2019-06-06 14:21:15 +02:00
|
|
|
/*******************************************************************************
|
|
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
|
|
*
|
|
|
|
* This program and the accompanying materials are made available under the
|
|
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
|
|
* License for the specific language governing permissions and limitations
|
|
|
|
* under the License.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
//
|
|
|
|
// Created by raver119 on 23.11.17.
|
|
|
|
//
|
|
|
|
|
|
|
|
|
|
|
|
#include "testlayers.h"
|
|
|
|
#include <Graph.h>
|
|
|
|
#include <Node.h>
|
|
|
|
#include <ops/declarable/CustomOperations.h>
|
|
|
|
|
|
|
|
using namespace nd4j;
|
|
|
|
using namespace nd4j::graph;
|
|
|
|
|
|
|
|
class BroadcastableOpsTests : public testing::Test {
|
|
|
|
public:
|
|
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Add_1) {
|
|
|
|
|
|
|
|
NDArray x('c', {5, 5}, nd4j::DataType::FLOAT32);
|
|
|
|
NDArray y('c', {1, 5}, nd4j::DataType::FLOAT32);
|
|
|
|
NDArray exp('c', {5, 5}, nd4j::DataType::FLOAT32);
|
|
|
|
x.linspace(1);
|
|
|
|
y.linspace(1);
|
|
|
|
exp.linspace(1);
|
|
|
|
|
2019-11-13 15:15:18 +01:00
|
|
|
//exp.printIndexedBuffer("E B");
|
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
exp.applyBroadcast(broadcast::Add, {1}, y, exp);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
nd4j::ops::add op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &y});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
2019-11-13 15:15:18 +01:00
|
|
|
//exp.printIndexedBuffer("E A");
|
|
|
|
//z->printIndexedBuffer("Z");
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Multiply_1) {
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {5, 5});
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {1, 5});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {5, 5});
|
|
|
|
x.linspace(1);
|
|
|
|
y.linspace(1);
|
|
|
|
exp.linspace(1);
|
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
exp.applyBroadcast(broadcast::Multiply, {1}, y, exp);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
nd4j::ops::multiply op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &y});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_SquaredSubtract_1) {
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {5, 5});
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {1, 5});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {5, 5});
|
|
|
|
x.linspace(1);
|
|
|
|
y.linspace(1);
|
|
|
|
exp.linspace(1);
|
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
exp.applyBroadcast(broadcast::SquaredSubtract, {1}, y, exp);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
|
|
|
|
nd4j::ops::squaredsubtract op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &y});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_ScalarBroadcast_1) {
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {1, 1}, {1});
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {1, 3}, {0, 1, 2});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {1,3}, {1, 0, -1});
|
|
|
|
|
|
|
|
