147 lines
4.9 KiB
C++
147 lines
4.9 KiB
C++
|
/*******************************************************************************
|
||
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
||
|
*
|
||
|
* This program and the accompanying materials are made available under the
|
||
|
* terms of the Apache License, Version 2.0 which is available at
|
||
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||
|
* License for the specific language governing permissions and limitations
|
||
|
* under the License.
|
||
|
*
|
||
|
* SPDX-License-Identifier: Apache-2.0
|
||
|
******************************************************************************/
|
||
|
|
||
|
//
|
||
|
// @author raver119@gmail.com
|
||
|
//
|
||
|
|
||
|
#include <op_boilerplate.h>
|
||
|
#if NOT_EXCLUDED(OP_divide)
|
||
|
|
||
|
#include <ops/declarable/generic/helpers/BroadcastHelper.h>
|
||
|
#include <ops/declarable/CustomOperations.h>
|
||
|
|
||
|
namespace nd4j {
|
||
|
namespace ops {
|
||
|
BROADCASTABLE_OP_IMPL(divide, 0, 0) {
|
||
|
auto x = INPUT_VARIABLE(0);
|
||
|
auto y = INPUT_VARIABLE(1);
|
||
|
auto z = OUTPUT_VARIABLE(0);
|
||
|
|
||
|
BROADCAST_CHECK_EMPTY(x,y,z);
|
||
|
|
||
|
REQUIRE_TRUE(!y->isB(), 0, "DIVIDE OP: you can't divide by bool array!");
|
||
|
auto tZ = BroadcastHelper::broadcastApply(BroadcastOpsTuple::Divide(), x, y, z);
|
||
|
if (tZ == nullptr)
|
||
|
return ND4J_STATUS_KERNEL_FAILURE;
|
||
|
else if (tZ != z) {
|
||
|
OVERWRITE_RESULT(tZ);
|
||
|
}
|
||
|
|
||
|
return Status::OK();
|
||
|
}
|
||
|
DECLARE_SYN(Div, divide);
|
||
|
|
||
|
DECLARE_TYPES(divide) {
|
||
|
getOpDescriptor()
|
||
|
->setAllowedInputTypes(0, DataType::ANY)
|
||
|
->setAllowedInputTypes(1, DataType::ANY)
|
||
|
->setAllowedOutputTypes(0, DataType::INHERIT);
|
||
|
}
|
||
|
|
||
|
DECLARE_TYPES(divide_bp) {
|
||
|
getOpDescriptor()
|
||
|
->setAllowedInputTypes(DataType::ANY)
|
||
|
->setAllowedOutputTypes({ALL_FLOATS});
|
||
|
}
|
||
|
|
||
|
CUSTOM_OP_IMPL(divide_bp, 3, 2, false, 0, 0) {
|
||
|
auto x = INPUT_VARIABLE(0);
|
||
|
auto y = INPUT_VARIABLE(1);
|
||
|
auto epsNext = INPUT_VARIABLE(2);
|
||
|
|
||
|
auto gradX = OUTPUT_VARIABLE(0);
|
||
|
auto gradY = OUTPUT_VARIABLE(1);
|
||
|
|
||
|
/*
|
||
|
auto lambdaY = LAMBDA_TTT(_e, _x, _y) {
|
||
|
return _e * -_x / (_y * _y);
|
||
|
};
|
||
|
*/
|
||
|
|
||
|
if (x->isSameShape(y)) {
|
||
|
// PWT case case
|
||
|
|
||
|
// X gradient
|
||
|
//epsNext->applyPairwiseLambda(y, lambdaX, gradX);
|
||
|
gradX->assign((*epsNext) / (*y));
|
||
|
// Y gradient
|
||
|
//epsNext->applyTriplewiseLambda(x, y, lambdaY, gradY);
|
||
|
gradY->assign((*epsNext) * (*x) / ((*y) * (*y)));
|
||
|
gradY->applyTransform(transform::Neg, nullptr, nullptr);
|
||
|
|
||
|
} else if (y->isScalar()) {
|
||
|
// scalar case
|
||
|
|
||
|
auto tmp = epsNext->reduceNumber(reduce::Sum);
|
||
|
auto tmpX = x->reduceNumber(reduce::Sum);
|
||
|
//tmpX.printBuffer("SumX");
|
||
|
//tmp.printBuffer("Sum Eps");
|
||
|
gradY->assign(tmp * tmpX / ((*y) * (*y)));
|
||
|
gradY->applyTransform(transform::Neg, nullptr, nullptr);
|
||
|
|
||
|
//epsNext->applyLambda(lambdaS, gradX);
|
||
|
epsNext->applyScalarArr(scalar::Divide, y, gradX, nullptr);
|
||
|
} else {
|
||
|
// broadcast case
|
||
|
|
||
|
auto preX = *epsNext / *y;
|
||
|
|
||
|
NDArray negX(*x);
|
||
|
x->applyTransform(transform::Neg, &negX);
|
||
|
auto preY = *epsNext * negX / ((*y) * (*y));
|
||
|
|
||
|
auto axisX = ShapeUtils::evalBroadcastBackwardAxis(x->shapeInfo(), epsNext->shapeInfo());
|
||
|
auto axisY = ShapeUtils::evalBroadcastBackwardAxis(y->shapeInfo(), epsNext->shapeInfo());
|
||
|
|
||
|
if (axisX.size() > 0) {
|
||
|
auto sum = preX.reduceAlongDimension(reduce::Sum, axisX);
|
||
|
gradX->assign(sum);
|
||
|
delete sum;
|
||
|
} else
|
||
|
gradX->assign(preX);
|
||
|
|
||
|
if (axisY.size() > 0) {
|
||
|
auto sum = preY.reduceAlongDimension(reduce::Sum, axisY);
|
||
|
gradY->assign(sum);
|
||
|
delete sum;
|
||
|
} else
|
||
|
gradY->assign(preY);
|
||
|
}
|
||
|
|
||
|
return Status::OK();
|
||
|
}
|
||
|
|
||
|
DECLARE_SHAPE_FN(divide_bp) {
|
||
|
auto x = inputShape->at(0);
|
||
|
auto y = inputShape->at(1);
|
||
|
auto e = inputShape->at(2);
|
||
|
|
||
|
// eps always has shape of x
|
||
|
// grad always has shape of y
|
||
|
|
||
|
Nd4jLong *shapeE;
|
||
|
Nd4jLong *shapeG;
|
||
|
|
||
|
COPY_SHAPE(x, shapeE);
|
||
|
COPY_SHAPE(y, shapeG);
|
||
|
|
||
|
return SHAPELIST(CONSTANT(shapeE), CONSTANT(shapeG));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif
|