2019-06-06 14:21:15 +02:00
|
|
|
/*******************************************************************************
|
|
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
|
|
*
|
|
|
|
* This program and the accompanying materials are made available under the
|
|
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
|
|
* License for the specific language governing permissions and limitations
|
|
|
|
* under the License.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
//
|
|
|
|
// Created by raver119 on 12.10.2017.
|
|
|
|
//
|
|
|
|
|
|
|
|
#include "testlayers.h"
|
|
|
|
#include <NDArray.h>
|
|
|
|
#include <ops/declarable/CustomOperations.h>
|
|
|
|
|
|
|
|
|
|
|
|
using namespace nd4j;
|
|
|
|
using namespace nd4j::ops;
|
|
|
|
|
|
|
|
class ParityOpsTests : public testing::Test {
|
|
|
|
public:
|
|
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, TestZeroAs1) {
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {10, 10});
|
|
|
|
x.assign(1.0);
|
|
|
|
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {10, 10});
|
|
|
|
exp.assign(0.0f);
|
|
|
|
|
|
|
|
nd4j::ops::zeros_as op;
|
|
|
|
|
|
|
|
auto result = op.execute({&x}, {}, {});
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(z->isSameShape(&x));
|
|
|
|
ASSERT_TRUE(z->equalsTo(&exp));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, TestMaximum1) {
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {10, 10});
|
|
|
|
x.assign(1.0);
|
|
|
|
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {10, 10});
|
|
|
|
y.assign(2.0);
|
|
|
|
|
|
|
|
nd4j::ops::maximum op;
|
|
|
|
|
|
|
|
auto result = op.execute({&x, &y}, {}, {});
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(y.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, TestMinimum1) {
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {10, 10});
|
|
|
|
x.assign(1.0f);
|
|
|
|
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {10, 10});
|
|
|
|
y.assign(-2.0f);
|
|
|
|
|
|
|
|
|
|
|
|
nd4j::ops::minimum op;
|
|
|
|
|
|
|
|
auto result = op.execute({&x, &y}, {}, {});
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(y.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, TestTear1) {
|
|
|
|
auto input = NDArrayFactory::create<float>('c', {10, 5});
|
|
|
|
auto tads = input.allTensorsAlongDimension({1});
|
2019-12-20 20:35:39 +01:00
|
|
|
for (int e = 0; e < tads.size(); e++) {
|
|
|
|
ASSERT_EQ(5, tads.at(e)->lengthOf());
|
|
|
|
tads.at(e)->assign((float) e + 1);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
nd4j::ops::tear op;
|
|
|
|
|
|
|
|
auto result = op.execute({&input}, {}, {1});
|
|
|
|
|
|
|
|
ASSERT_EQ(10, result->size());
|
|
|
|
|
|
|
|
for (int e = 0; e < result->size(); e++)
|
2019-12-20 20:35:39 +01:00
|
|
|
ASSERT_TRUE(tads.at(e)->equalsTo(result->at(e)));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, TestUnstack1) {
|
|
|
|
auto input = NDArrayFactory::create<float>('c', {10, 5});
|
|
|
|
auto tads = input.allTensorsAlongDimension({1});
|
2019-12-20 20:35:39 +01:00
|
|
|
for (int e = 0; e < tads.size(); e++) {
|
|
|
|
ASSERT_EQ(5, tads.at(e)->lengthOf());
|
|
|
|
tads.at(e)->assign((float) e + 1);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
nd4j::ops::unstack op;
|
|
|
|
|
|
|
|
auto result = op.execute({&input}, {}, {0});
|
|
|
|
|
|
|
|
ASSERT_EQ(10, result->size());
|
|
|
|
|
|
|
|
for (int e = 0; e < result->size(); e++)
|
2019-12-20 20:35:39 +01:00
|
|
|
ASSERT_TRUE(tads.at(e)->equalsTo(result->at(e)));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, TestUnstack2) {
|
|
|
|
auto input = NDArrayFactory::create<float>('c', {5,2,6});
|
|
|
|
auto tads = input.allTensorsAlongDimension({0,1});
|
2019-12-20 20:35:39 +01:00
|
|
|
for (int e = 0; e < tads.size(); e++) {
|
|
|
|
ASSERT_EQ(10, tads.at(e)->lengthOf());
|
|
|
|
tads.at(e)->assign((float) e + 1);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
nd4j::ops::unstack op;
|
|
|
|
|
|
|
|
auto result = op.execute({&input}, {}, {2});
|
|
|
|
|
|
|
|
ASSERT_EQ(6, result->size());
|
|
|
|
|
|
|
|
for (int e = 0; e < result->size(); e++)
|
2019-12-20 20:35:39 +01:00
|
|
|
ASSERT_TRUE(tads.at(e)->equalsTo(result->at(e)));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, TestUnstack3) {