nd4j::ops::subtract op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &y});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_ScalarBroadcast_2) {
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {1, 1}, {1});
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {1, 3}, {0, 1, 2});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {1,3}, {1, 2, 3});
|
|
|
|
|
|
|
|
nd4j::ops::add op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &y});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Maximum_1) {
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {2, 3}, {1, 2, 1, 2, 3, 2});
|
|
|
|
auto row = NDArrayFactory::create<float>('c', {1, 3}, {2, 2, 2});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {2, 3}, {2, 2, 2, 2, 3, 2});
|
|
|
|
|
|
|
|
nd4j::ops::maximum op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &row});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Minimum_1) {
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {2, 3}, {1, 2, 1, 2, 3, 2});
|
|
|
|
auto col = NDArrayFactory::create<float>('c', {2, 1}, {2, 1});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {2, 3}, {1, 2, 1, 1, 1, 1});
|
|
|
|
|
|
|
|
nd4j::ops::minimum op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &col});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Shape_1) {
|
|
|
|
nd4j::ops::minimum op;
|
|
|
|
|
|
|
|
Nd4jLong shapeX[] = {2, 2, 5, 5, 1, 8192, 1, 99};
|
|
|
|
Nd4jLong shapeY[] = {2, 2, 5, 5, 1, 8192, 1, 99};
|
|
|
|
ShapeList inputShape({shapeX, shapeY});
|
|
|
|
VariableSpace vs;
|
|
|
|
Context ctx(1, &vs, false);
|
|
|
|
|
|
|
|
auto shapes = op.calculateOutputShape(&inputShape, ctx);
|
|
|
|
|
|
|
|
auto shapeZ = shapes->at(0);
|
|
|
|
ASSERT_TRUE(shape::shapeEquals(shapeX, shapeZ));
|
|
|
|
|
|
|
|
delete shapes;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Shape_2) {
|
|
|
|
nd4j::ops::minimum op;
|
|
|
|
|
|
|
|
Nd4jLong shapeX[] = {2, 1, 1, 1, 1, 8192, 1, 99};
|
|
|
|
Nd4jLong shapeY[] = {2, 2, 5, 5, 1, 8192, 1, 99};
|
|
|
|
ShapeList inputShape({shapeX, shapeY});
|
|
|
|
VariableSpace vs;
|
|
|
|
Context ctx(1, &vs, false);
|
|
|
|
|
|
|
|
auto shapes = op.calculateOutputShape(&inputShape, ctx);
|
|
|
|
|
|
|
|
auto shapeZ = shapes->at(0);
|
|
|
|
ASSERT_TRUE(shape::shapeEquals(shapeY, shapeZ));
|
|
|
|
|
|
|
|
delete shapes;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Shape_3) {
|
|
|
|
nd4j::ops::minimum op;
|
|
|
|
|
|
|
|
Nd4jLong shapeX[] = {2, 5, 3, 1, 1, 8192, 1, 99};
|
|
|
|
Nd4jLong shapeY[] = {2, 1, 3, 3, 1, 8192, 1, 99};
|
|
|
|
ShapeList inputShape({shapeX, shapeY});
|
|
|
|
VariableSpace vs;
|
|
|
|
Context ctx(1, &vs, false);
|
|
|
|
|
|
|
|
auto shapes = op.calculateOutputShape(&inputShape, ctx);
|
|
|
|
|
|
|
|
auto shapeZ = shapes->at(0);
|
|
|
|
ASSERT_TRUE(shape::shapeEquals(shapeX, shapeZ));
|
|
|
|
|
|
|
|
delete shapes;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Shape_4) {
|
|
|
|
nd4j::ops::minimum op;
|
|
|
|
|
|
|
|
Nd4jLong shapeX[] = {2, 5, 3, 1, 1, 8192, 1, 99};
|
|
|
|
Nd4jLong shapeY[] = {2, 5, 1, 1, 1, 8192, 1, 99};
|
|
|
|
ShapeList inputShape({shapeX, shapeY});
|
|
|
|
VariableSpace vs;
|
|
|
|
Context ctx(1, &vs, false);
|
|
|
|
|
|
|
|
auto shapes = op.calculateOutputShape(&inputShape, ctx);
