/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author sgazeos@gmail.com
#include <ops/declarable/helpers/image_suppression.h>
#include <NDArrayFactory.h>
#include <NativeOps.h>
#include <cuda_exception.h>
namespace nd4j {
namespace ops {
namespace helpers {
template <typename T>
static __device__ bool needToSuppressWithThreshold(T* boxes, Nd4jLong* boxesShape, int previousIndex, int nextIndex, T threshold) {
Nd4jLong previous0[] = {previousIndex, 0};
Nd4jLong previous1[] = {previousIndex, 1};
Nd4jLong previous2[] = {previousIndex, 2};
Nd4jLong previous3[] = {previousIndex, 3};
Nd4jLong next0[] = {nextIndex, 0};
Nd4jLong next1[] = {nextIndex, 1};
Nd4jLong next2[] = {nextIndex, 2};
Nd4jLong next3[] = {nextIndex, 3};
T minYPrev = nd4j::math::nd4j_min(boxes[shape::getOffset(boxesShape, previous0)], boxes[shape::getOffset(boxesShape, previous2)]);
T minXPrev = nd4j::math::nd4j_min(boxes[shape::getOffset(boxesShape, previous1)], boxes[shape::getOffset(boxesShape, previous3)]);
T maxYPrev = nd4j::math::nd4j_max(boxes[shape::getOffset(boxesShape, previous0)], boxes[shape::getOffset(boxesShape, previous2)]);
T maxXPrev = nd4j::math::nd4j_max(boxes[shape::getOffset(boxesShape, previous1)], boxes[shape::getOffset(boxesShape, previous3)]);
T minYNext = nd4j::math::nd4j_min(boxes[shape::getOffset(boxesShape, next0)], boxes[shape::getOffset(boxesShape, next2)]);
T minXNext = nd4j::math::nd4j_min(boxes[shape::getOffset(boxesShape, next1)], boxes[shape::getOffset(boxesShape, next3)]);
T maxYNext = nd4j::math::nd4j_max(boxes[shape::getOffset(boxesShape, next0)], boxes[shape::getOffset(boxesShape, next2)]);
T maxXNext = nd4j::math::nd4j_max(boxes[shape::getOffset(boxesShape, next1)], boxes[shape::getOffset(boxesShape, next3)]);
T areaPrev = (maxYPrev - minYPrev) * (maxXPrev - minXPrev);
T areaNext = (maxYNext - minYNext) * (maxXNext - minXNext);
if (areaNext <= T(0.f) || areaPrev <= T(0.f)) return false;
T minIntersectionY = nd4j::math::nd4j_max(minYPrev, minYNext);
T minIntersectionX = nd4j::math::nd4j_max(minXPrev, minXNext);
T maxIntersectionY = nd4j::math::nd4j_min(maxYPrev, maxYNext);
T maxIntersectionX = nd4j::math::nd4j_min(maxXPrev, maxXNext);
T intersectionArea =
nd4j::math::nd4j_max(T(maxIntersectionY - minIntersectionY), T(0.0f)) *
nd4j::math::nd4j_max(T(maxIntersectionX - minIntersectionX), T(0.0f));
T intersectionValue = intersectionArea / (areaPrev + areaNext - intersectionArea);
return intersectionValue > threshold;
};
template <typename T, typename I>
static __global__ void shouldSelectKernel(T* boxesBuf, Nd4jLong* boxesShape, I* indexBuf, I* selectedIndicesData, double threshold, int numSelected, int i, bool* shouldSelect) {
auto tid = blockIdx.x * blockDim.x + threadIdx.x;
auto step = gridDim.x * blockDim.x;
__shared__ unsigned int shouldSelectShared;
if (threadIdx.x == 0) {
shouldSelectShared = (unsigned int)shouldSelect[0];
}
__syncthreads();
for (int j = numSelected - 1 - tid; j >= 0; j -= step) {
if (shouldSelectShared) {
if (needToSuppressWithThreshold(boxesBuf, boxesShape, indexBuf[i],
indexBuf[selectedIndicesData[j]], T(threshold)))
atomicCAS(&shouldSelectShared, 1, 0);
*shouldSelect = shouldSelectShared > 0;
template <typename I>