|
|
|
|
auto input = NDArrayFactory::create<float>('c', {3,2,3});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {3, 2}, {1.f, 4., 7., 10.f, 13.f, 16.f});
|
|
|
|
input.linspace(1);
|
|
|
|
|
|
|
|
nd4j::ops::unstack op;
|
|
|
|
|
|
|
|
auto result = op.execute({&input}, {}, {2});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, TestUnstack4) {
|
|
|
|
auto input = NDArrayFactory::create<float>('c', {3,2,3});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {3, 3}, { 1, 2, 3, 7, 8, 9, 13, 14, 15.});
|
|
|
|
input.linspace(1);
|
|
|
|
|
|
|
|
nd4j::ops::unstack op;
|
|
|
|
|
|
|
|
auto result = op.execute({&input}, {}, {1});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, TestUnstack5) {
|
|
|
|
auto input = NDArrayFactory::create<float>('c', {3,2,3});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {2, 3}, { 1, 2, 3, 4, 5, 6});
|
|
|
|
input.linspace(1);
|
|
|
|
|
|
|
|
nd4j::ops::unstack op;
|
|
|
|
|
|
|
|
auto result = op.execute({&input}, {}, {0});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, TestUnstack6) {
|
|
|
|
auto input = NDArrayFactory::create<float>('c', {1, 1, 1});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {1, 1}, {1});
|
|
|
|
input.linspace(1);
|
|
|
|
|
|
|
|
nd4j::ops::unstack op;
|
|
|
|
|
|
|
|
auto result = op.execute({&input}, {}, {0});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, TestUnstack7) {
|
|
|
|
auto input = NDArrayFactory::create<float>('c', {1, 1, 1});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {1, 1}, {1});
|
|
|
|
input.linspace(1);
|
|
|
|
|
|
|
|
nd4j::ops::unstack op;
|
|
|
|
|
|
|
|
auto result = op.execute({&input}, {}, {1});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, TestUnstack8) {
|
|
|
|
auto input = NDArrayFactory::create<float>('c', {1, 1});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {1}, {1});
|
|
|
|
input.linspace(1);
|
|
|
|
|
|
|
|
nd4j::ops::unstack op;
|
|
|
|
|
|
|
|
auto result = op.execute({&input}, {}, {0});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, TestUnstack9) {
|
|
|
|
auto input = NDArrayFactory::create<float>('c', {1, 1});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {1}, {1});
|
|
|
|
input.linspace(1);
|
|
|
|
|
|
|
|
nd4j::ops::unstack op;
|
|
|
|
|
|
|
|
auto result = op.execute({&input}, {}, {1});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
2019-06-15 13:34:34 +02:00
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(ParityOpsTests, TestUnstack10) {
|
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<float>('c', {3, 0, 2});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {0,2});
|
|
|
|
|
|
|
|
nd4j::ops::unstack op;
|
|
|
|
|
|
|
|
auto result = op.execute({&input}, {}, {0});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(result->at(0)));
|
|
|
|
ASSERT_TRUE(exp.isSameShape(result->at(1)));
|
|
|
|
ASSERT_TRUE(exp.isSameShape(result->at(2)));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(ParityOpsTests, TestUnstack11) {
|
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<float>('c', {3, 0, 2});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {3,0});
|
|
|
|
|
|
|
|
nd4j::ops::unstack op;
|
|
|
|
|
|
|
|
auto result = op.execute({&input}, {}, {2});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(result->at(0)));
|
|
|
|
ASSERT_TRUE(exp.isSameShape(result->at(1)));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(ParityOpsTests, TestUnstack12) {
|
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<float>('c', {3, 0, 2});
|
|
|
|
|
|
|
|
nd4j::ops::unstack op;
|
|
|
|
|
|
|
|
auto result = op.execute({&input}, {}, {1});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
ASSERT_TRUE(result->size() == 0);
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, ExpandDimsTest1) {
|
|
|
|
auto input = NDArrayFactory::create<float>('c', {5, 5});
|
|
|
|
input.linspace(1);
|
|
|
|
auto reshaped = input.reshape('c', {5, 1, 5});
|
|
|
|
|
|
|
|
nd4j::ops::expand_dims op;
|
|
|
|
auto result = op.execute({&input}, {}, {1});
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
Merge master to upstream (#7945)
* Shugeo strided slice zeros (#14)
* Modified strided_slice op to properly work with empty-like shapes.