|
|
|
|
|
|
|
|
auto shapeZ = shapes->at(0);
|
|
|
|
ASSERT_TRUE(shape::shapeEquals(shapeX, shapeZ));
|
|
|
|
|
|
|
|
delete shapes;
|
|
|
|
}
|
|
|
|
|
|
|
|
// (2,1,3) + (4,3) = (2,4,3)
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Shape_5) {
|
|
|
|
nd4j::ops::minimum op;
|
|
|
|
|
|
|
|
Nd4jLong shapeX[] = {3, 2, 1, 3, 3, 3, 1, 8192, 1, 99};
|
|
|
|
Nd4jLong shapeY[] = {2, 4, 3, 3, 1, 8192, 1, 99};
|
|
|
|
Nd4jLong shapeE[] = {3, 2, 4, 3, 12, 3, 1, 8192, 1, 99};
|
|
|
|
ShapeList inputShape({shapeX, shapeY});
|
|
|
|
VariableSpace vs;
|
|
|
|
Context ctx(1, &vs, false);
|
|
|
|
|
|
|
|
auto shapes = op.calculateOutputShape(&inputShape, ctx);
|
|
|
|
|
|
|
|
auto shapeZ = shapes->at(0);
|
|
|
|
ASSERT_TRUE(shape::shapeEquals(shapeE, shapeZ));
|
|
|
|
|
|
|
|
delete shapes;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Scalar_Add_1) {
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {2, 2}, {1, 2, 3, 4});
|
|
|
|
auto y = NDArrayFactory::create<float>(2.0f);
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {2, 2}, {3, 4, 5, 6});
|
|
|
|
|
|
|
|
nd4j::ops::add op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &y});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Inplace_Output_1) {
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {2, 1, 3});
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {4, 3});
|
|
|
|
auto o = NDArrayFactory::create<float>('c', {2, 4, 3});
|
|
|
|
auto e = NDArrayFactory::create<float>('c', {2, 4, 3});
|
|
|
|
auto buffO1 = reinterpret_cast<float *>(o.buffer());
|
|
|
|
y.assign(1.0f);
|
|
|
|
e.assign(1.0f);
|
|
|
|
|
|
|
|
nd4j::ops::add op;
|
|
|
|
auto result = op.execute({&x, &y}, {&o}, {}, {}, {});
|
|
|
|
ASSERT_EQ(Status::OK(), result);
|
|
|
|
|
|
|
|
auto buffO2 = reinterpret_cast<float *>(o.buffer());
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.isSameShape(o));
|
|
|
|
ASSERT_TRUE(e.equalsTo(o));
|
|
|
|
|
|
|
|
ASSERT_TRUE(buffO1 == buffO2);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Subtract_1) {
|
|
|
|
|
|
|
|
auto x = NDArrayFactory::create<float>(1.0f);
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {2}, {0.0f, 1.0f});
|
|
|
|
auto e = NDArrayFactory::create<float>('c', {2}, {1.0f, 0.0f});
|
|
|
|
|
|
|
|
auto z = x - y;
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Subtract_2) {
|
|
|
|
auto x = NDArrayFactory::create<float>(1.0f);
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {2}, {0.0f, 1.0f});
|
|
|
|
auto e = NDArrayFactory::create<float>('c', {2}, {1.0f, 0.0f});
|
|
|
|
|
|
|
|
nd4j::ops::subtract op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &y});
|
2019-06-06 14:21:15 +02:00
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Subtract_3) {
|
|
|
|
auto x = NDArrayFactory::create<float>(1.0f);
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {2}, {0.0f, 1.0f});
|
|
|
|
auto z = NDArrayFactory::create<float>('c', {2}, {0.0f, 0.0f});
|
|
|
|
auto e = NDArrayFactory::create<float>('c', {2}, {1.0f, 0.0f});
|
|
|
|
|
|
|
|
nd4j::ops::subtract op;
|
|
|
|
auto result = op.execute({&x, &y}, {&z}, {}, {}, {});
|
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), result);
