, -1.0552978360622536, -0.743808639782604, -1.3371851696151362, 2.7752972493355963, -1.6107187893743549, 1.5030902829432997});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {10,4}, {-3.398114657004427, 0.40587455906092945, 1.587706448479039, 0.27394335709083156, 1.0463122023764637, -0.6552570653663903, -0.26929204111727345, -2.710461824817806, 0.9141296064806023, -0.7632270851454939, -0.4077235519855459, 0.5555107559107472, -0.6776140976423888, 1.2422270521180823, 0.2372445100636733, 0.08522757123963924, -2.708523129389936, 0.09738215252575103, -0.8797837670498875, 0.8714091607391934, -0.628958978867591, 0.49380147969660415, -0.6663578349373824, 0.14570184758600965, -0.4710388511314244, 0.7708214742640788, 0.06836525442683238, -1.2786368797129386, -0.5077556003990912, 0.45383439418987664, 1.1686877788409553, -0.3078567969393852, -2.2375730522738198, 1.0108200459611192, 0.21955367964983963, 1.2268011099696847, 0.48061693077695455, -0.5306373077054981, 1.5005367299570744, -2.1005486985463966});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {1,1}, {1});
|
|
|
|
|
|
|
|
nd4j::ops::mean_pairwssqerr_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {2});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 15.189082270182983, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, mean_pairwssqerr_loss_test6) {
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {10,4}, {0.7712557146220891, 0.37344724586647443, -1.465944048516541, 0.3226845250222374, 0.3153238532645865, -0.6453963287132424, -1.7695663855309438, -0.31350813714835285, 0.6209850696184357, -1.0632582557661083, 0.8971205782356552, -0.7361143357044725, 0.4349813432397299, 1.1012674501462072, -1.846028584047857, -0.04711049067212126, 0.3511384383511822, -1.5908669452488973, 0.6271232025632083, -0.5370025878354387, 0.09775855957778733, 0.8465118033582384, -0.5118005514773271, -0.8215749768059044, -0.5154271246850248, -0.6614138367887438, -2.721743038982485, -0.20634785234624944, 1.074134378795222, -0.515671736473577, 0.33574452224656587, -0.4258992514621533, -1.6946210614398756, 2.0853105493575246, -0.23223717047374226, -1.3145231337861756, -0.307739072607248, -0.13713627422120406, -0.05615471338688221, -0.7031780205843188});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {10,4}, {-0.8253096544930751, 0.81324545672996, 1.2530858908292535, 0.6881658781201572, 0.11626814971230247, 0.810096847233213, -0.41726775033902014, -0.07246036077805246, -0.3491325803119671, -0.7381717490678714, -1.258884944199858, 2.6195012275145992, 0.3241066697239042, -1.3306435333372646, -0.3413119919683999, 0.13167356361127197, -0.3992424507051653, 0.14454163796541403, -2.4931643208872316, 1.8740911656038526, -2.3404306490682956, -0.8036392545918644, -1.9726177395274997, -0.20128619801149433, -1.0680828820641624, -0.6228179015361869, 1.0785520122486962, -0.26148573195062036, -0.9154287856620913, 0.6612224269248097, -0.21735407368781667, 0.5584864652543093, 1.0208212201167435, -0.7560947201084579, -0.9092906572495081, 0.47525819203475833, 1.2215678456801444, -0.39319465979983964, 1.9435677135606038, 1.4540100039010526});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {1,1}, {1});
|
|
|
|
|
|
|
|
nd4j::ops::mean_pairwssqerr_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {3});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 13.568564090650312, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, mean_pairwssqerr_loss_test7) {
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {10,4}, {-0.06125002348040258, 0.5143643450377119, 2.6790723358660036, -0.8032552006036418, -2.4374371040644163, -0.1562964773317163, -1.3957988654288038, 1.2791626503391635, -1.433421873294552, -1.1819478586737284, 0.05162930965054662, -0.538650473505593, -0.548171720093084, -0.3103900587344872, -2.3955103171953342, 0.7127238680062526, 0.7182079438418053, 1.1842662402382182, 0.09585189676958715, 0.9276146067349225, 0.7856673461867428, 0.41368195133354113, -0.2939280190178078, -2.400566355562181, -1.1841519118039245, -1.066170501847581, -0.9274507409610022, 1.7671863041813334, -1.2849985781031494, -1.275990164491566, -0.8866824403466698, -0.6074077385015517, 0.7647344603897107, -1.048099070426831, 0.9433828938345293, -0.5591415819237762, 1.7962773615541947, -0.42365710367758247, -0.0385518907389571, -1.109959713481321});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {10,4}, {-0.7445687252538243, 0.2293875300325241, -1.0231630280206505, -0.18532545069458992, -0.07797403344353356, -0.9132035669873787, 0.9352296415512886, -1.7406458535354787, 0.8578334648119594, -0.6186274065269556, 0.4874824473654153, -0.9285817343788997, 0.1654680500853023, -0.6371334533926012, 1.3115245864160707, -2.072558735678832, 0.660795731844733, -0.34942292767044864, 0.05787182311194333, -0.12939210444705632, -0.6457028552461069, -0.6048992126598505, -0.17179604529778109, 1.292989642826032, -0.28867767615688045, 0.7635565516046265, -1.5464151753137487, -1.273368390129285, -1.074046012825826, -0.3534580692302915, 0.5757285568118223, 1.823271242883469, 0.31618576929075215, 0.5422847605415213, -0.7836698021860683, -0.6292022623165172, 2.1114596721927508, 0.4634986528550097, 0.08922001427846013, 1.5767749644913223});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {10,1}, {0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 3.0, 3.0, 4.0, 4.0});
|
|
|
|
|
|
|
|
nd4j::ops::mean_pairwssqerr_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 198.318201904499, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, mean_pairwssqerr_loss_test8) {
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {10,4}, {1.2003157672694111, -1.0738078620687983, 1.4513396266923826, 0.5753935722952708, -0.5424028602429585, 0.9816221437385002, -1.0566397385428794, 1.503481308203513, -0.6543147953583112, 1.7453669976827346, -0.1557689124924227, 0.3387794658137257, -1.2306868494328145, -0.3299042398395769, 0.026464968146954395, -1.5077479623528403, -0.27514168845621795, 0.18739335150879793, 1.7319910646645431, 1.5228099405663476, 0.8522684742808536, 0.2362049362675063, 0.2610756525241469, 0.457998065505686, -2.7342179885912623, -0.10968795695808314, 0.581598742956297, -1.9309885922934567, -1.5775788440607954, -0.04254899350225641, -0.3125858556254039, -1.1328154327730207, 0.00566243314780096, 0.8492052576274621, 0.05945202212214481, 1.4976918834497108, 0.8869512918387292, 0.4014181932175132, -0.015512552855187248, -1.3609667909108454});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {10,4}, {-1.1088399463364795, 0.09302972835006071, 0.033839927431215555, -0.39567507675572494, 0.8269497207597863, 1.111162272517752, 0.4930937252630912, -1.4561668998323452, 0.9417715392862969, -1.0553855492735509, 0.05848285303876081, 0.8852337518047972, -0.7472824481835305, 0.404906922583895, -0.2198309547562547, 1.9536515925189717, 0.8165036568007779, -0.19524282774410398, -0.09111693087754393, 1.1604245932512238, -0.6243762858131077, 1.4297003275591034, -0.17220079411538428, -2.3139504326793032, 0.3839796486999712, 2.0287791964679234, 0.1534441713632995, -0.6062103319229825, -0.4965880982906036, -0.373907747810053, -1.6566345746154432, 0.17534987728494222, -1.6713458890334796, 1.254628987947714, 1.914596591838086, -1.0816010467183583, 0.25033738231939673, -1.605752685708275, 1.1029112741353981, 0.3237822320282494});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {10,1}, {0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 3.0, 3.0, 4.0, 4.0});