* Fixed test for reduce_mean with empty-like input.
* [WIP] Last merge (#15)
* correct logsoftmax looss (#2)
* Small SameDiff listener fix (#4)
* Various fixes (#6)
* #7839 Fix for asXMatrix and tests
* #7866 EmbeddingSequenceLayer dtype fix + test
* #7856 SameDiff save/load stream methods
* #7859 RegressionEvaluation rank 4 fix + tests + axis configuration
* EvaluationBinary 3d/4d
* More evaluation 3d/4d tests
* #7847 Evaluation empty checks
* Small test ifx
* #7848 Fix median edge case
* Improve DL4J samediff layer tests
* [WIP] FastText wrapper implemented (#8)
* FastText implemented
* Some fixes
* Fix shapes for wordsNearest
* Validation of input vectors
* Fixes
* Fixed test
* Thread tagged
* Some tweaks
* setContextClassLoader for DeallocatorServiceThread
* Numpy format tests (#1)
* Various fixes (#11)
* #7852 SameDiff gather fix
* #7892 SameDiff placeholder to constant conversion
* #7890 validate input rank for MLN/CG init methods
* Fix broken permute shape calculation
* Permute and gather fixes
* Tests
* #7850 LogSumExp fix + test
* Handful of test fixes
* Empty arrays with non-scalar shapes (#10)
* minor rearrangements for lambdas
* empty tensors with non-scalar shapes
* numpy empty tensors with non-scalar shapes
* few more empty tweaks
* Small fixes
* conv3d signature update
* micro fix in batchnorm mkldnn
* Import fixes
* Fix
* MKL-DNN update
* Small fill fix
* fill with empty input + test
* Fixes
* Small error improvement
* Fix
* one special test
* couple of fixes for lstm
* Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone
* Fixes
* FP16
* Unsigned
* BFloat16
* Fill op - empty tweaks
* - couple of fixes for empty arrays construction
- stack updated
* strided slice fix
* one transform test
* provide method for reducing shapeInfo in case of input array is empty
* Fixed reduceAlongDimensions to use empty input properly.
* couple of broadcast tests
* couple of tests broadcast tests + tweak to make them pass
* add check of non-empty to methods producing sub-arrays
* Fixed reshapeC with zeros in shape.
* complete empty check in reduce_... legacy ops
* Concat and cumsum/prod
* Tweak to empty shape inference on import
* add empty check to the rest of reduce legacy ops
* one more test
* correct typo in evalReduceShapeInfoEmpty
* Added tests for reduce_* ops to tests with zero shapes.
* few more tests for empty reductions
* Fixed strided_slice op with empty case and tests.
* one more empty reduction test
* Fixed strided_slice test.