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Subtract_4) {
|
|
|
|
auto x = NDArrayFactory::create<float>(1.0f);
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {2}, {0.0f, 1.0f});
|
|
|
|
auto e = NDArrayFactory::create<float>('c', {2}, {1.0f, 0.0f});
|
|
|
|
|
|
|
|
auto z = x.applyTrueBroadcast(BroadcastOpsTuple::Subtract(), y);
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.isSameShape(z));
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Subtract_5) {
|
|
|
|
auto x = NDArrayFactory::create<float>(1.0f);
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {2}, {0.0f, 1.0f});
|
|
|
|
auto e = NDArrayFactory::create<float>('c', {2}, {-1., 0.});
|
|
|
|
|
|
|
|
auto z = y - x;
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Subtract_6) {
|
|
|
|
auto x = NDArrayFactory::create<float>(1.0f);
|
|
|
|
auto y = NDArrayFactory::create<float>(4.f);
|
|
|
|
auto e = NDArrayFactory::create<float>(3.f);
|
|
|
|
|
|
|
|
auto z = y - x;
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Subtract_7) {
|
|
|
|
auto x = NDArrayFactory::create<float>(1.0f);
|
|
|
|
auto y = NDArrayFactory::create<float>(4.f);
|
|
|
|
auto e = NDArrayFactory::create<float>(-3.f);
|
|
|
|
|
|
|
|
auto z = x - y;
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Add_2) {
|
|
|
|
|
|
|
|
auto x = NDArrayFactory::create<float>(1.0f);
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {2}, {0.0f, 1.0f});
|
|
|
|
auto e = NDArrayFactory::create<float>('c', {2}, {1.f, 2.f});
|
|
|
|
|
|
|
|
auto z = x + y;
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Add_3) {
|
|
|
|
|
|
|
|
auto x = NDArrayFactory::create<float>(1.0f);
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {2}, {0.0f, 1.0f});
|
|
|
|
auto e = NDArrayFactory::create<float>('c', {2}, {1.f, 2.f});
|
|
|
|
|
|
|
|
auto z = y + x;
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Add_4) {
|
|
|
|
|
|
|
|
auto x = NDArrayFactory::create<float>(1.0f);
|
|
|
|
auto y = NDArrayFactory::create<float>(4.f);
|
|
|
|
auto e = NDArrayFactory::create<float>(5.f);
|
|
|
|
|
|
|
|
auto z = x + y;
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Add_5) {
|
|
|
|
|
|
|
|
auto x = NDArrayFactory::create<float>(1.0f);
|
|
|
|
auto y = NDArrayFactory::create<float>(4.f);
|
|
|
|
auto e = NDArrayFactory::create<float>(5.f);
|
|
|
|
|
|
|
|
auto z = y + x;
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Multiply_2) {
|
|
|
|
|
|
|
|
auto x = NDArrayFactory::create<float>(2.0f);
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {2}, {3.f, 4.f});
|
|
|
|
auto e = NDArrayFactory::create<float>('c', {2}, {6.f, 8.f});
|
|
|
|
|
|
|
|
auto z = y * x;
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Multiply_3) {
|
|
|
|
|
|
|
|
auto x = NDArrayFactory::create<float>(2.0f);
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {2}, {3.f, 4.f});
|
|
|
|
auto e = NDArrayFactory::create<float>('c', {2}, {6.f, 8.f});
|
|
|
|
|
|
|
|
auto z = x * y;
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Multiply_4) {
|
|
|
|
|
|
|
|
auto x = NDArrayFactory::create<float>(2.0f);
|
|
|
|
auto y = NDArrayFactory::create<float>(4.f);
|
|
|
|
auto e = NDArrayFactory::create<float>(8.f);
