95 lines
4.6 KiB
Plaintext
95 lines
4.6 KiB
Plaintext
|
/*******************************************************************************
|
||
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
||
|
*
|
||
|
* This program and the accompanying materials are made available under the
|
||
|
* terms of the Apache License, Version 2.0 which is available at
|
||
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||
|
* License for the specific language governing permissions and limitations
|
||
|
* under the License.
|
||
|
*
|
||
|
* SPDX-License-Identifier: Apache-2.0
|
||
|
******************************************************************************/
|
||
|
|
||
|
//
|
||
|
// Created by GS <sgazeos@gmail.com> on 3/21/2018.
|
||
|
//
|
||
|
|
||
|
#include "ResultSet.h"
|
||
|
#include <ops/declarable/helpers/matrix_diag.h>
|
||
|
#include <Status.h>
|
||
|
#include <ShapeUtils.h>
|
||
|
#include <ShapeUtils.h>
|
||
|
#include <TAD.h>
|
||
|
#include <cuda_exception.h>
|
||
|
#include <helpers/ConstantTadHelper.h>
|
||
|
|
||
|
namespace nd4j {
|
||
|
namespace ops {
|
||
|
namespace helpers {
|
||
|
|
||
|
|
||
|
template <typename T>
|
||
|
static __global__ void matrixDiagKernel(void const* inputBuffer, void* outputBuffer, Nd4jLong numTads, Nd4jLong inputLength,
|
||
|
Nd4jLong* tadOnlyInputShapeInfo, Nd4jLong *tadInputOffsets,
|
||
|
Nd4jLong* tadOnlyOutputShapeInfo, Nd4jLong *tadOutputOffsets) {
|
||
|
int totalThreads = blockDim.x;
|
||
|
for (Nd4jLong i = blockIdx.x; i < numTads; i += gridDim.x) {
|
||
|
auto yOffset = tadInputOffsets[i];
|
||
|
auto xOffset = tadOutputOffsets[i];
|
||
|
for (Nd4jLong j = threadIdx.x; j < inputLength; j += totalThreads) {
|
||
|
Nd4jLong coords[2] = {j, j};
|
||
|
Nd4jLong tadOffset = shape::getOffset(0, shape::shapeOf(tadOnlyOutputShapeInfo), shape::stride(tadOnlyOutputShapeInfo), coords, 2);
|
||
|
//shape::getIndexOffset(j, tadOnlyOutputShapeInfo, inputLength)
|
||
|
*(reinterpret_cast<T*>(outputBuffer) + xOffset + tadOffset) = *(reinterpret_cast<T const*>(inputBuffer) + yOffset + shape::getIndexOffset(j, tadOnlyInputShapeInfo, inputLength));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
//////////////////////////////////////////////////////////////////////////
|
||
|
// Returns a batched matrix tensor with new batched diagonal values.
|
||
|
// for detailed explanations please take a look on web page: https://www.tensorflow.org/api_docs/python/tf/matrix_set_diag
|
||
|
|
||
|
template <typename T>
|
||
|
static int _matrixDiag(nd4j::LaunchContext * context, const NDArray* input, NDArray* output) {
|
||
|
cudaStream_t* stream = context->getCudaStream();
|
||
|
//auto listOut = output->allTensorsAlongDimension({output->rankOf() - 2, output->rankOf() - 1});
|
||
|
//auto listDiag = input->allTensorsAlongDimension({input->rankOf() - 1});
|
||
|
|
||
|
//auto repeatDelta = shape::prodLong(newShape.data(), rank) / this->lengthOf();
|
||
|
std::vector<int> dimsToExclude = ShapeUtils::evalDimsToExclude(input->rankOf(), {input->rankOf() - 1});
|
||
|
const Nd4jLong numTads = ShapeUtils::getNumOfSubArrs(input->getShapeInfo(), dimsToExclude); //this->tensorsAlongDimension({dimension});
|
||
|
//printf("Repeat delta %lld, numTads %lld\n", repeatDelta, numTads);
|
||
|
//tadOnlyInputShapeInfo, tadInputOffsets, tadOnlyOutputShapeInfo, tadOutputOffsets;
|
||
|
std::vector<int> inputDims({input->rankOf() - 1});
|
||
|
std::vector<int> outputDims({output->rankOf() - 2, output->rankOf() - 1});
|
||
|
|
||
|
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), inputDims);
|
||
|
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), outputDims);
|
||
|
|
||
|
if (!input->isActualOnDeviceSide())
|
||
|
input->syncToDevice();
|
||
|
|
||
|
if (!output->isActualOnDeviceSide())
|
||
|
output->syncToDevice();
|
||
|
|
||
|
// create cuda stream and LaunchContext
|
||
|
cudaError_t cudaResult;
|
||
|
|
||
|
dim3 launchDims(256, 512, 8192);
|
||
|
matrixDiagKernel<T><<<launchDims.x, launchDims.y, launchDims.z, *stream>>>(input->getSpecialBuffer(), output->getSpecialBuffer(), numTads, input->sizeAt(-1), packX.specialShapeInfo(), packX.specialOffsets(), packZ.specialShapeInfo(), packZ.specialOffsets());
|
||
|
|
||
|
return Status::OK();
|
||
|
}
|
||
|
|
||
|
int matrixDiag(nd4j::LaunchContext * context, const NDArray* input, NDArray* output) {
|
||
|
BUILD_SINGLE_SELECTOR(input->dataType(), return _matrixDiag, (context, input, output), LIBND4J_TYPES);
|
||
|
}
|
||
|
|
||
|
BUILD_SINGLE_TEMPLATE(template int _matrixDiag, (nd4j::LaunchContext * context, const NDArray* input, NDArray* output), LIBND4J_TYPES);
|
||
|
|
||
|
}
|
||
|
}
|
||
|
}
|