* add empty check to NDArray::reshapei
* infOrMax
* empty min/max with infinity tests
* made unstack working correctly with empty arrays
* few IndexReduce tests + tweaks for empty shapes
* add test for empty concat
* few tests fixed
* Validation fix for reductions on empty shapes
* Reverse fix
* Reduction shape calc fixes
* SameDiff.generateOutputVariable: don't use shape function to determine number of outputs
* Range fix
* - NDArray constructor updated for scalars/empty arrays
- few tests fixed
* More fixes
* Empty creator fixes
* concat fix
* concat fix
* TF import tests: allow 'both all NaN' and 'both all inf' to pass
* Slice, zero fraction, and reshape fixes
* transpose, gather
* Zero fraction
* scalar cast fix
* Empty reduction axis support
* few more tests fixed
* Fixed input checks conforming with TF for concat op and tests.
* few tests fixed
* matmul scalar shape fix
* Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats.
* broadcast bool fix
* few more tests
* few more tests
* correct evalReduceShapeInfoEmpty
* argmax/argmin + tests
* one more empty edge case + one more test
* argmax/argmin/realdiv_bp tweaks
* empty reshape test + fix
* Helper fixes
* Small fixes
* Gather test fix
* Gather test fix
* Small fixes
* reduce scalar zero values
* scalar mean workaround
* Remove debug code
* along dim mean workaround
* one more test
* - equalsTo() tweak for empty arrays
- one more test
* broadcast tweaks
* [WIP] Fixing outstanding issues for NLP (#9)
* Avoid using not-inited objects
* Test fixed.
* Redundant method avoided for models like FastText
* KMeans++ implementation
* KMeans++ implementation
* Disable parallel execution
* KMeans++
* Tests
* Dev branch merge (#16)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Fix some issues on master (#17)
* Fix DataVec test issue
* Fix issue with dl4j SameDiff output layer
* Dtype fix for lambda layers
* #7912 BertIterator dtype fix (use float32 not global default)
* [WIP] Next set of CUDA stuff (#7)
New CUDA implementations and improvements
* bad file
* Dev branch master merge (#23)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Compatibility of deserialization (#18)
Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
* SameDiff: add activation gradient checking support for debugging (#19)
* SameDiff gradient checker: first pass on activation gradient checks
* Fixes + tests for activation gradient checking
* Javadoc
* [WIP] Some nd4j data type corrections (#20)
* Adjust data type
* Set correct Data type.
* Size of proper data type.
* fix averaged cpu load (#22)
* SameDiff ops, TF import and fixes (#24)
* CheckNumerics tests + fixes + misc fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fake quant
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* FakeQuantWithMinMaxArgs
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* CheckNumerics fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix libnd4j ALL_INTS and ALL_FLOATS declaration (uint and bfloat types)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Small fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Javadoc
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Exception tweak
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix for out of scope stack allocated var use
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Ignores
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Ignore for known failing test (already logged issue)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Merge upstream to fork (#25)
* Add thousand-separator commas to TotalParams (#7915)
* Add thousand-separator commas to TotalParams
The number of parameters can be quite large, and it would help the reading of the summary printout to have the TotalParams column & values at the bottom have thousand-separator-commas in them.
* Add thousand-separator commas to MultiLayerNetwork
Corresponding change to MultiLayerNetwork
Signed-off-by: Jxtps Jxtps <jxtps435@gmail.com>
* Update contributing and issue/PR templates (#7934)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix link to AdaDelta paper (#7942)
Fix link to AdaDelta paper hosted on matthewzeiler.com
Signed-off-by: Jxtps
* Fixes, and ignores for known/logged failing issues (#7943)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* SameDiff + DL4J/SameDiff: Multiple fixes (#28)
* #7919 HDF5 attribute buffer length fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7909 Arbiter constructor exception ux improvements
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7925 RNN output layer length checks
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7939 Add listener for validating inputs are not incorrectly modified
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7939 Integrate NonInplaceValidationListener into tests
* #7844 DL4J SameDiff fixes for variable minibatch size
* DL4J SameDiff fixes - ensure gradient for input placeholder is available
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Tweaks to ExternalErrorsFunction - use placeholders, make more robust
* Another fix
* More fixes
* More SameDiff/DL4J fixes
* Scope out scalar array creation in BaseScalarOp
* Remove debug code
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] Final dev branch merge (#29)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Compatibility of deserialization (#18)
Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
* SameDiff: add activation gradient checking support for debugging (#19)
* SameDiff gradient checker: first pass on activation gradient checks
* Fixes + tests for activation gradient checking
* Javadoc
* [WIP] Some nd4j data type corrections (#20)
* Adjust data type
* Set correct Data type.
