2021-02-01 13:31:45 +01:00
|
|
|
/* ******************************************************************************
|
|
|
|
*
|
2020-01-28 16:23:07 +01:00
|
|
|
*
|
|
|
|
* This program and the accompanying materials are made available under the
|
|
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
|
|
*
|
2021-02-01 13:31:45 +01:00
|
|
|
* See the NOTICE file distributed with this work for additional
|
|
|
|
* information regarding copyright ownership.
|
2020-01-28 16:23:07 +01:00
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
|
|
* License for the specific language governing permissions and limitations
|
|
|
|
* under the License.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
//
|
|
|
|
// @author Yurii Shyrma (iuriish@yahoo.com)
|
|
|
|
//
|
|
|
|
|
|
|
|
|
|
|
|
#include "cudnnUtils.h"
|
|
|
|
#include <ops/declarable/helpers/convolutions.h>
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
namespace sd {
|
2020-01-28 16:23:07 +01:00
|
|
|
namespace ops {
|
|
|
|
namespace platforms {
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
void checkConv2dCUDNNPadAsymmetric(NDArray* &input, NDArray* &gradI,
|
|
|
|
const int iH, const int iW,
|
|
|
|
const int oH, const int oW,
|
|
|
|
const int kH, const int kW,
|
|
|
|
const int sH, const int sW,
|
|
|
|
const int pH, const int pW,
|
|
|
|
const int dH, const int dW,
|
|
|
|
const bool isNCHW) {
|
|
|
|
|
|
|
|
const auto pHsum = ((oH - 1) * sH + ((kH - 1) * dH + 1) - iH);
|
|
|
|
const auto pWsum = ((oW - 1) * sW + ((kW - 1) * dW + 1) - iW);
|
|
|
|
|
|
|
|
const bool isPHasymm = pH != (pHsum - pH);
|
|
|
|
const bool isPWasymm = pW != (pWsum - pW);
|
|
|
|
|
|
|
|
if(!isPHasymm && !isPWasymm)
|
|
|
|
return;
|
|
|
|
|
|
|
|
std::vector<Nd4jLong> newShape = input->getShapeAsVector();
|
|
|
|
|
|
|
|
const int iHposition = isNCHW ? 2 : 1;
|
|
|
|
|
|
|
|
if(isPHasymm)
|
|
|
|
newShape[iHposition] += 1;
|
|
|
|
if(isPWasymm)
|
|
|
|
newShape[iHposition + 1] += 1;
|
|
|
|
|
|
|
|
NDArray* newInput = new NDArray(input->ordering(), newShape, input->dataType(), input->getContext());
|
|
|
|
|
|
|
|
if(isNCHW)
|
|
|
|
(*newInput)({0,0, 0,0, 0,input->sizeAt(2), 0,input->sizeAt(3)}).assign(input);
|
|
|
|
else
|
|
|
|
(*newInput)({0,0, 0,input->sizeAt(1), 0,input->sizeAt(2), 0,0}).assign(input);
|
|
|
|
|
|
|
|
input = newInput;
|
|
|
|
|
|
|
|
if(gradI != nullptr)
|
|
|
|
gradI = new NDArray(gradI->ordering(), newShape, gradI->dataType(), gradI->getContext());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
void checkConv3dCUDNNPadAsymmetric(NDArray* &input, NDArray* &gradI,
|
|
|
|
const int iD, const int iH, const int iW,
|
|
|
|
const int oD, const int oH, const int oW,
|
|
|
|
const int kD, const int kH, const int kW,
|
|
|
|
const int sD, const int sH, const int sW,
|
|
|
|
const int pD, const int pH, const int pW,
|
|
|
|
const int dD, const int dH, const int dW,
|
|
|
|
const bool isNCDHW) {
|
|
|
|
|
|
|
|