|
|
|
|
|
|
|
|
nd4j::ops::mean_pairwssqerr_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {2});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 10.709003499121707, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, mean_pairwssqerr_loss_test9) {
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {10,4}, {0.054445708809271035, 2.107634671009908, -0.7906421810578572, -1.075840781788665, 0.11881403008710377, 0.8444812915085994, -0.305754504070933, 1.6429935026781464, 0.8155105031719394, 0.04900134907242568, 0.6847004530975871, 0.23315535615893132, 0.17011663306483038, -1.1865513655938285, 1.5931597087896407, -1.7937514075547496, -0.036695307704292295, -1.6416280650778925, 1.130578912176608, -1.1267224667674058, -0.8690453889645526, 0.6717944721406133, 0.0850200492927782, 1.1294419289013125, 0.2154793028698133, 0.4557382556428947, -0.7343674069166273, -0.20013117860162175, -0.6096905108192562, 0.42022878041905926, -0.7446306649741321, 0.01724811509597817, 1.843091605690758, 1.008879504632424, 1.198292190689489, -0.4474144618813475, 0.25202981742888664, 0.07036737843407408, 1.2400630276444486, -1.1072825235557615});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {10,4}, {-1.6788168943811437, 1.1823653279081687, -0.3580541857004183, -0.4449970504370699, -1.3031645333940127, 0.5755013195969282, -0.7997343141774744, -0.8806735270004084, 0.9705277499376251, -1.6360067944580943, 0.12579369136710156, 1.0525902242414313, -1.625751312422252, -0.03900152587147075, 0.4112500942756277, 0.6589999986358094, 0.6144107111689617, 2.8561269030217264, 1.5299963640392247, -0.314093051147705, 1.6523278218751989, -0.5504653447714114, 0.53395260877978, 0.409795577698306, 0.4466825218051794, 1.2382059301630401, 0.4834869732526594, -0.635409128905636, -1.9343816841697272, -0.4192523056060229, -1.0662979055059818, 0.4270901960618144, -0.7391311480757151, -0.8268168961897452, -1.0855715553457785, -9.410401291588706E-4, -0.7721838774717349, 0.4784019579457375, -0.6979798841469268, -0.319729737118584});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {10,1}, {0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 3.0, 3.0, 4.0, 4.0});
|
|
|
|
|
|
|
|
nd4j::ops::mean_pairwssqerr_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {3});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 17.686067864414472, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, mean_sqerr_loss_test1) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto expected = NDArrayFactory::create<double>('c', {2,3,4}, {0.125, 0.5, 1.125, 2., 3.125, 4.5, 6.125, 8.,10.125,12.5,15.125,18.,21.125,24.5,28.125,32.,36.125,40.5,45.125,50.,55.125,60.5,66.125,72.});
|
|
|
|
|
|
|
|
predictions.linspace(0.5, 0.5);
|
|
|
|
labels.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::mean_sqerr_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, mean_sqerr_loss_test2) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,1,4});
|
|
|
|
auto expected = NDArrayFactory::create<double>('c', {2,3,4}, {0.125, 0.5, 1.125, 2., 3.125, 4.5, 6.125, 8.,10.125,12.5,15.125,18.,21.125,24.5,28.125,32.,36.125,40.5,45.125,50.,55.125,60.5,66.125,72.});
|
|
|
|
|
|
|
|
predictions.linspace(0.5, 0.5);
|
|
|
|
labels.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::mean_sqerr_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, mean_sqerr_loss_test3) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,1,1});
|
|
|
|
auto expected = NDArrayFactory::create<double>('c', {2,3,4}, {0.125, 0.5, 1.125, 2., 3.125, 4.5, 6.125, 8.,10.125,12.5,15.125,18.,21.125,24.5,28.125,32.,36.125,40.5,45.125,50.,55.125,60.5,66.125,72.});
|
|
|
|
|
|
|
|
predictions.linspace(0.5, 0.5);
|
|
|
|
labels.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::mean_sqerr_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, mean_sqerr_loss_test4) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto expected = NDArrayFactory::create<double>('c', {2,3,4}, {0., 0., 0., 0., 3.125, 4.5, 6.125, 8.,10.125,12.5,15.125,18.,21.125,24.5,28.125,32.,36.125,40.5,45.125,50.,55.125,60.5,66.125,72.});
|
|
|
|
|
|
|
|
predictions.linspace(0.5, 0.5);
|
|
|
|
labels.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
weights.p(0, 0.);
|
|
|
|
weights.p(1, 0.);
|
|
|
|
weights.p(2, 0.);
|
|
|
|
weights.p(3, 0.);
|
|
|
|
|
|
|
|
nd4j::ops::mean_sqerr_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, mean_sqerr_loss_test5) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
|
|
|
|
predictions.linspace(0.5, 0.5);
|
|
|
|
labels.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::mean_sqerr_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 612.5, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, mean_sqerr_loss_test6) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {1,1,4});
|
|
|
|
|
|
|
|
predictions.linspace(0.5, 0.5);
|
|
|
|
labels.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::mean_sqerr_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 612.5, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, mean_sqerr_loss_test7) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {1,1});
|
|
|
|
|
|
|
|
predictions.linspace(0.5, 0.5);
|
|
|
|
labels.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::mean_sqerr_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 612.5, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, mean_sqerr_loss_test8) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
|
|
|
|
predictions.linspace(0.5, 0.5);
|
|
|
|
labels.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
weights.p(0, 0.);
|
|
|
|
weights.p(1, 0.);
|
|
|
|
weights.p(2, 0.);
|
|
|
|
weights.p(3, 0.);
|
|
|
|
|
|
|
|
nd4j::ops::mean_sqerr_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 608.75, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, mean_sqerr_loss_test9) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
|
|
|
|
predictions.linspace(0.5, 0.5);
|
|
|
|
labels.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::mean_sqerr_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {2});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 51.041668, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, mean_sqerr_loss_test10) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {1,3,1});
|
|
|
|
|
|
|
|
predictions.linspace(0.5, 0.5);
|
|
|
|
labels.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::mean_sqerr_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {2});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 51.041668, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, mean_sqerr_loss_test11) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {1,1});
|
|
|
|
|
|
|
|
predictions.linspace(0.5, 0.5);
|
|
|
|
labels.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::mean_sqerr_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {2});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 51.041668, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, mean_sqerr_loss_test12) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,3,1});
|
|
|
|
|
|
|
|
predictions.linspace(0.5, 0.5);
|
|
|
|
labels.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