* Size of proper data type.
* fix averaged cpu load (#22)
* [WIP] Multiple dataset iterators (#27)
* Splitting dataset into arbitrary number
* Fixes
* Multiple split of iterator
* Test
* Test
* Some fixes
* signature change
* one more tweak
Signed-off-by: raver119 <raver119@gmail.com>
* one more test for sequential use of DataSetIteratorSplitter
Signed-off-by: raver119 <raver119@gmail.com>
* Fixes
* Fixes
* one more test for Alexander
Signed-off-by: raver119 <raver119@gmail.com>
* Some fixes
* Some fixes
* one more test for Alexander
Signed-off-by: raver119 <raver119@gmail.com>
* minor test fix
Signed-off-by: raver119 <raver119@gmail.com>
* Some fixes
* Some fixes
* couple of assertions tweaked
Signed-off-by: raver119 <raver119@gmail.com>
* MDS splitter test :/
Signed-off-by: raver119 <raver119@gmail.com>
* Minor refactoring
* Multi dataset
* Some fixes
* More tests
* Small number of test fixes/improvements (failures on CI) (#31)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] More CUDA stuff (#26)
* initial commit
Signed-off-by: raver119 <raver119@gmail.com>
* LRN BP CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* less memory
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed bug with crop_and_resize op helper.
* get rid of unnecessary index-calculation dunction
Signed-off-by: Yurii <yurii@skymind.io>
* Fixed sort with nth_element cuda-based helper.
* Refactored nth_element.
* Refactored nth_element op and tests.
* Modified usage of dim array with sortTad routine.
* Refactored main routine of helper for non_max_image_suppression op.
* non_max_image_suppression op helper with cuda kernel implementation. Initial revision.
* fix vol2col cuda kernel
* meh
Signed-off-by: raver119 <raver119@gmail.com>
* topK concept
Signed-off-by: raver119 <raver119@gmail.com>
* unsorted topK with scanWitdh of 1
Signed-off-by: raver119 <raver119@gmail.com>
* correct vol2col tests
* sorted/unsorted topK
Signed-off-by: raver119 <raver119@gmail.com>
* implementation and fixing col2im/col2vol
* Corrected usage flags with input/output with reverse op.
* dup is const now
Signed-off-by: raver119 <raver119@gmail.com>
* percentile op
Signed-off-by: raver119 <raver119@gmail.com>
* group tests for mapool2d
Signed-off-by: Yurii <yurii@skymind.io>
* special test for george
Signed-off-by: raver119 <raver119@gmail.com>
* less threads for sortTad
Signed-off-by: raver119 <raver119@gmail.com>
* provide conv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* remove auther in sort tad kernel code
Signed-off-by: Yurii <yurii@skymind.io>
* provide depthwise_conv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* - max_pooling_with_argmax
- null check for special use
Signed-off-by: raver119 <raver119@gmail.com>
* dts cuda
Signed-off-by: raver119 <raver119@gmail.com>
* provide sconv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* std cuda
Signed-off-by: raver119 <raver119@gmail.com>
* Refactored non_max_suppression op to conform TF implementation.
* Improved suppression helper.
* provide pooling3d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* minor lstm rearrangements
Signed-off-by: raver119 <raver119@gmail.com>
* more of minor lstm rearrangements
Signed-off-by: raver119 <raver119@gmail.com>
* (bi)dynamic_rnn
Signed-off-by: raver119 <raver119@gmail.com>
* templates init order
Signed-off-by: raver119 <raver119@gmail.com>
* Refactored non_max_suppression op.