const auto pDsum = ((oD - 1) * sD + ((kD - 1) * dD + 1) - iD);
|
|
|
|
const auto pHsum = ((oH - 1) * sH + ((kH - 1) * dH + 1) - iH);
|
|
|
|
const auto pWsum = ((oW - 1) * sW + ((kW - 1) * dW + 1) - iW);
|
|
|
|
|
|
|
|
const bool isPDasymm = pD != (pDsum - pD);
|
|
|
|
const bool isPHasymm = pH != (pHsum - pH);
|
|
|
|
const bool isPWasymm = pW != (pWsum - pW);
|
|
|
|
|
|
|
|
if(!isPDasymm && !isPHasymm && !isPWasymm)
|
|
|
|
return;
|
|
|
|
|
|
|
|
std::vector<Nd4jLong> newShape = input->getShapeAsVector();
|
|
|
|
|
|
|
|
const int iDposition = isNCDHW ? 2 : 1;
|
|
|
|
|
|
|
|
if(isPDasymm)
|
|
|
|
newShape[iDposition] += 1;
|
|
|
|
if(isPHasymm)
|
|
|
|
newShape[iDposition + 1] += 1;
|
|
|
|
if(isPWasymm)
|
|
|
|
newShape[iDposition + 2] += 1;
|
|
|
|
|
|
|
|
NDArray* newInput = new NDArray(input->ordering(), newShape, input->dataType(), input->getContext());
|
|
|
|
|
|
|
|
if(isNCDHW)
|
|
|
|
(*newInput)({0,0, 0,0, 0,input->sizeAt(2), 0,input->sizeAt(3), 0,input->sizeAt(4)}).assign(input);
|
|
|
|
else
|
|
|
|
(*newInput)({0,0, 0,input->sizeAt(1), 0,input->sizeAt(2), 0,input->sizeAt(3), 0,0}).assign(input);
|
|
|
|
|
|
|
|
input = newInput;
|
|
|
|
|
|
|
|
if(gradI != nullptr)
|
|
|
|
gradI = new NDArray(gradI->ordering(), newShape, gradI->dataType(), gradI->getContext());
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
void pooling2dCUDNN(const LaunchContext* context,
|
|
|
|
const NDArray* input, NDArray* output,
|
|
|
|
const int kH, const int kW,
|
|
|
|
const int sH, const int sW,
|
|
|
|
const int pH, const int pW,
|
|
|
|
const int dH, const int dW,
|
|
|
|
const bool isNCHW, const cudnnPoolingMode_t mode) {
|
|
|
|
|
|
|
|
int bS, iC, iH, iW, oC, oH, oW; // batch size, input channels, input height/width, output channels, output height/width;
|
|
|
|
int indIOioC, indIiH, indWoC, indWiC, indWkH, indOoH; // corresponding indexes
|
2020-03-20 10:11:27 +01:00
|
|
|
ConvolutionUtils::getSizesAndIndexesConv2d(isNCHW, 0, *input, *output, bS, iC, iH, iW, oC, oH, oW, indIOioC, indIiH, indWiC, indWoC, indWkH, indOoH);
|
2020-01-28 16:23:07 +01:00
|
|
|
|
|
|
|
auto handle = reinterpret_cast<cudnnHandle_t *>(context->getCuDnnHandle());
|
|
|
|
cudnnStatus_t err = cudnnSetStream(*handle, *context->getCudaStream());
|
2020-03-02 10:49:41 +01:00
|
|
|
if (err != 0) throw sd::cuda_exception::build("pooling2dCUDNN: can't set stream for cuDNN", err);
|
2020-01-28 16:23:07 +01:00
|
|
|
|
|
|
|
cudnnTensorFormat_t format = isNCHW ? CUDNN_TENSOR_NCHW : CUDNN_TENSOR_NHWC;
|
|
|
|
|
|
|
|
// input descriptor
|
|
|
|
cudnnTensorDescriptor_t x;
|
|
|
|
cudnnCreateTensorDescriptor(&x);
|
2020-03-20 10:11:27 +01:00
|
|
|
if(input->ews() == 1 && input->ordering() == 'c')
|
2020-01-28 16:23:07 +01:00
|
|
|
err = cudnnSetTensor4dDescriptor(x, format, cudnnDataType(input->dataType()), bS, iC, iH, iW);
|
|
|
|
else
|
|
|
|