|
|
|
|
|
|
|
|
auto z = y * x;
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Multiply_5) {
|
|
|
|
|
|
|
|
auto x = NDArrayFactory::create<float>(2.0f);
|
|
|
|
auto y = NDArrayFactory::create<float>(4.f);
|
|
|
|
auto e = NDArrayFactory::create<float>(8.f);
|
|
|
|
|
|
|
|
auto z = x * y;
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Multiply_6) {
|
|
|
|
auto x = NDArrayFactory::create<float>(2.0f);
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {1}, {4.f});
|
|
|
|
auto e = NDArrayFactory::create<float>('c', {1}, {8.f});
|
|
|
|
|
|
|
|
auto z = x * y;
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Multiply_7) {
|
|
|
|
auto x = NDArrayFactory::create<float>(2.0f);
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {1}, {4.f});
|
|
|
|
auto e = NDArrayFactory::create<float>('c', {1}, {8.f});
|
|
|
|
|
|
|
|
nd4j::ops::multiply op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &y});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, Test_Multiply_8) {
|
|
|
|
auto x = NDArrayFactory::create<float>(2.0f);
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {1, 1}, {4.f});
|
|
|
|
auto e = NDArrayFactory::create<float>('c', {1, 1}, {8.f});
|
|
|
|
|
|
|
|
nd4j::ops::multiply op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &y});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(Status::OK(), result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(BroadcastableOpsTests, broadcast_add_1) {
|
|
|
|
|
|
|
|
NDArray x('c', {4}, {1,1,1,1});
|
|
|
|
NDArray y('c', {1,4}, {1,2,3,4});
|
|
|
|
NDArray z('c', {1,4}, nd4j::DataType::DOUBLE);
|
|
|
|
NDArray exp('c', {1,4}, {2,3,4,5}, nd4j::DataType::DOUBLE);
|
|
|
|
|
|
|
|
nd4j::ops::add op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto status = op.execute({&x, &y}, {&z});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, status);
|
|
|
|
ASSERT_TRUE(z.equalsTo(exp));
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(BroadcastableOpsTests, broadcast_equals_1) {
|
|
|
|
|
|
|
|
NDArray x('c', {1,4}, {1,2,3,4});
|
|
|
|
NDArray y('c', {3,4}, {0,0,0,0, 1,2,3,4, 1,2,3,4});
|
|
|
|
NDArray z('c', {3,4}, nd4j::DataType::BOOL);
|
|
|
|
NDArray exp('c', {3,4}, {0,0,0,0, 1,1,1,1, 1,1,1,1}, nd4j::DataType::BOOL);
|
|
|
|
|
|
|
|
nd4j::ops::equals op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto status = op.execute({&x, &y}, {&z});
|
2019-06-06 14:21:15 +02:00
|
|
|
// z.printIndexedBuffer();
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, status);
|
|
|
|
ASSERT_TRUE(z.equalsTo(exp));
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(BroadcastableOpsTests, broadcast_empty_1) {
|
|
|
|
|
|
|
|
NDArray y('c', {3,4}, {0,0,0,0, 1,2,3,4, 1,2,3,4});
|
|
|
|
NDArray x(nd4j::DataType::DOUBLE, y.getContext(), false);
|
|
|
|
NDArray z(nd4j::DataType::DOUBLE, y.getContext(), false);
|
|
|
|
NDArray zExp(nd4j::DataType::DOUBLE, y.getContext(), false);
|
|
|
|
|
|
|
|
nd4j::ops::multiply op;
|
|
|
|
auto status = op.execute({&x, &y}, {&z}, {}, {}, {});
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, status);
|
|
|
|
ASSERT_TRUE(z.isSameShape(zExp));
|
|
|
|
ASSERT_TRUE(z.equalsTo(zExp));
|
|
|
