cavis/libnd4j/include/ops/declarable/helpers/cuda/matrixSetDiag.cu

102 lines
4.3 KiB
Plaintext
Raw Normal View History

2019-06-06 14:21:15 +02:00
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com)
2019-06-06 14:21:15 +02:00
//
#include "ResultSet.h"
#include <ops/declarable/helpers/matrixSetDiag.h>
#include <PointersManager.h>
2019-06-06 14:21:15 +02:00
namespace nd4j {
namespace ops {
2019-06-06 14:21:15 +02:00
namespace helpers {
///////////////////////////////////////////////////////////////////
template<typename T>
__global__ static void matrixSetDiagCuda(const void* vx, const Nd4jLong* xShapeInfo, const void* vy, const Nd4jLong* yShapeInfo, void* vz, const Nd4jLong* zShapeInfo, const bool zeroPad) {
2019-06-06 14:21:15 +02:00
// x - input, shape [A,B,C]
// y - diagonal, shape [A,B]
// z - output, shape [A,B,C]
// input and output are the same array (x == z) when zeroPad = true
const auto x = reinterpret_cast<const T*>(vx);
const auto y = reinterpret_cast<const T*>(vy);
auto z = reinterpret_cast<T*>(vz);
__shared__ int xRank; // xRank = zRank, xRank = yRank + 1
__shared__ Nd4jLong xLen, *sharedMem; // xLen = zLen
__shared__ bool areSameOffsets;
if (threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
sharedMem = reinterpret_cast<Nd4jLong*>(shmem);
2019-06-06 14:21:15 +02:00
areSameOffsets = shape::haveSameShapeAndStrides(xShapeInfo, zShapeInfo); // shapes are definitely the same, but strides might not
xRank = shape::rank(xShapeInfo);
xLen = shape::length(xShapeInfo);
2019-06-06 14:21:15 +02:00
}
__syncthreads();
auto coords = sharedMem + threadIdx.x * xRank; // we provide (xRank * sizeof(Nd4jLong) * threadIdx.x) amount of shared memory per each thread
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
for (Nd4jLong i = tid; i < xLen; i += gridDim.x * blockDim.x) {
shape::index2coords(i, xShapeInfo, coords);
const auto xOffset = shape::getOffset(xShapeInfo, coords);
const auto zOffset = areSameOffsets ? xOffset : shape::getOffset(zShapeInfo, coords);
// condition to be on diagonal of innermost matrix
if(coords[xRank - 2] == coords[xRank - 1])
z[zOffset] = y[shape::getOffset(yShapeInfo, coords)];
else
z[zOffset] = zeroPad ? static_cast<T>(0) : x[xOffset];
2019-06-06 14:21:15 +02:00
}
}
///////////////////////////////////////////////////////////////////
template<typename T>
static void matrixSetDiagCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, const void* vx, const Nd4jLong* xShapeInfo, const void* vy, const Nd4jLong* yShapeInfo, void* vz, const Nd4jLong* zShapeInfo, const bool zeroPad) {
matrixSetDiagCuda<T><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(vx, xShapeInfo, vy, yShapeInfo, vz, zShapeInfo, zeroPad);
}
2019-06-06 14:21:15 +02:00
///////////////////////////////////////////////////////////////////
void matrixSetDiag(nd4j::LaunchContext* context, const NDArray& input, const NDArray& diagonal, NDArray& output, const bool zeroPad) {
const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int blocksPerGrid = (input.lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
const int sharedMem = threadsPerBlock * sizeof(Nd4jLong) * input.rankOf() + 128;
PointersManager manager(context, "matrixSetDiag");
NDArray::prepareSpecialUse({&output}, {&input, &diagonal});
BUILD_SINGLE_SELECTOR(input.dataType(), matrixSetDiagCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, context->getCudaStream(), input.getSpecialBuffer(), input.getSpecialShapeInfo(), diagonal.getSpecialBuffer(), diagonal.getSpecialShapeInfo(), output.specialBuffer(), output.specialShapeInfo(), zeroPad), LIBND4J_TYPES);
NDArray::registerSpecialUse({&output}, {&input, &diagonal});
manager.synchronize();
}
2019-06-06 14:21:15 +02:00
}
}
}