err = cudnnSetTensor4dDescriptorEx(x, cudnnDataType(input->dataType()), bS, iC, iH, iW, input->strideAt(0), input->strideAt(indIOioC), input->strideAt(indIiH), input->strideAt(indIiH + 1));
|
2020-03-02 10:49:41 +01:00
|
|
|
if (err != 0) throw sd::cuda_exception::build("pooling2dCUDNN: cudnnSetTensor4dDescriptor/cudnnSetTensor4dDescriptorEx for input failed", err);
|
2020-01-28 16:23:07 +01:00
|
|
|
|
|
|
|
// output descriptor
|
|
|
|
cudnnTensorDescriptor_t z;
|
|
|
|
cudnnCreateTensorDescriptor(&z);
|
2020-03-20 10:11:27 +01:00
|
|
|
if(output->ews() == 1 && output->ordering() == 'c')
|
2020-01-28 16:23:07 +01:00
|
|
|
err = cudnnSetTensor4dDescriptor(z, format, cudnnDataType(output->dataType()), bS, oC, oH, oW);
|
|
|
|
else
|
|
|
|
err = cudnnSetTensor4dDescriptorEx(z, cudnnDataType(output->dataType()), bS, oC, oH, oW, output->strideAt(0), output->strideAt(indIOioC), output->strideAt(indOoH), output->strideAt(indOoH + 1));
|
2020-03-02 10:49:41 +01:00
|
|
|
if (err != 0) throw sd::cuda_exception::build("pooling2dCUDNN: cudnnSetTensor4dDescriptor/cudnnSetTensor4dDescriptorEx for output failed", err);
|
2020-01-28 16:23:07 +01:00
|
|
|
|
|
|
|
// description of pooling
|
|
|
|
cudnnPoolingDescriptor_t pooling;
|
|
|
|
cudnnCreatePoolingDescriptor(&pooling);
|
|
|
|
err = cudnnSetPooling2dDescriptor(pooling, mode, CUDNN_PROPAGATE_NAN, kH, kW, pH, pW, sH, sW);
|
2020-03-02 10:49:41 +01:00
|
|
|
if (err != 0) throw sd::cuda_exception::build("pooling2dCUDNN: cudnnSetPooling2dDescriptor failed", err);
|
2020-01-28 16:23:07 +01:00
|
|
|
|
|
|
|
// provide scaling parameters
|
|
|
|
const float alpha32(1), beta32(0);
|
|
|
|
const double alpha64(1), beta64(0);
|
|
|
|
const void* alpha = output->sizeOfT() <= 4 ? reinterpret_cast<const void*>(&alpha32) : reinterpret_cast<const void*>(&alpha64);
|
|
|
|
const void* beta = output->sizeOfT() <= 4 ? reinterpret_cast<const void*>(&beta32) : reinterpret_cast<const void*>(&beta64);
|
|
|
|
|
|
|
|
NDArray::prepareSpecialUse({output}, {input});
|
|
|
|
|
|
|
|
// run calculation
|
2020-05-09 07:06:14 +02:00
|
|
|
err = cudnnPoolingForward(*handle, pooling, alpha, x, input->specialBuffer(), beta, z, output->specialBuffer());
|
2020-03-02 10:49:41 +01:00
|
|
|
if (err != 0) throw sd::cuda_exception::build("pooling2dCUDNN: cudnnPoolingForward failed", err);
|
2020-01-28 16:23:07 +01:00
|
|
|
|
|
|
|
auto cudaErr = cudaStreamSynchronize(*context->getCudaStream());
|
|
|
|
if (cudaErr != 0)
|
|
|
|
throw cuda_exception::build("pooling2dCUDNN: cudaStreamSynchronize failed !", cudaErr);
|
|
|
|
|
|
|
|
NDArray::registerSpecialUse({output}, {input});
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
void pooling2dBpCUDNN(const LaunchContext* context,
|
|
|
|
const NDArray* input, const NDArray* gradO,
|
|
|
|
NDArray* gradI,
|
|
|
|
const int kH, const int kW,
|
|
|
|
const int sH, const int sW,
|
|
|
|
const int pH, const int pW,
|
|
|
|
const int dH, const int dW,
|
|
|
|
const bool isNCHW, const cudnnPoolingMode_t mode) {
|
