2019-06-06 14:21:15 +02:00
|
|
|
/*******************************************************************************
|
|
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
|
|
*
|
|
|
|
* This program and the accompanying materials are made available under the
|
|
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
|
|
* License for the specific language governing permissions and limitations
|
|
|
|
* under the License.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
//
|
|
|
|
// @author Yurii Shyrma (iuriish@yahoo.com), created on 26.04.2019
|
|
|
|
//
|
|
|
|
|
2019-12-03 07:40:45 +01:00
|
|
|
#include<ops/declarable/helpers/gammaMathFunc.h>
|
2019-06-06 14:21:15 +02:00
|
|
|
#include<ops/declarable/helpers/zeta.h>
|
|
|
|
#include <NDArrayFactory.h>
|
|
|
|
|
|
|
|
namespace nd4j {
|
|
|
|
namespace ops {
|
|
|
|
namespace helpers {
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
template<typename T>
|
|
|
|
__global__ static void polyGammaCuda(const void *vn, const Nd4jLong *nShapeInfo,
|
|
|
|
const void *vx, const Nd4jLong *xShapeInfo,
|
|
|
|
void *vz, const Nd4jLong *zShapeInfo) {
|
|
|
|
|
|
|
|
const auto n = reinterpret_cast<const T*>(vn);
|
|
|
|
const auto x = reinterpret_cast<const T*>(vx);
|
2019-09-11 19:12:09 +02:00
|
|
|
auto z = reinterpret_cast<T*>(vz);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
__shared__ Nd4jLong len;
|
2019-12-03 07:40:45 +01:00
|
|
|
__shared__ bool sameOffsetNX, sameOffsetNZ;
|
2019-09-11 19:12:09 +02:00
|
|
|
|
2019-12-03 07:40:45 +01:00
|
|
|
if (threadIdx.x == 0) {
|
2019-09-11 19:12:09 +02:00
|
|
|
len = shape::length(nShapeInfo);
|
2019-12-03 07:40:45 +01:00
|
|
|
sameOffsetNX = shape::haveSameShapeAndStrides(xShapeInfo, nShapeInfo);
|
|
|
|
sameOffsetNZ = shape::haveSameShapeAndStrides(zShapeInfo, nShapeInfo);
|
|
|
|
}
|
2019-08-20 17:28:43 +02:00
|
|
|
__syncthreads();
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
const auto totalThreads = gridDim.x * blockDim.x;
|
|
|
|
|
|
|
|
for (int i = tid; i < len; i += totalThreads) {
|
|
|
|
|
2019-09-11 19:12:09 +02:00
|
|
|
const auto nOffset = shape::getIndexOffset(i, nShapeInfo);
|
2019-12-03 07:40:45 +01:00
|
|
|
const auto xOffset = sameOffsetNX ? nOffset : shape::getIndexOffset(i, xShapeInfo);
|
|
|
|
const auto zOffset = sameOffsetNZ ? nOffset : shape::getIndexOffset(i, zShapeInfo);
|
|
|
|
|
|
|
|
const T order = n[nOffset];
|
|
|
|
|
|
|
|
int sign = (static_cast<int>(order) + 1) % 2 ? -1 : 1;
|
|
|
|
|
|
|
|
if(order != static_cast<int>(order)) {
|
|
|
|
z[zOffset] = DataTypeUtils::nanOrZero<T>();
|
|
|
|
}
|
|
|
|
else if(order == 0) {
|
|
|
|
z[zOffset] = diGammaScalar<T>(x[xOffset]);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
T factorial = 1;
|
|
|
|
for(int i = 2; i <= order; ++i)
|
|
|
|
factorial *= i;
|
|
|
|
|
|
|
|
z[zOffset] = sign * factorial * zetaScalar<T>(order + 1, x[xOffset]);
|
|
|
|
}
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
template<typename T>
|
|
|
|
static void polyGammaCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const cudaStream_t *stream, const void *vn, const Nd4jLong *nShapeInfo, const void *vx, const Nd4jLong *xShapeInfo, void *vz, const Nd4jLong *zShapeInfo) {
|
|
|
|
|
|
|
|
polyGammaCuda<T><<<blocksPerGrid, threadsPerBlock, 1024, *stream>>>(vn, nShapeInfo, vx, xShapeInfo, vz, zShapeInfo);
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
|
|
void polyGamma(nd4j::LaunchContext * context, const NDArray& n, const NDArray& x, NDArray& z) {
|
|
|
|
|
2019-09-02 10:25:48 +02:00
|
|
|
NDArray::prepareSpecialUse({&z}, {&n, &x});
|
2019-09-11 19:12:09 +02:00
|
|
|
|
2019-12-03 07:40:45 +01:00
|
|
|
int threadsPerBlock = MAX_NUM_THREADS / 2;
|
2019-06-06 14:21:15 +02:00
|
|
|
int blocksPerGrid = (z.lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
|
2019-09-11 19:12:09 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
BUILD_SINGLE_SELECTOR(n.dataType(), polyGammaCudaLauncher, (blocksPerGrid, threadsPerBlock, context->getCudaStream(), n.getSpecialBuffer(), n.getSpecialShapeInfo(), x.getSpecialBuffer(), x.getSpecialShapeInfo(), z.getSpecialBuffer(), z.getSpecialShapeInfo()), FLOAT_TYPES);
|
|
|
|
|
2019-09-02 10:25:48 +02:00
|
|
|
NDArray::registerSpecialUse({&z}, {&n, &x});
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
BUILD_SINGLE_TEMPLATE(template void polyGammaCudaLauncher, (const int blocksPerGrid, const int threadsPerBlock, const cudaStream_t *stream, const void *vn, const Nd4jLong *nShapeInfo, const void *vx, const Nd4jLong *xShapeInfo, void *vz, const Nd4jLong *zShapeInfo), FLOAT_TYPES);
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|