|
}
|
|
|
|
|
2019-06-15 13:34:34 +02:00
|
|
|
TEST_F(BroadcastableOpsTests, broadcast_empty_2) {
|
|
|
|
|
|
|
|
NDArray y('c', {1,4}, {1,2,3,4});
|
|
|
|
NDArray x = NDArrayFactory::create<double>('c', {0, 4});
|
|
|
|
NDArray e = NDArrayFactory::create<double>('c', {0, 4});;
|
|
|
|
|
|
|
|
nd4j::ops::multiply op;
|
|
|
|
auto status = op.execute({&x, &y}, {&x}, {}, {}, {});
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, status);
|
|
|
|
ASSERT_TRUE(e.isSameShape(x));
|
|
|
|
ASSERT_TRUE(e.equalsTo(x));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, broadcast_empty_3) {
|
|
|
|
|
|
|
|
NDArray x = NDArrayFactory::create<float>('c', {1, 0, 2});
|
|
|
|
NDArray y('c', {}, {0.1}, nd4j::DataType::FLOAT32);
|
|
|
|
NDArray e = NDArrayFactory::create<float>('c', {1, 0, 2});;
|
|
|
|
|
|
|
|
nd4j::ops::maximum op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &y});
|
2019-06-15 13:34:34 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.isSameShape(z));
|
|
|
|
ASSERT_TRUE(e.equalsTo(*z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, broadcast_empty_4) {
|
|
|
|
|
|
|
|
NDArray x = NDArrayFactory::create<float>('c', {1, 0, 1});
|
|
|
|
NDArray y = NDArrayFactory::create<float>('c', {1, 0, 2});
|
|
|
|
NDArray e = NDArrayFactory::create<float>('c', {1, 0, 2});;
|
|
|
|
|
|
|
|
nd4j::ops::maximum op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &y});
|
2019-06-15 13:34:34 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.isSameShape(z));
|
|
|
|
ASSERT_TRUE(e.equalsTo(*z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, broadcast_empty_5) {
|
|
|
|
|
|
|
|
NDArray x = NDArrayFactory::create<float>('c', {1, 0, 1});
|
|
|
|
NDArray y = NDArrayFactory::create<float>('c', {1, 0, 2});
|
|
|
|
NDArray e = NDArrayFactory::create<float>('c', {1, 0, 2});;
|
|
|
|
|
|
|
|
nd4j::ops::realdiv op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &y});
|
2019-06-15 13:34:34 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.isSameShape(z));
|
|
|
|
ASSERT_TRUE(e.equalsTo(*z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, broadcast_empty_6) {
|
|
|
|
|
|
|
|
NDArray x = NDArrayFactory::create<float>('c', {1, 0, 1});
|
|
|
|
NDArray y = NDArrayFactory::create<float>('c', {1, 2}, {2, 2});
|
|
|
|
NDArray e = NDArrayFactory::create<float>('c', {1, 0, 2});;
|
|
|
|
|
|
|
|
nd4j::ops::realdiv op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &y});
|
2019-06-15 13:34:34 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.isSameShape(z));
|
|
|
|
ASSERT_TRUE(e.equalsTo(*z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, broadcast_empty_7) {
|
|
|
|
|
|
|
|
NDArray x = NDArrayFactory::create<float>('c', {1, 0, 2, 1});
|
|
|
|
NDArray y = NDArrayFactory::create<float>('c', {1, 2, 0});
|
|
|
|
NDArray e = NDArrayFactory::create<float>('c', {1, 0, 2, 0});;
|
|
|
|
|
|
|
|
nd4j::ops::realdiv op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &y});
|
2019-06-15 13:34:34 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(e.isSameShape(z));
|
|
|
|
ASSERT_TRUE(e.equalsTo(*z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, broadcast_bool_empty_1) {
|
|
|
|
|
|
|
|
