2019-06-06 14:21:15 +02:00
|
|
|
/*******************************************************************************
|
|
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
|
|
*
|
|
|
|
* This program and the accompanying materials are made available under the
|
|
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
|
|
* License for the specific language governing permissions and limitations
|
|
|
|
* under the License.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
//
|
|
|
|
// @author raver119@gmail.com
|
|
|
|
//
|
|
|
|
|
|
|
|
#ifndef LIBND4J_HEADERS_BOOLEAN_H
|
|
|
|
#define LIBND4J_HEADERS_BOOLEAN_H
|
|
|
|
|
|
|
|
#include <ops/declarable/headers/common.h>
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
namespace sd {
|
2019-06-06 14:21:15 +02:00
|
|
|
namespace ops {
|
|
|
|
|
|
|
|
/**
|
|
|
|
* This is scalar boolean op.
|
|
|
|
* Both operands should be scalars.
|
|
|
|
*
|
|
|
|
* Returns true if x < y
|
|
|
|
*/
|
|
|
|
#if NOT_EXCLUDED(OP_lt_scalar)
|
|
|
|
DECLARE_BOOLEAN_OP(lt_scalar, 2, true);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/**
|
|
|
|
* This is scalar boolean op.
|
|
|
|
* Both operands should be scalars.
|
|
|
|
*
|
|
|
|
* Returns true if x > y
|
|
|
|
*/
|
|
|
|
#if NOT_EXCLUDED(OP_gt_scalar)
|
|
|
|
DECLARE_BOOLEAN_OP(gt_scalar, 2, true);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/**
|
|
|
|
* This is scalar boolean op.
|
|
|
|
* Both operands should be scalars.
|
|
|
|
*
|
|
|
|
* Returns true if x <= y
|
|
|
|
*/
|
|
|
|
#if NOT_EXCLUDED(OP_lte_scalar)
|
|
|
|
DECLARE_BOOLEAN_OP(lte_scalar, 2, true);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/**
|
|
|
|
* This is scalar boolean op.
|
|
|
|
* Both operands should be scalars.
|
|
|
|
*
|
|
|
|
* Returns true if x >= y
|
|
|
|
*/
|
|
|
|
#if NOT_EXCLUDED(OP_gte_scalar)
|
|
|
|
DECLARE_BOOLEAN_OP(gte_scalar, 2, true);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/**
|
|
|
|
* This is scalar boolean op.
|
|
|
|
* Both operands should be scalars.
|
|
|
|
*
|
|
|
|
* Returns true if both operands are equal.
|
|
|
|
*/
|
|
|
|
#if NOT_EXCLUDED(OP_eq_scalar)
|
|
|
|
DECLARE_BOOLEAN_OP(eq_scalar, 2, true);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/**
|
|
|
|
* This is scalar boolean op.
|
|
|
|
* Both operands should be scalars.
|
|
|
|
*
|
|
|
|
* Returns true if x != y
|
|
|
|
*/
|
|
|
|
#if NOT_EXCLUDED(OP_neq_scalar)
|
|
|
|
DECLARE_BOOLEAN_OP(neq_scalar, 2, true);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/**
|
|
|
|
* This op takes 2 n-dimensional arrays as input, and return
|
|
|
|
* array of the same shape, with elements, either from x or y, depending on the condition.
|
|
|
|
*/
|
|
|
|
#if NOT_EXCLUDED(OP_where)
|
|
|
|
DECLARE_CUSTOM_OP(Where, 1, 1, false, 0, 0);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if NOT_EXCLUDED(OP_where_np)
|
|
|
|
DECLARE_CUSTOM_OP(where_np, 1, 1, false, 0, 0);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/**
|
|
|
|
* This op takes 2 n-dimensional arrays as input, and return
|
|
|
|
* array of the same shape, with elements, either from x or y, depending on the condition.
|
|
|
|
*/
|
|
|
|
#if NOT_EXCLUDED(OP_select)
|
|
|
|
DECLARE_CUSTOM_OP(select, 3, 1, false, 0, 0);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/**
|
|
|
|
* This op takes either 1 argument and 1 scalar
|
|
|
|
* or 1 argument and another comparison array
|
|
|
|
* and runs a pre defined conditional op.
|
|
|
|
*
|
|
|
|
* The output of the op is dynamic in size and returns a flat vector of elements
|
|
|
|
* that return true on the given condition.
|
|
|
|
* In numpy parlance, most people might understand:
|
|
|
|
* a[a > 2]
|
|
|
|
* where a is a numpy array and the condition is true when an element is
|
|
|
|
* > 2. Libnd4j already implements a number of pre defined conditions.
|
|
|
|
* @tparam T
|
|
|
|
*/
|
|
|
|
#if NOT_EXCLUDED(OP_choose)
|
2019-07-03 13:24:50 +02:00
|
|
|
DECLARE_CUSTOM_OP(choose, -1, 1, false, -2, -1);
|
2019-06-06 14:21:15 +02:00
|
|
|
#endif
|
|
|
|
|
|
|
|
/**
|
|
|
|
* This op takes 1 n-dimensional array as input, and returns true if for every adjacent pair we have x[i] <= x[i+1].
|
|
|
|
*/
|
|
|
|
#if NOT_EXCLUDED(OP_is_non_decreasing)
|
|
|
|
DECLARE_BOOLEAN_OP(is_non_decreasing, 1, true);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/**
|
|
|
|
* This op takes 1 n-dimensional array as input, and returns true if for every adjacent pair we have x[i] < x[i+1].
|
|
|
|
*/
|
|
|
|
#if NOT_EXCLUDED(OP_is_strictly_increasing)
|
|
|
|
DECLARE_BOOLEAN_OP(is_strictly_increasing, 1, true);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/**
|
|
|
|
* This op takes 1 n-dimensional array as input, and returns true if input is a numeric array.
|
|
|
|
*/
|
|
|
|
#if NOT_EXCLUDED(OP_is_numeric_tensor)
|
|
|
|
DECLARE_BOOLEAN_OP(is_numeric_tensor, 1, true);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/**
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
#if NOT_EXCLUDED(OP_boolean_not)
|
|
|
|
DECLARE_OP(boolean_not, 1, 1, true);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|