109 lines
5.0 KiB
C++
109 lines
5.0 KiB
C++
|
/*******************************************************************************
|
||
|
* Copyright (c) 2020 Konduit, K.K.
|
||
|
*
|
||
|
* This program and the accompanying materials are made available under the
|
||
|
* terms of the Apache License, Version 2.0 which is available at
|
||
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||
|
* License for the specific language governing permissions and limitations
|
||
|
* under the License.
|
||
|
*
|
||
|
* SPDX-License-Identifier: Apache-2.0
|
||
|
******************************************************************************/
|
||
|
|
||
|
//
|
||
|
// @author GS <sgazeos@gmail.com>
|
||
|
//
|
||
|
#include <op_boilerplate.h>
|
||
|
#include <NDArray.h>
|
||
|
#include <execution/Threads.h>
|
||
|
#include <MmulHelper.h>
|
||
|
#include <ShapeUtils.h>
|
||
|
|
||
|
#include "../lup.h"
|
||
|
#include "../triangular_solve.h"
|
||
|
#include "../lstsq.h"
|
||
|
#include "../qr.h"
|
||
|
|
||
|
namespace nd4j {
|
||
|
namespace ops {
|
||
|
namespace helpers {
|
||
|
|
||
|
template <typename T>
|
||
|
static void fillRegularizer(NDArray& ioMatrix, double const value) {
|
||
|
auto lastDims = ioMatrix.allTensorsAlongDimension({-2, -1});
|
||
|
auto rows = ioMatrix.sizeAt(-2);
|
||
|
//auto cols = ioMatrix.sizeAt(-1);
|
||
|
|
||
|
for (auto x = 0; x < lastDims.size(); x++) {
|
||
|
for (auto r = 0; r < rows; r++) {
|
||
|
lastDims[x]->t<T>(r,r) = (T)value;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
int leastSquaresSolveFunctor_(nd4j::LaunchContext* context, NDArray const* leftInput, NDArray const* rightInput, double const l2Regularizer, bool const fast, NDArray* output) {
|
||
|
NDArray::preparePrimaryUse({output}, {leftInput, rightInput});
|
||
|
if (fast) { // Cholesky decomposition approach
|
||
|
// Equation for solve A^T * Ax = A^T * b, so
|
||
|
// 1. Computing A2:
|
||
|
auto tAtShape = ShapeUtils::evalShapeForMatmul(leftInput->getShapeInfo(), leftInput->getShapeInfo(), true, false);
|
||
|
//tAtShape[tAtShape.size() - 2] = output->sizeAt(-2);
|
||
|
NDArray leftOutput('c', tAtShape, output->dataType(), context);
|
||
|
MmulHelper::matmul(leftInput, leftInput, &leftOutput, true, false); // Computing A2 = A^T * A
|
||
|
// 2. Computing B' = A^T * b
|
||
|
auto rightOutput = output->ulike();
|
||
|
|
||
|
MmulHelper::matmul(leftInput, rightInput, &rightOutput, true, false); // Computing B' = A^T * b
|
||
|
// 3. due l2Regularizer = 0, skip regularization ( indeed A' = A2 - l2Regularizer * I)
|
||
|
auto regularizer = leftOutput.ulike();
|
||
|
fillRegularizer<T>(regularizer, l2Regularizer);https://mangapark.net/
|
||
|
// regularizer *= l2Regularizer;
|
||
|
leftOutput += regularizer;
|
||
|
// 4. Cholesky decomposition -- output matrix is square and lower triangular
|
||
|
// auto leftOutputT = leftOutput.ulike();
|
||
|
auto err = helpers::cholesky(context, &leftOutput, &leftOutput, true); // inplace decomposition
|
||
|
if (err) return err;
|
||
|
// alternate moment: inverse lower triangular matrix to solve equation A'x = b' => L^Tx = L^-1 * b'
|
||
|
// solve one upper triangular system (to avoid float problems)
|
||
|
|
||
|
// 5. Solve two triangular systems:
|
||
|
auto rightB = rightOutput.ulike();
|
||
|
helpers::triangularSolveFunctor(context, &leftOutput, &rightOutput, true, false, &rightB);
|
||
|
helpers::adjointMatrix(context, &leftOutput, true, &leftOutput); //.transposei();
|
||
|
helpers::triangularSolveFunctor(context, &leftOutput, &rightB, false, false, output);
|
||
|
// All done
|
||
|
}
|
||
|
else { // QR decomposition approach
|
||
|
// Equation for solve Rx = Q^T * b, where A = Q * R, where Q - orthogonal matrix, and R - upper triangular
|
||
|
// 1. QR decomposition
|
||
|
auto qShape = leftInput->getShapeAsVector();
|
||
|
auto rShape = leftInput->getShapeAsVector();
|
||
|
qShape[leftInput->rankOf() - 1] = leftInput->sizeAt(-2);
|
||
|
|
||
|
NDArray Q(leftInput->ordering(), qShape, leftInput->dataType(), context);// = leftInput->ulike();
|
||
|
NDArray R(leftInput->ordering(), rShape, leftInput->dataType(), context); // = rightInput->ulike();
|
||
|
helpers::qr(context, leftInput, &Q, &R, true);
|
||
|
// 2. b` = Q^t * b:
|
||
|
auto rightOutput = rightInput->ulike();
|
||
|
MmulHelper::matmul(&Q, rightInput, &rightOutput, true, false);
|
||
|
// 3. Solve triangular system
|
||
|
helpers::triangularSolveFunctor(context, &R, &rightOutput, false, false, output);
|
||
|
}
|
||
|
NDArray::registerPrimaryUse({output}, {leftInput, rightInput});
|
||
|
return Status::OK();
|
||
|
}
|
||
|
|
||
|
int leastSquaresSolveFunctor(nd4j::LaunchContext* context, NDArray const* leftInput, NDArray const* rightInput, double const l2Regularizer, bool const fast, NDArray* output) {
|
||
|
BUILD_SINGLE_SELECTOR(leftInput->dataType(), return leastSquaresSolveFunctor_, (context, leftInput, rightInput, l2Regularizer, fast, output), FLOAT_TYPES);
|
||
|
}
|
||
|
|
||
|
}
|
||
|
}
|
||
|
}
|