weights.p(0, 0.);
|
|
|
|
weights.p(1, 0.);
|
|
|
|
weights.p(2, 0.);
|
|
|
|
|
|
|
|
nd4j::ops::mean_sqerr_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {2});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 88.541664, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, mean_sqerr_loss_test13) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
|
|
|
|
predictions.linspace(0.5, 0.5);
|
|
|
|
labels.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::mean_sqerr_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {3});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 25.520834, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, mean_sqerr_loss_test14) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,1,4});
|
|
|
|
|
|
|
|
predictions.linspace(0.5, 0.5);
|
|
|
|
labels.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::mean_sqerr_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {3});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 25.520834, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, mean_sqerr_loss_test15) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {1,1});
|
|
|
|
|
|
|
|
predictions.linspace(0.5, 0.5);
|
|
|
|
labels.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::mean_sqerr_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {3});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 25.520834, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, mean_sqerr_loss_test16) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto predictions = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,3,1});
|
|
|
|
|
|
|
|
predictions.linspace(0.5, 0.5);
|
|
|
|
labels.linspace(1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
weights.p(0, 0.);
|
|
|
|
weights.p(1, 0.);
|
|
|
|
weights.p(2, 0.);
|
|
|
|
|
|
|
|
nd4j::ops::mean_sqerr_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&predictions, &weights, &labels}, {}, {3});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 44.270832, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, sigm_cross_entropy_loss_test1) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4},{0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0});
|
|
|
|
auto logits = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto expected = NDArrayFactory::create<double>('c', {2,3,4}, {0.37219834,0.29906943,0.27717763,0.45650762,0.23703849,0.51874399,0.20159303,0.58555031,0.17057693,0.65663081,0.14366767,0.73164123,0.12050423,0.81020868,0.10070664,0.89195037,0.08389302,0.97648883,1.01969337,0.06346401,0.05775976,1.15254164,0.04777273,1.2434181 });
|
|
|
|
|
|
|
|
logits.linspace(0.1, 0.1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::sigm_cross_entropy_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&logits, &weights, &labels}, {0.}, {0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, sigm_cross_entropy_loss_test2) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4},{0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0});
|
|
|
|
auto logits = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,1,1});
|
|
|
|
auto expected = NDArrayFactory::create<double>('c', {2,3,4}, {0.37219834,0.29906943,0.27717763,0.45650762,0.23703849,0.51874399,0.20159303,0.58555031,0.17057693,0.65663081,0.14366767,0.73164123,0.12050423,0.81020868,0.10070664,0.89195037,0.08389302,0.97648883,1.01969337,0.06346401,0.05775976,1.15254164,0.04777273,1.2434181 });
|
|
|
|
|
|
|
|
logits.linspace(0.1, 0.1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::sigm_cross_entropy_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&logits, &weights, &labels}, {0.}, {0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, sigm_cross_entropy_loss_test3) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4},{0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0});
|
|
|
|
auto logits = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {1,1});
|
|
|
|
auto expected = NDArrayFactory::create<double>('c', {2,3,4}, {0.37219834,0.29906943,0.27717763,0.45650762,0.23703849,0.51874399,0.20159303,0.58555031,0.17057693,0.65663081,0.14366767,0.73164123,0.12050423,0.81020868,0.10070664,0.89195037,0.08389302,0.97648883,1.01969337,0.06346401,0.05775976,1.15254164,0.04777273,1.2434181 });
|
|
|
|
|
|
|
|
logits.linspace(0.1, 0.1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::sigm_cross_entropy_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&logits, &weights, &labels}, {0.}, {0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, sigm_cross_entropy_loss_test4) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4},{0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0});
|
|
|
|
auto logits = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto expected = NDArrayFactory::create<double>('c', {2,3,4}, {0.24719833, 0.54906946, 0.65217763,-0.04349237,0.86203849,-0.23125602, 1.07659304,-0.41444966,1.29557693,-0.59336919, 1.5186677 ,-0.76835877,1.74550426,-0.93979132, 1.9757067 ,-1.10804963,2.20889306,-1.27351117,-1.35530663, 2.56346393,2.68275976,-1.59745836, 2.92277265,-1.7565819 });
|
|
|
|
|
|
|
|
logits.linspace(0.1, 0.1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::sigm_cross_entropy_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&logits, &weights, &labels}, {5.}, {0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, sigm_cross_entropy_loss_test5) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4},{0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0});
|
|
|
|
auto logits = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
|
|
|
|
logits.linspace(0.1, 0.1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::sigm_cross_entropy_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&logits, &weights, &labels}, {0.}, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 11.2187976837, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, sigm_cross_entropy_loss_test6) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4},{0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0});
|
|
|
|
auto logits = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,3,1});
|
|
|
|
|
|
|
|
logits.linspace(0.1, 0.1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::sigm_cross_entropy_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&logits, &weights, &labels}, {0.}, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 11.2187976837, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, sigm_cross_entropy_loss_test7) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4},{0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0});
|
|
|
|
auto logits = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {1,1});
|
|
|
|
|
|
|
|
logits.linspace(0.1, 0.1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::sigm_cross_entropy_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&logits, &weights, &labels}, {0.}, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 11.2187976837, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, sigm_cross_entropy_loss_test8) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4},{0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0});
|
|
|
|
auto logits = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
|
|
|
|