|
|
|
|
|
|
|
int bS, iC, iH, iW, oC, oH, oW; // batch size, input channels, input height/width, output channels, output height/width;
|
|
|
|
int indIOioC, indIiH, indWoC, indWiC, indWkH, indOoH; // corresponding indexes
|
2020-03-20 10:11:27 +01:00
|
|
|
ConvolutionUtils::getSizesAndIndexesConv2d(isNCHW, 0, *input, *gradO, bS, iC, iH, iW, oC, oH, oW, indIOioC, indIiH, indWiC, indWoC, indWkH, indOoH);
|
2020-01-28 16:23:07 +01:00
|
|
|
|
|
|
|
auto handle = reinterpret_cast<cudnnHandle_t *>(context->getCuDnnHandle());
|
|
|
|
cudnnStatus_t err = cudnnSetStream(*handle, *context->getCudaStream());
|
2020-03-02 10:49:41 +01:00
|
|
|
if (err != 0) throw sd::cuda_exception::build("pooling2dBpCUDNN: can't set stream for cuDNN", err);
|
2020-01-28 16:23:07 +01:00
|
|
|
|
|
|
|
cudnnTensorFormat_t format = isNCHW ? CUDNN_TENSOR_NCHW : CUDNN_TENSOR_NHWC;
|
|
|
|
|
|
|
|
// input and gradI descriptor
|
|
|
|
cudnnTensorDescriptor_t x;
|
|
|
|
cudnnCreateTensorDescriptor(&x);
|
2020-03-20 10:11:27 +01:00
|
|
|
if(input->ews() == 1 && input->ordering() == 'c')
|
2020-01-28 16:23:07 +01:00
|
|
|
err = cudnnSetTensor4dDescriptor(x, format, cudnnDataType(input->dataType()), bS, iC, iH, iW);
|
|
|
|
else
|
|
|
|
err = cudnnSetTensor4dDescriptorEx(x, cudnnDataType(input->dataType()), bS, iC, iH, iW, input->strideAt(0), input->strideAt(indIOioC), input->strideAt(indIiH), input->strideAt(indIiH + 1));
|
2020-03-02 10:49:41 +01:00
|
|
|
if (err != 0) throw sd::cuda_exception::build("pooling2dBpCUDNN: cudnnSetTensor4dDescriptor/cudnnSetTensor4dDescriptorEx for input/gradI failed", err);
|
2020-01-28 16:23:07 +01:00
|
|
|
|
|
|
|
// gradO descriptor
|
|
|
|
cudnnTensorDescriptor_t dz;
|
|
|
|
cudnnCreateTensorDescriptor(&dz);
|
2020-03-20 10:11:27 +01:00
|
|
|
if(gradO->ews() == 1 && gradO->ordering() == 'c')
|
2020-01-28 16:23:07 +01:00
|
|
|
err = cudnnSetTensor4dDescriptor(dz, format, cudnnDataType(gradO->dataType()), bS, oC, oH, oW);
|
|
|
|
else
|
|
|
|
err = cudnnSetTensor4dDescriptorEx(dz, cudnnDataType(gradO->dataType()), bS, oC, oH, oW, gradO->strideAt(0), gradO->strideAt(indIOioC), gradO->strideAt(indOoH), gradO->strideAt(indOoH + 1));
|
2020-03-02 10:49:41 +01:00
|
|
|
if (err != 0) throw sd::cuda_exception::build("pooling2dBpCUDNN: cudnnSetTensor4dDescriptor/cudnnSetTensor4dDescriptorEx for gradO failed", err);
|
2020-01-28 16:23:07 +01:00
|
|
|
|
|
|
|
// description of pooling
|
|
|
|
cudnnPoolingDescriptor_t pooling;
|
|
|
|
cudnnCreatePoolingDescriptor(&pooling);
|
|
|
|
err = cudnnSetPooling2dDescriptor(pooling, mode, CUDNN_PROPAGATE_NAN, kH, kW, pH, pW, sH, sW);
|
2020-03-02 10:49:41 +01:00
|
|
|
if (err != 0) throw sd::cuda_exception::build("pooling2dBpCUDNN: cudnnSetPooling2dDescriptor failed", err);
|
2020-01-28 16:23:07 +01:00
|
|
|
|
|
|
|
// provide scaling parameters
|
|
|
|
const float alpha32(1), beta32(0);
|
|
|
|
const double alpha64(1), beta64(0);
|
|
|
|