NDArray y('c', {3,4}, {0,0,0,0, 1,2,3,4, 1,2,3,4});
|
|
|
|
NDArray x(nd4j::DataType::DOUBLE, y.getContext(), false);
|
|
|
|
NDArray z(nd4j::DataType::BOOL, y.getContext(), false);
|
|
|
|
NDArray zExp(nd4j::DataType::BOOL, y.getContext(), false);
|
|
|
|
|
|
|
|
nd4j::ops::greater op;
|
|
|
|
auto status = op.execute({&x, &y}, {&z}, {}, {}, {});
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, status);
|
|
|
|
ASSERT_TRUE(z.isSameShape(zExp));
|
|
|
|
ASSERT_TRUE(z.equalsTo(zExp));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, broadcast_bool_empty_2) {
|
|
|
|
|
|
|
|
NDArray y('c', {1,4}, {1,2,3,4});
|
|
|
|
NDArray x = NDArrayFactory::create<double>('c', {0, 4});
|
|
|
|
NDArray e = NDArrayFactory::create<bool>('c', {0, 4});;
|
|
|
|
|
|
|
|
|
|
|
|
nd4j::ops::greater op;
|
2020-01-30 08:07:24 +01:00
|
|
|
auto result = op.evaluate({&x, &y});
|
2019-06-15 13:34:34 +02:00
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
2019-11-13 15:15:18 +01:00
|
|
|
// z->printShapeInfo("z");
|
2019-06-15 13:34:34 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(Status::OK(), result->status());
|
|
|
|
ASSERT_TRUE(e.isSameShape(z));
|
|
|
|
ASSERT_TRUE(e.equalsTo(*z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
TEST_F(BroadcastableOpsTests, broadcast_bool_1) {
|
|
|
|
|
|
|
|
NDArray x('c', {3, 1, 2}, nd4j::DataType::FLOAT32);
|
|
|
|
NDArray y('c', {2, 2}, nd4j::DataType::FLOAT32);
|
|
|
|
NDArray z('c', {3, 2, 2}, nd4j::DataType::BOOL);
|
|
|
|
NDArray e('c', {3, 2, 2}, nd4j::DataType::BOOL);
|
|
|
|
|
|
|
|
x.assign(4.f);
|
|
|
|
y.assign(2.f);
|
|
|
|
e.assign(true);
|
|
|
|
|
|
|
|
nd4j::ops::greater op;
|
|
|
|
|
2020-01-30 08:07:24 +01:00
|
|
|
auto status = op.execute({&x, &y}, {&z});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, status);
|
|
|
|
|
|
|
|
// z.printIndexedBuffer("Z");
|
|
|
|
|
|
|
|
ASSERT_TRUE(z.isSameShape(e));
|
|
|
|
ASSERT_TRUE(z.equalsTo(e));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, broadcast_bool_2) {
|
|
|
|
|
|
|
|
NDArray x('c', {3, 1, 2}, nd4j::DataType::FLOAT32);
|
|
|
|
NDArray y('c', {2, 2}, nd4j::DataType::FLOAT32);
|
|
|
|
NDArray z('c', {3, 2, 2}, nd4j::DataType::BOOL);
|
|
|
|
NDArray e('c', {3, 2, 2}, nd4j::DataType::BOOL);
|
|
|
|
|
|
|
|
x.assign(1.f);
|
|
|
|
y.assign(2.f);
|
|
|
|
e.assign(false);
|
|
|
|
|
|
|
|
nd4j::ops::equals op;
|
|
|
|
|
|
|
|
auto status = op.execute({&x, &y}, {&z}, {}, {}, {});
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, status);
|
|
|
|
|
|
|
|
// z.printIndexedBuffer("Z");
|
|
|
|
|
|
|
|
ASSERT_TRUE(z.isSameShape(e));
|
|
|
|
ASSERT_TRUE(z.equalsTo(e));
|
|
|
|
}
|
|
|
|
|
2019-12-02 19:37:21 +01:00
|
|
|
TEST_F(BroadcastableOpsTests, broadcast_bool_3) {
|
|
|
|
|
|
|
|
auto x = NDArrayFactory::create<int>(0);
|
|
|
|
auto y = NDArrayFactory::create<int>('c', {3}, {2, 1, 2});
|
|
|
|
NDArray z('c', {3}, nd4j::DataType::BOOL);
|
|
|
|
NDArray e('c', {3}, nd4j::DataType::BOOL);
|
|
|
|
|
|
|
|
e.assign(true);
|
|
|
|
|
|
|
|
nd4j::ops::less op;
|
|
|
|
auto status = op.execute({&x, &y}, {&z}, {}, {}, {});
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, status);
|
|
|
|
|
|
|
|
// z.printIndexedBuffer("Z");