logits.linspace(0.1, 0.1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::sigm_cross_entropy_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&logits, &weights, &labels}, {5.}, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 10.2187976837, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, sigm_cross_entropy_loss_test9) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4},{0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0});
|
|
|
|
auto logits = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,3,1});
|
|
|
|
|
|
|
|
logits.linspace(0.1, 0.1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
weights.p(0, 0.);
|
|
|
|
weights.p(1, 0.);
|
|
|
|
weights.p(2, 0.);
|
|
|
|
|
|
|
|
nd4j::ops::sigm_cross_entropy_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&logits, &weights, &labels}, {5.}, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 6.06840181351, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, sigm_cross_entropy_loss_test10) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4},{0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0});
|
|
|
|
auto logits = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
|
|
|
|
logits.linspace(0.1, 0.1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::sigm_cross_entropy_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&logits, &weights, &labels}, {0.}, {2});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 0.934899806976, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, sigm_cross_entropy_loss_test11) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4},{0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0});
|
|
|
|
auto logits = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {1,1,4});
|
|
|
|
|
|
|
|
logits.linspace(0.1, 0.1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::sigm_cross_entropy_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&logits, &weights, &labels}, {0.}, {2});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 0.934899806976, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, sigm_cross_entropy_loss_test12) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4},{0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0});
|
|
|
|
auto logits = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {1,1});
|
|
|
|
|
|
|
|
logits.linspace(0.1, 0.1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::sigm_cross_entropy_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&logits, &weights, &labels}, {5.}, {2});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 0.851566493511, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, sigm_cross_entropy_loss_test13) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4},{0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0});
|
|
|
|
auto logits = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,3,1});
|
|
|
|
|
|
|
|
logits.linspace(0.1, 0.1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
weights.p(0, 0.);
|
|
|
|
weights.p(1, 0.);
|
|
|
|
weights.p(2, 0.);
|
|
|
|
|
|
|
|
nd4j::ops::sigm_cross_entropy_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&logits, &weights, &labels}, {5.}, {2});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 1.01140034199, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, sigm_cross_entropy_loss_test14) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4},{0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0});
|
|
|
|
auto logits = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
|
|
|
|
logits.linspace(0.1, 0.1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::sigm_cross_entropy_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&logits, &weights, &labels}, {0.}, {3});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 0.467449903488, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, sigm_cross_entropy_loss_test15) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4},{0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0});
|
|
|
|
auto logits = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {1,3,1});
|
|
|
|
|
|
|
|
logits.linspace(0.1, 0.1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::sigm_cross_entropy_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&logits, &weights, &labels}, {0.}, {3});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 0.467449903488, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, sigm_cross_entropy_loss_test16) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4},{0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0});
|
|
|
|
auto logits = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {1,1});
|
|
|
|
|
|
|
|
logits.linspace(0.1, 0.1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::sigm_cross_entropy_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&logits, &weights, &labels}, {5.}, {3});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 0.425783246756, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, sigm_cross_entropy_loss_test17) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<double>('c', {2,3,4},{0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0});
|
|
|
|
auto logits = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,3,1});
|
|
|
|
|
|
|
|
logits.linspace(0.1, 0.1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
weights.p(0, 0.);
|
|
|
|
weights.p(1, 0.);
|
|
|
|
weights.p(2, 0.);
|
|
|
|
|
|
|
|
nd4j::ops::sigm_cross_entropy_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&logits, &weights, &labels}, {5.}, {3});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 0.505700170994, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, softmax_cross_entropy_loss_test1) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<int>('c', {2,3,4},{0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0});
|
|
|
|
auto logits = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,3});
|
|
|
|
auto expected = NDArrayFactory::create<double>('c', {2,3}, {1.39253557,1.44253552,1.44253552,1.44253552,1.39253557,1.44253552});
|
|
|
|
|
|
|
|
logits.linspace(0.1, 0.1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::softmax_cross_entropy_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&logits, &weights, &labels}, {0.}, {0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, softmax_cross_entropy_loss_test2) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<int>('c', {2,3,4},{0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0});
|
|
|
|
auto logits = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,3});
|
|
|
|
auto expected = NDArrayFactory::create<double>('c', {2,3}, {-0.92835701,-1.12835705,-1.12835705,-1.12835705,-0.92835701,-1.12835705});
|
|
|
|
|
|
|
|
logits.linspace(0.1, 0.1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::softmax_cross_entropy_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&logits, &weights, &labels}, {5.}, {0}, {});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, softmax_cross_entropy_loss_test3) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<int>('c', {2,3,4},{0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0});
|
|
|
|
auto logits = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,1});
|
|
|
|
auto expected = NDArrayFactory::create<double>('c', {2,3}, {-0.92835701,-1.12835705,-1.12835705,-1.12835705,-0.92835701,-1.12835705});
|
|
|
|
|
|
|
|