const void* alpha = gradO->sizeOfT() <= 4 ? reinterpret_cast<const void*>(&alpha32) : reinterpret_cast<const void*>(&alpha64);
|
|
|
|
const void* beta = gradO->sizeOfT() <= 4 ? reinterpret_cast<const void*>(&beta32) : reinterpret_cast<const void*>(&beta64);
|
|
|
|
|
|
|
|
NDArray::prepareSpecialUse({gradI}, {input, gradO});
|
|
|
|
|
|
|
|
// run calculation for gradI
|
2020-05-09 07:06:14 +02:00
|
|
|
err = cudnnPoolingBackward(*handle, pooling, alpha, dz, gradO->specialBuffer(), dz, gradO->specialBuffer(), x, input->specialBuffer(), beta, x, gradI->specialBuffer());
|
2020-03-02 10:49:41 +01:00
|
|
|
if (err != 0) throw sd::cuda_exception::build("pooling2dBpCUDNN: cudnnPoolingBackward failed", err);
|
2020-01-28 16:23:07 +01:00
|
|
|
|
|
|
|
auto cudaErr = cudaStreamSynchronize(*context->getCudaStream());
|
|
|
|
if (cudaErr != 0)
|
|
|
|
throw cuda_exception::build("pooling2dBpCUDNN: cudaStreamSynchronize failed !", cudaErr);
|
|
|
|
|
|
|
|
NDArray::registerSpecialUse({gradI}, {input, gradO});
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
void pooling3dCUDNN(const LaunchContext* context,
|
|
|
|
const NDArray* input, NDArray* output,
|
|
|
|
const int kD, const int kH, const int kW,
|
|
|
|
const int sD, const int sH, const int sW,
|
|
|
|
const int pD, const int pH, const int pW,
|
|
|
|
const int dD, const int dH, const int dW,
|
|
|
|
const bool isNCDHW, const cudnnPoolingMode_t mode) {
|
|
|
|
|
|
|
|
auto handle = reinterpret_cast<cudnnHandle_t *>(context->getCuDnnHandle());
|
|
|
|
cudnnStatus_t err = cudnnSetStream(*handle, *context->getCudaStream());
|
2020-03-02 10:49:41 +01:00
|
|
|
if (err != 0) throw sd::cuda_exception::build("pooling3dCUDNN: can't set stream for cuDNN", err);
|
2020-02-06 19:12:54 +01:00
|
|
|
|
2020-01-28 16:23:07 +01:00
|
|
|
const int numDims = 5;
|
|
|
|
|
|
|
|
int bS, iC, iD, iH, iW, oC, oD, oH, oW; // batch size, input channels, input depth/height/width, output channels, output depth/height/width;
|
|
|
|
int indIOioC, indIOioD, indWoC, indWiC, indWkD; // corresponding indexes
|
2020-03-20 10:11:27 +01:00
|
|
|
ConvolutionUtils::getSizesAndIndexesConv3d(isNCDHW, 0, *input, *output, bS, iC, iD, iH, iW, oC, oD, oH, oW, indIOioC, indIOioD, indWiC, indWoC, indWkD);
|
2020-01-28 16:23:07 +01:00
|
|
|
|
|
|
|
const int pSizes[] = {pD, pH, pW};
|
|
|
|
const int sSizes[] = {sD, sH, sW};
|
|
|
|
const int kSizes[] = {kD, kH, kW};
|
|
|
|
|
|
|
|
const int xShape[] = {bS, iC, iD, iH, iW};
|
|
|
|
const int zShape[] = {bS, oC, oD, oH, oW};
|
|
|
|
|
|
|
|
const int xStrides[] = {(int)input->strideAt(0), (int)input->strideAt(1), (int)input->strideAt(2), (int)input->strideAt(3), (int)input->strideAt(4)};
|
|
|
|
const int zStrides[] = {(int)output->strideAt(0), (int)output->strideAt(1), (int)output->strideAt(2), (int)output->strideAt(3), (int)output->strideAt(4)};
|
|
|
|
|
|
|
|
cudnnTensorFormat_t format = isNCDHW ? CUDNN_TENSOR_NCHW : CUDNN_TENSOR_NHWC;
|
|
|
|
|
|
|
|