|
|
|
|
|
|
|
|
ASSERT_TRUE(z.isSameShape(e));
|
|
|
|
ASSERT_TRUE(z.equalsTo(e));
|
|
|
|
}
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-12-02 19:37:21 +01:00
|
|
|
TEST_F(BroadcastableOpsTests, broadcast_2) {
|
2019-06-06 14:21:15 +02:00
|
|
|
NDArray x('c', {3, 1, 2}, nd4j::DataType::FLOAT32);
|
|
|
|
NDArray y('c', {2, 2}, nd4j::DataType::FLOAT32);
|
|
|
|
NDArray z('c', {3, 2, 2}, nd4j::DataType::FLOAT32);
|
|
|
|
NDArray e('c', {3, 2, 2}, nd4j::DataType::FLOAT32);
|
|
|
|
|
|
|
|
x = 4.f;
|
|
|
|
y = 2.f;
|
|
|
|
e = -2.f;
|
|
|
|
|
|
|
|
nd4j::ops::reversesubtract op; // z = y - x;
|
|
|
|
|
|
|
|
auto status = op.execute({&x, &y}, {&z}, {}, {}, {});
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, status);
|
|
|
|
|
|
|
|
// z.printIndexedBuffer("Z");
|
|
|
|
|
|
|
|
ASSERT_TRUE(z.isSameShape(e));
|
|
|
|
ASSERT_TRUE(z.equalsTo(e));
|
|
|
|
}
|
|
|
|
|
2019-12-02 19:37:21 +01:00
|
|
|
TEST_F(BroadcastableOpsTests, broadcast_3) {
|
|
|
|
auto x = NDArrayFactory::create<int>(0);
|
|
|
|
auto y = NDArrayFactory::create<int>('c', {3}, {2, 1, 2});
|
|
|
|
NDArray z('c', {3}, nd4j::DataType::INT32);
|
|
|
|
auto e = NDArrayFactory::create<int>('c', {3}, {2, 1, 2});
|
|
|
|
|
|
|
|
nd4j::ops::add op;
|
|
|
|
auto status = op.execute({&x, &y}, {&z}, {}, {}, {});
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, status);
|
|
|
|
|
|
|
|
// z.printIndexedBuffer("Z");
|
|
|
|
|
|
|
|
ASSERT_TRUE(z.isSameShape(e));
|
|
|
|
ASSERT_TRUE(z.equalsTo(e));
|
|
|
|
}
|
2019-12-09 06:01:12 +01:00
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, test_bert_multiply_1) {
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {4, 128, 1});
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {4, 1, 128});
|
|
|
|
auto z = NDArrayFactory::create<float>('c', {4, 128, 128});
|
|
|
|
auto e = NDArrayFactory::create<float>('c', {4, 128, 128});
|
|
|
|
|
|
|
|
x.assign(0.f);
|
|
|
|
y.assign(1.f);
|
|
|
|
z.assign(119.f);
|
|
|
|
e.assign(0.f);
|
|
|
|
/*
|
|
|
|
Context ctx(1);
|
|
|
|
ctx.setInputArray(0, &x);
|
|
|
|
ctx.setInputArray(1, &y);
|
|
|
|
ctx.setOutputArray(0, &z);
|
|
|
|
|
|
|
|
nd4j::ops::multiply op;
|
|
|
|
auto status = op.execute(&ctx);
|
|
|
|
ASSERT_EQ(Status::OK(), status);
|
|
|
|
|
|
|
|
z.printIndexedBuffer();
|
|
|
|
*/
|
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
x.applyTrueBroadcast(BroadcastOpsTuple::Multiply(), y, z);
|
2019-12-09 06:01:12 +01:00
|
|
|
|
|
|
|
//z.printIndexedBuffer();
|
|
|
|
|
|
|
|
ASSERT_EQ(e, z);
|
|
|
|
}
|
2019-12-09 09:17:16 +01:00
|
|
|
|
|
|
|
TEST_F(BroadcastableOpsTests, test_bert_multiply_2) {
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {4, 128, 1});
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {768});
|
|
|
|
auto z = NDArrayFactory::create<float>('c', {4, 128, 768});
|
|
|
|
auto e = NDArrayFactory::create<float>('c', {4, 128, 768});
|
|
|
|
|
|
|
|
x.assign(1.f);
|
|
|
|
y.assign(2.f);
|
|
|
|
z.assign(119.f);
|
|
|
|
e.assign(2.f);
|
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
x.applyTrueBroadcast(BroadcastOpsTuple::Multiply(), y, z);
|
2019-12-09 09:17:16 +01:00
|
|
|
|
|
|
|
ASSERT_EQ(e, z);
|
|
|
|
}
|