logits.linspace(0.1, 0.1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::softmax_cross_entropy_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&logits, &weights, &labels}, {5.}, {0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, softmax_cross_entropy_loss_test4) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<int>('c', {2,3,4},{0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0});
|
|
|
|
auto logits = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {1,3});
|
|
|
|
auto expected = NDArrayFactory::create<double>('c', {2,3}, {-0.92835701,-1.12835705,-1.12835705,-1.12835705,-0.92835701,-1.12835705});
|
|
|
|
|
|
|
|
logits.linspace(0.1, 0.1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::softmax_cross_entropy_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&logits, &weights, &labels}, {5.}, {0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, softmax_cross_entropy_loss_test5) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<int>('c', {2,3,4},{0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0});
|
|
|
|
auto logits = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {1,1});
|
|
|
|
auto expected = NDArrayFactory::create<double>('c', {2,3}, {-0.92835701,-1.12835705,-1.12835705,-1.12835705,-0.92835701,-1.12835705});
|
|
|
|
|
|
|
|
logits.linspace(0.1, 0.1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::softmax_cross_entropy_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&logits, &weights, &labels}, {5.}, {0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, softmax_cross_entropy_loss_test6) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<int>('c', {2,3,4},{0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0});
|
|
|
|
auto logits = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,3});
|
|
|
|
|
|
|
|
logits.linspace(0.1, 0.1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::softmax_cross_entropy_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&logits, &weights, &labels}, {0.}, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), 8.55521392822, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, softmax_cross_entropy_loss_test7) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<int>('c', {2,3,4},{0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0});
|
|
|
|
auto logits = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,3});
|
|
|
|
|
|
|
|
logits.linspace(0.1, 0.1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::softmax_cross_entropy_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&logits, &weights, &labels}, {5.}, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), -6.37014198303, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, softmax_cross_entropy_loss_test8) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<int>('c', {2,3,4},{0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0});
|
|
|
|
auto logits = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {1,1});
|
|
|
|
|
|
|
|
logits.linspace(0.1, 0.1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::softmax_cross_entropy_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&logits, &weights, &labels}, {5.}, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), -6.37014198303, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, softmax_cross_entropy_loss_test9) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<int>('c', {2,3,4},{0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0});
|
|
|
|
auto logits = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {1,3});
|
|
|
|
|
|
|
|
logits.linspace(0.1, 0.1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::softmax_cross_entropy_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&logits, &weights, &labels}, {5.}, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), -6.37014198303, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, softmax_cross_entropy_loss_test10) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<int>('c', {2,3,4},{0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0});
|
|
|
|
auto logits = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {1,3});
|
|
|
|
|
|
|
|
logits.linspace(0.1, 0.1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::softmax_cross_entropy_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&logits, &weights, &labels}, {5.}, {2});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), -2.12338066101, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, softmax_cross_entropy_loss_test11) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<int>('c', {2,3,4},{0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,1,0,1,0});
|
|
|
|
auto logits = NDArrayFactory::create<double>('c', {2,3,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {1,3});
|
|
|
|
|
|
|
|
logits.linspace(0.1, 0.1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::softmax_cross_entropy_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&logits, &weights, &labels}, {5.}, {3}, {}, {}, false);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), -1.06169033051, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, softmax_cross_entropy_loss_test12) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<int>('c', {2,4},{0,1,1,0,1,0,1,0});
|
|
|
|
auto logits = NDArrayFactory::create<double>('c', {2,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,1});
|
|
|
|
|
|
|
|
logits.linspace(0.1, 0.1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::softmax_cross_entropy_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&logits, &weights, &labels}, {5.}, {3}, {}, {}, false);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->isScalar());
|
|
|
|
ASSERT_NEAR(result->e<double>(0), -2.18880319595, 1e-5);
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, softmax_cross_entropy_loss_test13) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<int>('c', {2,4},{0,1,1,0,1,0,1,0});
|
|
|
|
auto logits = NDArrayFactory::create<double>('c', {2,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,1});
|
|
|
|
auto expected = NDArrayFactory::create<double>('c', {2,1}, {1.39253557,1.44253552});
|
|
|
|
|
|
|
|
logits.linspace(0.1, 0.1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::softmax_cross_entropy_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&logits, &weights, &labels}, {0.}, {0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, softmax_cross_entropy_loss_test14) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<int>('c', {2,4},{0,1,1,0,1,0,1,0});
|
|
|
|
auto logits = NDArrayFactory::create<double>('c', {2,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {2,1});
|
|
|
|
auto expected = NDArrayFactory::create<double>('c', {2,1}, {-2.08880329, -2.28880334});
|
|
|
|
|
|
|
|
logits.linspace(0.1, 0.1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::softmax_cross_entropy_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&logits, &weights, &labels}, {5.}, {0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, softmax_cross_entropy_loss_test15) {
|
|
|
|
|
|
|
|
auto labels = NDArrayFactory::create<int>('c', {2,4},{0,1,1,0,1,0,1,0});
|
|
|
|
auto logits = NDArrayFactory::create<double>('c', {2,4});
|
|
|
|
auto weights = NDArrayFactory::create<double>('c', {1,1});
|
|
|
|
auto expected = NDArrayFactory::create<double>('c', {2,1}, {-2.08880329, -2.28880334});
|
|
|
|
|
|
|
|
logits.linspace(0.1, 0.1);
|
|
|
|