// input descriptor
|
|
|
|
cudnnTensorDescriptor_t x;
|
|
|
|
cudnnCreateTensorDescriptor(&x);
|
2020-03-20 10:11:27 +01:00
|
|
|
if(input->ews() == 1 && input->ordering() == 'c')
|
2020-01-28 16:23:07 +01:00
|
|
|
err = cudnnSetTensorNdDescriptorEx(x, format, cudnnDataType(input->dataType()), numDims, xShape);
|
|
|
|
else
|
|
|
|
err = cudnnSetTensorNdDescriptor(x, cudnnDataType(input->dataType()), numDims, xShape, xStrides);
|
2020-03-02 10:49:41 +01:00
|
|
|
if (err != 0) throw sd::cuda_exception::build("pooling3dCUDNN: cudnnSetTensorNdDescriptor/cudnnSetTensorNdDescriptorEx for input failed", err);
|
2020-01-28 16:23:07 +01:00
|
|
|
|
|
|
|
// output descriptor
|
|
|
|
cudnnTensorDescriptor_t z;
|
|
|
|
cudnnCreateTensorDescriptor(&z);
|
2020-03-20 10:11:27 +01:00
|
|
|
if(output->ews() == 1 && output->ordering() == 'c')
|
2020-01-28 16:23:07 +01:00
|
|
|
err = cudnnSetTensorNdDescriptorEx(z, format, cudnnDataType(output->dataType()), numDims, zShape);
|
|
|
|
else
|
|
|
|
err = cudnnSetTensorNdDescriptor(z, cudnnDataType(output->dataType()), numDims, zShape, zStrides);
|
2020-03-02 10:49:41 +01:00
|
|
|
if (err != 0) throw sd::cuda_exception::build("pooling3dCUDNN: cudnnSetTensorNdDescriptor/cudnnSetTensorNdDescriptorEx for output failed", err);
|
2020-01-28 16:23:07 +01:00
|
|
|
|
|
|
|
// description of pooling
|
|
|
|
cudnnPoolingDescriptor_t pooling;
|
|
|
|
cudnnCreatePoolingDescriptor(&pooling);
|
|
|
|
err = cudnnSetPoolingNdDescriptor(pooling, mode, CUDNN_PROPAGATE_NAN, numDims - 2, kSizes, pSizes, sSizes);
|
2020-03-02 10:49:41 +01:00
|
|
|
if (err != 0) throw sd::cuda_exception::build("pooling3dCUDNN: cudnnSetPoolingNdDescriptor failed", err);
|
2020-01-28 16:23:07 +01:00
|
|
|
|
|
|
|
// provide scaling parameters
|
|
|
|
const float alpha32(1), beta32(0);
|
|
|
|
const double alpha64(1), beta64(0);
|
|
|
|
const void* alpha = output->sizeOfT() <= 4 ? reinterpret_cast<const void*>(&alpha32) : reinterpret_cast<const void*>(&alpha64);
|
|
|
|
const void* beta = output->sizeOfT() <= 4 ? reinterpret_cast<const void*>(&beta32) : reinterpret_cast<const void*>(&beta64);
|
|
|
|
|
|
|
|
NDArray::prepareSpecialUse({output}, {input});
|
|
|
|
|
|
|
|
// run calculation
|
2020-05-09 07:06:14 +02:00
|
|
|
err = cudnnPoolingForward(*handle, pooling, alpha, x, input->specialBuffer(), beta, z, output->specialBuffer());
|
2020-03-02 10:49:41 +01:00
|
|
|
if (err != 0) throw sd::cuda_exception::build("pooling3dCUDNN: cudnnPoolingForward failed", err);
|
2020-01-28 16:23:07 +01:00
|
|
|
|
|
|
|
auto cudaErr = cudaStreamSynchronize(*context->getCudaStream());
|
|
|
|
if (cudaErr != 0)
|
|
|
|
throw cuda_exception::build("pooling3dCUDNN: cudaStreamSynchronize failed !", cudaErr);
|
|
|
|
|
|
|
|
NDArray::registerSpecialUse({output}, {input});
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
void pooling3dBpCUDNN(const LaunchContext* context,
|
|
|
|
const NDArray* input, const NDArray* gradO,