static __global__ void copyIndices(void* indices, void* indicesLong, Nd4jLong len) {
I* indexBuf = reinterpret_cast<I*>(indices);
Nd4jLong* srcBuf = reinterpret_cast<Nd4jLong*>(indicesLong);;
auto tid = threadIdx.x + blockIdx.x * blockDim.x;
auto step = blockDim.x * gridDim.x;
for (auto i = tid; i < len; i += step)
indexBuf[i] = (I)srcBuf[i];
static void nonMaxSuppressionV2_(nd4j::LaunchContext* context, NDArray* boxes, NDArray* scales, int maxSize, double threshold, NDArray* output) {
auto stream = context->getCudaStream();
NDArray::prepareSpecialUse({output}, {boxes, scales});
std::unique_ptr<NDArray> indices(NDArrayFactory::create_<I>('c', {scales->lengthOf()})); // - 1, scales->lengthOf()); //, scales->getContext());
indices->linspace(0);
indices->syncToDevice(); // linspace only on CPU, so sync to Device as well
NDArray scores(*scales);
Nd4jPointer extras[2] = {nullptr, stream};
sortByValue(extras, indices->buffer(), indices->shapeInfo(), indices->specialBuffer(), indices->specialShapeInfo(), scores.buffer(), scores.shapeInfo(), scores.specialBuffer(), scores.specialShapeInfo(), true);
// TO DO: sort indices using scales as value row
//std::sort(indices.begin(), indices.end(), [scales](int i, int j) {return scales->e<T>(i) > scales->e<T>(j);});
auto indexBuf = reinterpret_cast<I*>(indices->specialBuffer());
NDArray selectedIndices = NDArrayFactory::create<I>('c', {output->lengthOf()});
int numSelected = 0;
int numBoxes = boxes->sizeAt(0);
auto boxesBuf = reinterpret_cast<T*>(boxes->specialBuffer());
auto selectedIndicesData = reinterpret_cast<I*>(selectedIndices.specialBuffer());
auto outputBuf = reinterpret_cast<I*>(output->specialBuffer());
bool* shouldSelectD;
auto err = cudaMalloc(&shouldSelectD, sizeof(bool));
if (err) {
throw cuda_exception::build("helpers::nonMaxSuppressionV2: Cannot allocate memory for bool flag", err);
for (I i = 0; i < boxes->sizeAt(0); ++i) {
bool shouldSelect = numSelected < output->lengthOf();
if (shouldSelect) {
err = cudaMemcpy(shouldSelectD, &shouldSelect, sizeof(bool), cudaMemcpyHostToDevice);
throw cuda_exception::build("helpers::nonMaxSuppressionV2: Cannot set up bool flag to device", err);
shouldSelectKernel<T,I><<<128, 256, 1024, *stream>>>(boxesBuf, boxes->specialShapeInfo(), indexBuf, selectedIndicesData, threshold, numSelected, i, shouldSelectD);
err = cudaMemcpy(&shouldSelect, shouldSelectD, sizeof(bool), cudaMemcpyDeviceToHost);
throw cuda_exception::build("helpers::nonMaxSuppressionV2: Cannot set up bool flag to host", err);
cudaMemcpy(reinterpret_cast<I*>(output->specialBuffer()) + numSelected, indexBuf + i, sizeof(I), cudaMemcpyDeviceToDevice);
cudaMemcpy(selectedIndicesData + numSelected, &i, sizeof(I), cudaMemcpyHostToDevice);
numSelected++;
err = cudaFree(shouldSelectD);
throw cuda_exception::build("helpers::nonMaxSuppressionV2: Cannot deallocate memory for bool flag", err);
void nonMaxSuppressionV2(nd4j::LaunchContext * context, NDArray* boxes, NDArray* scales, int maxSize, double threshold, NDArray* output) {
BUILD_DOUBLE_SELECTOR(boxes->dataType(), output->dataType(), nonMaxSuppressionV2_, (context, boxes, scales, maxSize, threshold, output), FLOAT_TYPES, INDEXING_TYPES);