weights.assign(0.5);
|
|
|
|
|
|
|
|
nd4j::ops::softmax_cross_entropy_loss op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&logits, &weights, &labels}, {5.}, {0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *result = results->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(result));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, lstmCell_test1) {
|
|
|
|
|
|
|
|
const int batchSize = 2;
|
|
|
|
const int inSize = 10;
|
|
|
|
const int numProj = 4;
|
|
|
|
const int numUnits = 4;
|
|
|
|
|
|
|
|
auto xt = NDArrayFactory::create<double>('c', {batchSize, inSize});
|
|
|
|
auto ht_1 = NDArrayFactory::create<double>('c', {batchSize, numProj});
|
|
|
|
auto ct_1 = NDArrayFactory::create<double>('c', {batchSize, numUnits});
|
|
|
|
auto Wx = NDArrayFactory::create<double>('c', {inSize, 4*numUnits});
|
|
|
|
auto Wh = NDArrayFactory::create<double>('c', {numProj, 4*numUnits});
|
|
|
|
auto Wc = NDArrayFactory::create<double>('c', {3*numUnits});
|
|
|
|
auto Wp = NDArrayFactory::create<double>('c', {numUnits, numProj});
|
|
|
|
auto b = NDArrayFactory::create<double>('c', {4*numUnits});
|
|
|
|
|
|
|
|
xt.assign(1.);
|
|
|
|
ht_1.assign(2.);
|
|
|
|
ct_1.assign(3.);
|
|
|
|
Wx.assign(0.5);
|
|
|
|
Wh.assign(0.5);
|
|
|
|
Wc.assign(0.5);
|
|
|
|
Wp.assign(0.5);
|
|
|
|
b.assign(0.7);
|
|
|
|
|
|
|
|
auto expHt = NDArrayFactory::create<double>('c', {batchSize, numProj}, {0.99926789,0.99926789,0.99926789,0.99926789,0.99926789,0.99926789,0.99926789,0.99926789});
|
|
|
|
auto expCt = NDArrayFactory::create<double>('c', {batchSize, numUnits},{3.99987108,3.99987108,3.99987108,3.99987108,3.99987108,3.99987108,3.99987108,3.99987108});
|
|
|
|
|
|
|
|
nd4j::ops::lstmCell op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&xt, &ht_1, &ct_1, &Wx, &Wh, &Wc, &Wp, &b}, {0., 0., 1.}, {0, 0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *ht = results->at(0);
|
|
|
|
auto *ct = results->at(1);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expHt.isSameShape(ht));
|
|
|
|
ASSERT_TRUE(expHt.equalsTo(ht));
|
|
|
|
ASSERT_TRUE(expCt.isSameShape(ct));
|
|
|
|
ASSERT_TRUE(expCt.equalsTo(ct));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, lstmCell_test2) {
|
|
|
|
|
|
|
|
const int batchSize = 2;
|
|
|
|
const int inSize = 10;
|
|
|
|
const int numProj = 4;
|
|
|
|
const int numUnits = 4;
|
|
|
|
|
|
|
|
auto xt = NDArrayFactory::create<double>('c', {batchSize, inSize});
|
|
|
|
auto ht_1 = NDArrayFactory::create<double>('c', {batchSize, numProj});
|
|
|
|
auto ct_1 = NDArrayFactory::create<double>('c', {batchSize, numUnits});
|
|
|
|
auto Wx = NDArrayFactory::create<double>('c', {inSize, 4*numUnits});
|
|
|
|
auto Wh = NDArrayFactory::create<double>('c', {numProj, 4*numUnits});
|
|
|
|
auto Wc = NDArrayFactory::create<double>('c', {3*numUnits});
|
|
|
|
auto Wp = NDArrayFactory::create<double>('c', {numUnits, numProj});
|
|
|
|
auto b = NDArrayFactory::create<double>('c', {4*numUnits});
|
|
|
|
|
|
|
|
xt.assign(1.);
|
|
|
|
ht_1.assign(2.);
|
|
|
|
ct_1.assign(3.);
|
|
|
|
Wx.assign(0.5);
|
|
|
|
Wh.assign(0.5);
|
|
|
|
Wc.assign(0.5);
|
|
|
|
Wp.assign(0.5);
|
|
|
|
b.assign(0.7);
|
|
|
|
|
|
|
|
auto expHt = NDArrayFactory::create<double>('c', {batchSize, numProj}, {0.95867589,0.95867589,0.95867589,0.95867589,0.95867589,0.95867589,0.95867589,0.95867589});
|
|
|
|
auto expCt = NDArrayFactory::create<double>('c', {batchSize, numUnits},{1.93001527,1.93001527,1.93001527,1.93001527, 1.93001527,1.93001527,1.93001527,1.93001527});
|
|
|
|
|
|
|
|
nd4j::ops::lstmCell op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&xt, &ht_1, &ct_1, &Wx, &Wh, &Wc, &Wp, &b}, {0., 0., -10.5}, {0, 0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *ht = results->at(0);
|
|
|
|
auto *ct = results->at(1);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expHt.isSameShape(ht));
|
|
|
|
ASSERT_TRUE(expHt.equalsTo(ht));
|
|
|
|
ASSERT_TRUE(expCt.isSameShape(ct));
|
|
|
|
ASSERT_TRUE(expCt.equalsTo(ct));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, lstmCell_test3) {
|
|
|
|
|
|
|
|
const int batchSize = 2;
|
|
|
|
const int inSize = 10;
|
|
|
|
const int numProj = 4;
|
|
|
|
const int numUnits = 4;
|
|
|
|
|
|
|
|
auto xt = NDArrayFactory::create<double>('c', {batchSize, inSize});
|
|
|
|
auto ht_1 = NDArrayFactory::create<double>('c', {batchSize, numProj});
|
|
|
|
auto ct_1 = NDArrayFactory::create<double>('c', {batchSize, numUnits});
|
|
|
|
auto Wx = NDArrayFactory::create<double>('c', {inSize, 4*numUnits});
|
|
|
|
auto Wh = NDArrayFactory::create<double>('c', {numProj, 4*numUnits});
|
|
|
|
auto Wc = NDArrayFactory::create<double>('c', {3*numUnits});
|
|
|
|
auto Wp = NDArrayFactory::create<double>('c', {numUnits, numProj});
|
|
|
|
auto b = NDArrayFactory::create<double>('c', {4*numUnits});
|
|
|
|
|
|
|
|
xt.assign(1.);
|
|
|
|
ht_1.assign(2.);
|
|
|
|
ct_1.assign(3.);
|
|
|
|
Wx.assign(0.5);
|
|
|
|
Wh.assign(0.5);
|
|
|
|
Wc.assign(0.5);
|
|
|
|
Wp.assign(0.5);
|
|
|
|
b.assign(0.7);
|
|
|
|
|
|
|
|
auto expHt = NDArrayFactory::create<double>('c', {batchSize, numProj}, {0.37992568,0.37992568,0.37992568,0.37992568,0.37992568,0.37992568,0.37992568,0.37992568});
|
|
|
|
auto expCt = NDArrayFactory::create<double>('c', {batchSize, numUnits},{0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4});
|
|
|
|
|
|
|
|
nd4j::ops::lstmCell op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&xt, &ht_1, &ct_1, &Wx, &Wh, &Wc, &Wp, &b}, {0.4, 0., 1.5}, {0, 0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *ht = results->at(0);
|
|
|
|
auto *ct = results->at(1);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expHt.isSameShape(ht));
|
|
|
|
ASSERT_TRUE(expHt.equalsTo(ht));
|
|
|
|
ASSERT_TRUE(expCt.isSameShape(ct));
|
|
|
|
ASSERT_TRUE(expCt.equalsTo(ct));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, lstmCell_test4) {
|
|
|
|
|
|
|
|
const int batchSize = 2;
|
|
|
|
const int inSize = 10;
|
|
|
|
const int numProj = 4;
|
|
|
|
const int numUnits = 4;
|
|
|
|
|
|
|
|
auto xt = NDArrayFactory::create<double>('c', {batchSize, inSize});
|
|
|
|
auto ht_1 = NDArrayFactory::create<double>('c', {batchSize, numProj});
|
|
|
|
auto ct_1 = NDArrayFactory::create<double>('c', {batchSize, numUnits});
|
|
|
|
auto Wx = NDArrayFactory::create<double>('c', {inSize, 4*numUnits});
|
|
|
|
auto Wh = NDArrayFactory::create<double>('c', {numProj, 4*numUnits});
|
|
|
|
auto Wc = NDArrayFactory::create<double>('c', {3*numUnits});
|
|
|
|
auto Wp = NDArrayFactory::create<double>('c', {numUnits, numProj});
|
|
|
|
auto b = NDArrayFactory::create<double>('c', {4*numUnits});
|
|
|
|
|
|
|
|
xt.assign(1.);
|
|
|
|
ht_1.assign(2.);
|
|
|
|
ct_1.assign(3.);
|
|
|
|
Wx.assign(0.5);
|
|
|
|
Wh.assign(0.5);
|
|
|
|
Wc.assign(0.5);
|
|
|
|
Wp.assign(0.5);
|
|
|
|
b.assign(0.7);
|
|
|
|
|
|
|
|
auto expHt = NDArrayFactory::create<double>('c', {batchSize, numProj}, {0.37992568,0.37992568,0.37992568,0.37992568,0.37992568,0.37992568,0.37992568,0.37992568});
|
|
|
|
auto expCt = NDArrayFactory::create<double>('c', {batchSize, numUnits},{0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4});
|
|
|
|
|
|
|
|
nd4j::ops::lstmCell op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&xt, &ht_1, &ct_1, &Wx, &Wh, &Wc, &Wp, &b}, {0.4, 0.3, 1.5}, {0, 0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *ht = results->at(0);