|
|
|
|
NDArray* gradI,
|
|
|
|
const int kD, const int kH, const int kW,
|
|
|
|
const int sD, const int sH, const int sW,
|
|
|
|
const int pD, const int pH, const int pW,
|
|
|
|
const int dD, const int dH, const int dW,
|
|
|
|
const bool isNCDHW, const cudnnPoolingMode_t mode) {
|
|
|
|
|
|
|
|
auto handle = reinterpret_cast<cudnnHandle_t *>(context->getCuDnnHandle());
|
|
|
|
cudnnStatus_t err = cudnnSetStream(*handle, *context->getCudaStream());
|
2020-03-02 10:49:41 +01:00
|
|
|
if (err != 0) throw sd::cuda_exception::build("pooling3dBpCUDNN: can't set stream for cuDNN", err);
|
2020-01-28 16:23:07 +01:00
|
|
|
|
|
|
|
const int numDims = 5;
|
|
|
|
|
|
|
|
int bS, iC, iD, iH, iW, oC, oD, oH, oW; // batch size, input channels, input depth/height/width, output channels, output depth/height/width;
|
|
|
|
int indIOioC, indIOioD, indWoC, indWiC, indWkD; // corresponding indexes
|
2020-03-20 10:11:27 +01:00
|
|
|
ConvolutionUtils::getSizesAndIndexesConv3d(isNCDHW, 0, *input, *gradO, bS, iC, iD, iH, iW, oC, oD, oH, oW, indIOioC, indIOioD, indWiC, indWoC, indWkD);
|
2020-01-28 16:23:07 +01:00
|
|
|
|
|
|
|
const int pSizes[] = {pD, pH, pW};
|
|
|
|
const int sSizes[] = {sD, sH, sW};
|
|
|
|
const int kSizes[] = {kD, kH, kW};
|
|
|
|
|
|
|
|
const int xShape[] = {bS, iC, iD, iH, iW};
|
|
|
|
const int dzShape[] = {bS, oC, oD, oH, oW};
|
|
|
|
|
|
|
|
const int xStrides[] = {(int)input->strideAt(0), (int)input->strideAt(1), (int)input->strideAt(2), (int)input->strideAt(3), (int)input->strideAt(4)};
|
|
|
|
const int dzStrides[] = {(int)gradO->strideAt(0), (int)gradO->strideAt(1), (int)gradO->strideAt(2), (int)gradO->strideAt(3), (int)gradO->strideAt(4)};
|
|
|
|
|
|
|
|
cudnnTensorFormat_t format = isNCDHW ? CUDNN_TENSOR_NCHW : CUDNN_TENSOR_NHWC;
|
|
|
|
|
|
|
|
// input and gradI descriptor
|
|
|
|
cudnnTensorDescriptor_t x;
|
|
|
|
cudnnCreateTensorDescriptor(&x);
|
2020-03-20 10:11:27 +01:00
|
|
|
if(input->ews() == 1 && input->ordering() == 'c')
|
2020-01-28 16:23:07 +01:00
|
|
|
err = cudnnSetTensorNdDescriptorEx(x, format, cudnnDataType(input->dataType()), numDims, xShape);
|
|
|
|
else
|
|
|
|
err = cudnnSetTensorNdDescriptor(x, cudnnDataType(input->dataType()), numDims, xShape, xStrides);
|
2020-03-02 10:49:41 +01:00
|
|
|
if (err != 0) throw sd::cuda_exception::build("pooling3dBpCUDNN: cudnnSetTensorNdDescriptor/cudnnSetTensorNdDescriptorEx for input/gradI failed", err);
|
2020-01-28 16:23:07 +01:00
|
|
|
|
|
|
|
// gradO descriptor
|
|
|
|
cudnnTensorDescriptor_t dz;
|
|
|
|
cudnnCreateTensorDescriptor(&dz);
|
2020-03-20 10:11:27 +01:00
|
|
|
if(gradO->ews() == 1 && gradO->ordering() == 'c')
|
2020-01-28 16:23:07 +01:00
|
|
|
err = cudnnSetTensorNdDescriptorEx(dz, format, cudnnDataType(gradO->dataType()), numDims, dzShape);
|
|
|
|
else
|
|
|
|
err = cudnnSetTensorNdDescriptor(dz, cudnnDataType(gradO->dataType()), numDims, dzShape, dzStrides);
|
2020-03-02 10:49:41 +01:00