|
|
|
|
auto *ct = results->at(1);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expHt.isSameShape(ht));
|
|
|
|
ASSERT_TRUE(expHt.equalsTo(ht));
|
|
|
|
ASSERT_TRUE(expCt.isSameShape(ct));
|
|
|
|
ASSERT_TRUE(expCt.equalsTo(ct));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, lstmCell_test5) {
|
|
|
|
|
|
|
|
const int batchSize = 2;
|
|
|
|
const int inSize = 10;
|
|
|
|
const int numProj = 3;
|
|
|
|
const int numUnits = 4;
|
|
|
|
|
|
|
|
auto xt = NDArrayFactory::create<double>('c', {batchSize, inSize});
|
|
|
|
auto ht_1 = NDArrayFactory::create<double>('c', {batchSize, numProj});
|
|
|
|
auto ct_1 = NDArrayFactory::create<double>('c', {batchSize, numUnits});
|
|
|
|
auto Wx = NDArrayFactory::create<double>('c', {inSize, 4*numUnits});
|
|
|
|
auto Wh = NDArrayFactory::create<double>('c', {numProj, 4*numUnits});
|
|
|
|
auto Wc = NDArrayFactory::create<double>('c', {3*numUnits});
|
|
|
|
auto Wp = NDArrayFactory::create<double>('c', {numUnits, numProj});
|
|
|
|
auto b = NDArrayFactory::create<double>('c', {4*numUnits});
|
|
|
|
|
|
|
|
xt.assign(1.);
|
|
|
|
ht_1.assign(2.);
|
|
|
|
ct_1.assign(3.);
|
|
|
|
Wx.assign(0.5);
|
|
|
|
Wh.assign(0.5);
|
|
|
|
Wc.assign(0.5);
|
|
|
|
Wp.assign(0.5);
|
|
|
|
b.assign(0.7);
|
|
|
|
|
|
|
|
auto expHt = NDArrayFactory::create<double>('c', {batchSize, numProj}, {0.3,0.3,0.3,0.3,0.3,0.3});
|
|
|
|
auto expCt = NDArrayFactory::create<double>('c', {batchSize, numUnits},{0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4});
|
|
|
|
|
|
|
|
nd4j::ops::lstmCell op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&xt, &ht_1, &ct_1, &Wx, &Wh, &Wc, &Wp, &b}, {0.4, 0.3, 1.5}, {0, 1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *ht = results->at(0);
|
|
|
|
auto *ct = results->at(1);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expHt.isSameShape(ht));
|
|
|
|
ASSERT_TRUE(expHt.equalsTo(ht));
|
|
|
|
ASSERT_TRUE(expCt.isSameShape(ct));
|
|
|
|
ASSERT_TRUE(expCt.equalsTo(ct));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, lstmCell_test6) {
|
|
|
|
|
|
|
|
const int batchSize = 2;
|
|
|
|
const int inSize = 10;
|
|
|
|
const int numProj = 3;
|
|
|
|
const int numUnits = 4;
|
|
|
|
|
|
|
|
auto xt = NDArrayFactory::create<double>('c', {batchSize, inSize});
|
|
|
|
auto ht_1 = NDArrayFactory::create<double>('c', {batchSize, numProj});
|
|
|
|
auto ct_1 = NDArrayFactory::create<double>('c', {batchSize, numUnits});
|
|
|
|
auto Wx = NDArrayFactory::create<double>('c', {inSize, 4*numUnits});
|
|
|
|
auto Wh = NDArrayFactory::create<double>('c', {numProj, 4*numUnits});
|
|
|
|
auto Wc = NDArrayFactory::create<double>('c', {3*numUnits});
|
|
|
|
auto Wp = NDArrayFactory::create<double>('c', {numUnits, numProj});
|
|
|
|
auto b = NDArrayFactory::create<double>('c', {4*numUnits});
|
|
|
|
|
|
|
|
xt.assign(1.);
|
|
|
|
ht_1.assign(2.);
|
|
|
|
ct_1.assign(3.);
|
|
|
|
Wx.assign(0.5);
|
|
|
|
Wh.assign(0.5);
|
|
|
|
Wc.assign(0.5);
|
|
|
|
Wp.assign(0.5);
|
|
|
|
b.assign(0.7);
|
|
|
|
|
|
|
|
auto expHt = NDArrayFactory::create<double>('c', {batchSize, numProj}, {1.99832496,1.99832496,1.99832496,1.99832496,1.99832496,1.99832496});
|
|
|
|
auto expCt = NDArrayFactory::create<double>('c', {batchSize, numUnits},{3.99972188,3.99972188,3.99972188,3.99972188,3.99972188,3.99972188,3.99972188,3.99972188});
|
|
|
|
|
|
|
|
nd4j::ops::lstmCell op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&xt, &ht_1, &ct_1, &Wx, &Wh, &Wc, &Wp, &b}, {0., 0., 1.5}, {0, 1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *ht = results->at(0);
|
|
|
|
auto *ct = results->at(1);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expHt.isSameShape(ht));
|
|
|
|
ASSERT_TRUE(expHt.equalsTo(ht));
|
|
|
|
ASSERT_TRUE(expCt.isSameShape(ct));
|
|
|
|
ASSERT_TRUE(expCt.equalsTo(ct));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, lstmCell_test7) {
|
|
|
|
|
|
|
|
const int batchSize = 2;
|
|
|
|
const int inSize = 10;
|
|
|
|
const int numProj = 3;
|
|
|
|
const int numUnits = 4;
|
|
|
|
|
|
|
|
auto xt = NDArrayFactory::create<double>('c', {batchSize, inSize});
|
|
|
|
auto ht_1 = NDArrayFactory::create<double>('c', {batchSize, numProj});
|
|
|
|
auto ct_1 = NDArrayFactory::create<double>('c', {batchSize, numUnits});
|
|
|
|
auto Wx = NDArrayFactory::create<double>('c', {inSize, 4*numUnits});
|
|
|
|
auto Wh = NDArrayFactory::create<double>('c', {numProj, 4*numUnits});
|
|
|
|
auto Wc = NDArrayFactory::create<double>('c', {3*numUnits});
|
|
|
|
auto Wp = NDArrayFactory::create<double>('c', {numUnits, numProj});
|
|
|
|
auto b = NDArrayFactory::create<double>('c', {4*numUnits});
|
|
|
|
|
|
|
|
xt.assign(1.);
|
|
|
|
ht_1.assign(2.);
|
|
|
|
ct_1.assign(3.);
|
|
|
|
Wx.assign(0.5);
|
|
|
|
Wh.assign(0.5);
|
|
|
|
Wc.assign(0.5);
|
|
|
|
Wp.assign(0.5);
|
|
|
|
b.assign(0.7);
|
|
|
|
|
|
|
|
auto expHt = NDArrayFactory::create<double>('c', {batchSize, numProj}, {0.75977136,0.75977136,0.75977136,0.75977136,0.75977136,0.75977136});
|
|
|
|
auto expCt = NDArrayFactory::create<double>('c', {batchSize, numUnits},{0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4});
|
|
|
|
|
|
|
|
nd4j::ops::lstmCell op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&xt, &ht_1, &ct_1, &Wx, &Wh, &Wc, &Wp, &b}, {0.4, 0., 1.5}, {0, 1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *ht = results->at(0);
|
|
|
|
auto *ct = results->at(1);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expHt.isSameShape(ht));
|
|
|
|
ASSERT_TRUE(expHt.equalsTo(ht));
|
|
|
|
ASSERT_TRUE(expCt.isSameShape(ct));
|
|
|
|
ASSERT_TRUE(expCt.equalsTo(ct));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, lstmCell_test8) {
|
|
|
|
|
|
|
|
const int batchSize = 2;
|
|
|
|
const int inSize = 10;
|
|
|
|
const int numProj = 4;
|
|
|
|
const int numUnits = 4;
|
|
|
|
|
|
|
|
auto xt = NDArrayFactory::create<double>('c', {batchSize, inSize});
|
|
|
|
auto ht_1 = NDArrayFactory::create<double>('c', {batchSize, numProj});
|
|
|
|
auto ct_1 = NDArrayFactory::create<double>('c', {batchSize, numUnits});
|
|
|
|
auto Wx = NDArrayFactory::create<double>('c', {inSize, 4*numUnits});
|
|
|
|
auto Wh = NDArrayFactory::create<double>('c', {numProj, 4*numUnits});
|
|
|
|
auto Wc = NDArrayFactory::create<double>('c', {3*numUnits});
|
|
|
|
auto Wp = NDArrayFactory::create<double>('c', {numUnits, numProj});
|
|
|
|
auto b = NDArrayFactory::create<double>('c', {4*numUnits});
|
|
|
|
|
|
|
|
xt.assign(1.);
|
|
|
|
ht_1.assign(2.);
|
|
|
|
ct_1.assign(3.);
|
|
|
|
Wx.assign(0.5);
|
|
|
|
Wh.assign(0.5);
|
|
|
|
Wc.assign(0.5);
|
|
|
|
Wp.assign(0.5);
|
|
|
|
b.assign(0.7);
|
|
|
|
|
|
|
|
auto expHt = NDArrayFactory::create<double>('c', {batchSize, numProj}, {0.99930672,0.99930672,0.99930672,0.99930672, 0.99930672,0.99930672,0.99930672,0.99930672});
|
|
|
|
auto expCt = NDArrayFactory::create<double>('c', {batchSize, numUnits},{3.99996277,3.99996277,3.99996277,3.99996277,3.99996277,3.99996277,3.99996277,3.99996277});
|
|
|
|
|
|
|
|
nd4j::ops::lstmCell op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&xt, &ht_1, &ct_1, &Wx, &Wh, &Wc, &Wp, &b}, {0., 0., 10.5}, {1, 0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *ht = results->at(0);
|
|
|
|
auto *ct = results->at(1);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expHt.isSameShape(ht));
|
|
|
|
ASSERT_TRUE(expHt.equalsTo(ht,1e-4));
|
|
|
|
ASSERT_TRUE(expCt.isSameShape(ct));
|
|
|
|
ASSERT_TRUE(expCt.equalsTo(ct,1e-4));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, lstmCell_test9) {
|
|
|
|
|
|
|
|
const int batchSize = 2;
|
|
|
|
const int inSize = 10;
|
|
|
|
const int numProj = 4;
|
|
|
|
const int numUnits = 4;
|
|
|
|
|
|
|
|
auto xt = NDArrayFactory::create<double>('c', {batchSize, inSize});
|
|
|
|
auto ht_1 = NDArrayFactory::create<double>('c', {batchSize, numProj});
|
|
|
|
auto ct_1 = NDArrayFactory::create<double>('c', {batchSize, numUnits});
|
|
|
|
auto Wx = NDArrayFactory::create<double>('c', {inSize, 4*numUnits});
|
|
|
|
auto Wh = NDArrayFactory::create<double>('c', {numProj, 4*numUnits});
|
|
|
|
auto Wc = NDArrayFactory::create<double>('c', {3*numUnits});
|
|
|
|
auto Wp = NDArrayFactory::create<double>('c', {numUnits, numProj});
|
|
|
|
auto b = NDArrayFactory::create<double>('c', {4*numUnits});
|
|
|
|
|
|
|
|
xt.assign(1.);
|
|
|
|
ht_1.assign(2.);
|
|
|
|
ct_1.assign(3.);
|
|
|
|
Wx.assign(0.5);
|
|
|
|
Wh.assign(0.5);
|
|
|
|
Wc.assign(0.5);
|
|
|
|
Wp.assign(0.5);
|
|
|
|
b.assign(0.7);
|
|
|
|
|
|
|
|
auto expHt = NDArrayFactory::create<double>('c', {batchSize, numProj}, {0.99501777,0.99501777,0.99501777,0.99501777,0.99501777,0.99501777,0.99501777,0.99501777});
|
|
|
|
auto expCt = NDArrayFactory::create<double>('c', {batchSize, numUnits},{3.,3.,3.,3.,3.,3.,3.,3.});
|
|
|
|
|
|
|
|
nd4j::ops::lstmCell op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&xt, &ht_1, &ct_1, &Wx, &Wh, &Wc, &Wp, &b}, {3., 0., 10.5}, {1, 0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *ht = results->at(0);
|
|
|
|
auto *ct = results->at(1);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expHt.isSameShape(ht));
|
|
|
|
ASSERT_TRUE(expHt.equalsTo(ht,1e-4));
|
|
|
|
ASSERT_TRUE(expCt.isSameShape(ct));
|
|
|
|
ASSERT_TRUE(expCt.equalsTo(ct));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, lstmCell_test10) {
|
|
|
|
|
|
|
|
const int batchSize = 2;
|
|
|
|
const int inSize = 10;
|
|
|
|
const int numProj = 3;
|
|
|
|
const int numUnits = 4;
|
|
|
|
|
|
|
|
auto xt = NDArrayFactory::create<double>('c', {batchSize, inSize});
|
|
|
|
auto ht_1 = NDArrayFactory::create<double>('c', {batchSize, numProj});
|
|
|
|
auto ct_1 = NDArrayFactory::create<double>('c', {batchSize, numUnits});
|
|
|
|
auto Wx = NDArrayFactory::create<double>('c', {inSize, 4*numUnits});
|
|
|
|
auto Wh = NDArrayFactory::create<double>('c', {numProj, 4*numUnits});
|
|
|
|
auto Wc = NDArrayFactory::create<double>('c', {3*numUnits});
|
|
|
|
auto Wp = NDArrayFactory::create<double>('c', {numUnits, numProj});
|
|
|
|
auto b = NDArrayFactory::create<double>('c', {4*numUnits});
|
|
|
|
|
|
|
|
xt.assign(1.);
|
|
|
|
ht_1.assign(2.);
|
|
|
|
ct_1.assign(3.);
|
|
|
|
Wx.assign(0.5);
|
|
|
|
Wh.assign(0.5);
|
|
|
|
Wc.assign(0.5);
|
|
|
|
Wp.assign(0.5);
|
|
|
|
b.assign(0.7);
|
|
|
|
|
|
|
|
auto expHt = NDArrayFactory::create<double>('c', {batchSize, numProj}, {1.99861344,1.99861344,1.99861344,1.99861344,1.99861344,1.99861344});
|
|
|
|
auto expCt = NDArrayFactory::create<double>('c', {batchSize, numUnits},{3.99996277, 3.99996277, 3.99996277, 3.99996277,3.99996277, 3.99996277, 3.99996277, 3.99996277});
|
|
|
|
|
|
|
|
nd4j::ops::lstmCell op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&xt, &ht_1, &ct_1, &Wx, &Wh, &Wc, &Wp, &b}, {0., 0., 10.5}, {1, 1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *ht = results->at(0);
|
|
|
|
auto *ct = results->at(1);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expHt.isSameShape(ht));
|
|
|
|
ASSERT_TRUE(expHt.equalsTo(ht));
|
|
|
|
ASSERT_TRUE(expCt.isSameShape(ct));
|
|
|
|
ASSERT_TRUE(expCt.equalsTo(ct));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, lstmCell_test11) {
|
|
|
|
|
|
|
|
const int batchSize = 2;
|
|
|
|
const int inSize = 10;
|
|
|
|
const int numProj = 3;
|
|
|
|
const int numUnits = 4;
|
|
|
|
|
|
|
|
auto xt = NDArrayFactory::create<double>('c', {batchSize, inSize});
|
|
|
|
auto ht_1 = NDArrayFactory::create<double>('c', {batchSize, numProj});
|
|
|
|
auto ct_1 = NDArrayFactory::create<double>('c', {batchSize, numUnits});
|
|
|
|
auto Wx = NDArrayFactory::create<double>('c', {inSize, 4*numUnits});
|
|
|
|
auto Wh = NDArrayFactory::create<double>('c', {numProj, 4*numUnits});
|
|
|
|
auto Wc = NDArrayFactory::create<double>('c', {3*numUnits});
|
|
|
|
auto Wp = NDArrayFactory::create<double>('c', {numUnits, numProj});
|
|
|
|
auto b = NDArrayFactory::create<double>('c', {4*numUnits});
|
|
|
|
|
|
|
|
xt.assign(1.);
|
|
|
|
ht_1.assign(2.);
|
|
|
|
ct_1.assign(3.);
|
|
|
|
Wx.assign(0.5);
|
|
|
|
Wh.assign(0.5);
|
|
|
|
Wc.assign(0.5);
|
|
|
|
Wp.assign(0.5);
|
|
|
|
b.assign(0.7);
|
|
|
|
|
|
|
|
auto expHt = NDArrayFactory::create<double>('c', {batchSize, numProj}, {1.99003554,1.99003554,1.99003554,1.99003554,1.99003554,1.99003554});
|
|
|
|
auto expCt = NDArrayFactory::create<double>('c', {batchSize, numUnits},{3.,3.,3.,3.,3.,3.,3.,3.});
|
|
|
|
|
|
|
|
nd4j::ops::lstmCell op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&xt, &ht_1, &ct_1, &Wx, &Wh, &Wc, &Wp, &b}, {3., 0., 10.5}, {1, 1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *ht = results->at(0);
|
|
|
|
auto *ct = results->at(1);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expHt.isSameShape(ht));
|
|
|
|
ASSERT_TRUE(expHt.equalsTo(ht));
|
|
|
|
ASSERT_TRUE(expCt.isSameShape(ct));
|
|
|
|
ASSERT_TRUE(expCt.equalsTo(ct));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(DeclarableOpsTests2, lstmCell_test12) {
|
|
|
|
|
|
|
|
const int batchSize = 2;
|
|
|
|
const int inSize = 10;
|
|
|
|
const int numProj = 3;
|
|
|
|
const int numUnits = 4;
|
|
|
|
|
|
|
|
auto xt = NDArrayFactory::create<double>('c', {batchSize, inSize});
|
|
|
|
auto ht_1 = NDArrayFactory::create<double>('c', {batchSize, numProj});
|
|
|
|
auto ct_1 = NDArrayFactory::create<double>('c', {batchSize, numUnits});
|
|
|
|
auto Wx = NDArrayFactory::create<double>('c', {inSize, 4*numUnits});
|
|
|
|
auto Wh = NDArrayFactory::create<double>('c', {numProj, 4*numUnits});
|
|
|
|
auto Wc = NDArrayFactory::create<double>('c', {3*numUnits});
|
|
|
|
auto Wp = NDArrayFactory::create<double>('c', {numUnits, numProj});
|
|
|
|
auto b = NDArrayFactory::create<double>('c', {4*numUnits});
|
|
|
|
|
|
|
|
xt.assign(1.);
|
|
|
|
ht_1.assign(2.);
|
|
|
|
ct_1.assign(3.);
|
|
|
|
Wx.assign(0.5);
|
|
|
|
Wh.assign(0.5);
|
|
|
|
Wc.assign(0.5);
|
|
|
|
Wp.assign(0.5);
|
|
|
|
b.assign(0.7);
|
|
|
|
|
|
|
|
auto expHt = NDArrayFactory::create<double>('c', {batchSize, numProj}, {1.,1.,1.,1.,1.,1.});
|
|
|
|
auto expCt = NDArrayFactory::create<double>('c', {batchSize, numUnits},{3.,3.,3.,3.,3.,3.,3.,3.});
|
|
|
|
|
|
|
|
nd4j::ops::lstmCell op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto results = op.evaluate({&xt, &ht_1, &ct_1, &Wx, &Wh, &Wc, &Wp, &b}, {3., 1.,-5.}, {1, 1});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
auto *ht = results->at(0);
|
|
|
|
auto *ct = results->at(1);
|
|
|
|
|
|
|
|
ASSERT_TRUE(expHt.isSameShape(ht));
|
|
|
|
ASSERT_TRUE(expHt.equalsTo(ht));
|
|
|
|
ASSERT_TRUE(expCt.isSameShape(ct));
|
|
|
|
ASSERT_TRUE(expCt.equalsTo(ct));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|