|
|
|
if (err != 0) throw sd::cuda_exception::build("pooling3dBpCUDNN: cudnnSetTensorNdDescriptor/cudnnSetTensorNdDescriptorEx for gradO failed", err);
|
2020-01-28 16:23:07 +01:00
|
|
|
|
|
|
|
// description of pooling
|
|
|
|
cudnnPoolingDescriptor_t pooling;
|
|
|
|
cudnnCreatePoolingDescriptor(&pooling);
|
|
|
|
err = cudnnSetPoolingNdDescriptor(pooling, mode, CUDNN_PROPAGATE_NAN, numDims - 2, kSizes, pSizes, sSizes);
|
2020-03-02 10:49:41 +01:00
|
|
|
if (err != 0) throw sd::cuda_exception::build("pooling3dBpCUDNN: cudnnSetPoolingNdDescriptor failed", err);
|
2020-01-28 16:23:07 +01:00
|
|
|
|
|
|
|
// provide scaling parameters
|
|
|
|
const float alpha32(1), beta32(0);
|
|
|
|
const double alpha64(1), beta64(0);
|
|
|
|
const void* alpha = gradO->sizeOfT() <= 4 ? reinterpret_cast<const void*>(&alpha32) : reinterpret_cast<const void*>(&alpha64);
|
|
|
|
const void* beta = gradO->sizeOfT() <= 4 ? reinterpret_cast<const void*>(&beta32) : reinterpret_cast<const void*>(&beta64);
|
|
|
|
|
|
|
|
// cudnn maxpool2d_bp api requires ff output as one of input arguments
|
|
|
|
if(mode == CUDNN_POOLING_MAX) {
|
|
|
|
|
|
|
|
NDArray temp(gradO);
|
|
|
|
|
|
|
|
NDArray::prepareSpecialUse({gradI}, {input, gradO, &temp});
|
|
|
|
|
|
|
|
// run ff calculation
|
2020-05-09 07:06:14 +02:00
|
|
|
err = cudnnPoolingForward(*handle, pooling, alpha, x, input->specialBuffer(), beta, dz, temp.specialBuffer());
|
2020-03-02 10:49:41 +01:00
|
|
|
if (err != 0) throw sd::cuda_exception::build("pooling3dCUDNN: cudnnPoolingForward failed", err);
|
2020-01-28 16:23:07 +01:00
|
|
|
|
|
|
|
// run bp calculation for gradI
|
2020-05-09 07:06:14 +02:00
|
|
|
err = cudnnPoolingBackward(*handle, pooling, alpha, dz, temp.specialBuffer(), dz, gradO->specialBuffer(), x, input->specialBuffer(), beta, x, gradI->specialBuffer());
|
2020-03-02 10:49:41 +01:00
|
|
|
if (err != 0) throw sd::cuda_exception::build("pooling2dBpCUDNN: cudnnPoolingBackward failed", err);
|
2020-01-28 16:23:07 +01:00
|
|
|
|
|
|
|
NDArray::registerSpecialUse({gradI}, {input, gradO, &temp});
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
|
|
|
|
NDArray::prepareSpecialUse({gradI}, {input, gradO});
|
|
|
|
|
|
|
|
// run bp calculation for gradI
|
2020-05-09 07:06:14 +02:00
|
|
|
err = cudnnPoolingBackward(*handle, pooling, alpha, dz, gradO->specialBuffer(), dz, gradO->specialBuffer(), x, input->specialBuffer(), beta, x, gradI->specialBuffer());
|
2020-03-02 10:49:41 +01:00
|
|
|
if (err != 0) throw sd::cuda_exception::build("pooling2dBpCUDNN: cudnnPoolingBackward failed", err);
|
2020-01-28 16:23:07 +01:00
|
|
|
|
|
|
|
NDArray::registerSpecialUse({gradI}, {input, gradO});
|
|
|
|
}
|
|
|
|
|
|
|
|
auto cudaErr = cudaStreamSynchronize(*context->getCudaStream());
|
|
|
|
if (cudaErr != 0)
|
|
|
|
throw cuda_exception::build("pooling3dBpCUDNN: cudaStreamSynchronize failed !", cudaErr);
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|