* Added cuda kernel for non_max_suppression.
* CPU sort by key/value
Signed-off-by: raver119 <raver119@gmail.com>
* CPU sort TAD by key/value
Signed-off-by: raver119 <raver119@gmail.com>
* CPU sort TAD by key/value tests
Signed-off-by: raver119 <raver119@gmail.com>
* Eliminate compiler error with cuda implementation.
* - repaired gradCheck in cuda
- provide conv2d_bp for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* missed signature
Signed-off-by: raver119 <raver119@gmail.com>
* provide depthwise_conv2d_bp for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* Implementation of lup helper with cuda kernel. Initial commit.
* further work on backprops for convolutions
Signed-off-by: Yurii <yurii@skymind.io>
* CUDA linear sort by key/val
Signed-off-by: raver119 <raver119@gmail.com>
* CUDA tad sort by key/val
Signed-off-by: raver119 <raver119@gmail.com>
* start providing of backprop for pooling2d/3d
Signed-off-by: Yurii <yurii@skymind.io>
* Added atomicAdd for bool datatype.
* dynamic partition concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic partition concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic partition scalar CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* important comment
Signed-off-by: raver119 <raver119@gmail.com>
* fix pooling2d/3d backprop helpers
Signed-off-by: Yurii <yurii@skymind.io>
* Added non-linear test with dynamic_partition.
* Improved test for dynamic_partition.
* dynamic_partition TAD concept
Signed-off-by: raver119 <raver119@gmail.com>
* - dynamic_partition TAD CUDA impl
- dynamic_partition TAD CPU fix
Signed-off-by: raver119 <raver119@gmail.com>
* - rewrite cpu code for usampling2d/3d
- write cuda code for usampling2d/3d
Signed-off-by: Yurii <yurii@skymind.io>
* dynamic_stitch CUDA vector case
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic_stitch CUDA TAD case concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic_stitch CUDA TAD case impl
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for dynamic_stitch 3D-4D cases.
* minor tests tweaks
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed type check for dynamic stitch.
* min/max bp
Signed-off-by: raver119 <raver119@gmail.com>
* rewrite code for upsampling2d/3d cpu
Signed-off-by: Yurii <yurii@skymind.io>
* reduce min/max/norm_max bp
Signed-off-by: raver119 <raver119@gmail.com>
* lup implementation. Additional enhancements.
* provide code for upsamling2d/3d backprop
Signed-off-by: Yurii <yurii@skymind.io>
* weightedCrossEntropyWithLogits
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed template math atomicMul for 64bit ints.
* Refactored dynamic_partition_bp op.
* inverseBroadcast fix
Signed-off-by: raver119 <raver119@gmail.com>
* DynamicPartitionBP test datatype fixed.
* - nd4j_atomicMul Windows fix
- cpu/NDArrayLambda.hpp excluded from CUDA
Signed-off-by: raver119 <raver119@gmail.com>
2019-06-27 17:37:04 +02:00
|
|
|
ASSERT_TRUE(reshaped.isSameShape(z));
|
|
|
|
ASSERT_TRUE(reshaped.equalsTo(z));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, ExpandDimsTest2) {
|
|
|
|
auto input = NDArrayFactory::create<float>('c', {3, 4});
|
|
|
|
input.linspace(1);
|
|
|
|
auto reshaped = input.reshape('c', {1, 3, 4});
|
|
|
|
|
|
|
|
nd4j::ops::expand_dims op;
|
|
|
|
auto result = op.execute({&input}, {}, {0});
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
Merge master to upstream (#7945)
* Shugeo strided slice zeros (#14)
* Modified strided_slice op to properly work with empty-like shapes.
* Fixed test for reduce_mean with empty-like input.
* [WIP] Last merge (#15)
* correct logsoftmax looss (#2)
* Small SameDiff listener fix (#4)
* Various fixes (#6)
* #7839 Fix for asXMatrix and tests
* #7866 EmbeddingSequenceLayer dtype fix + test
* #7856 SameDiff save/load stream methods
* #7859 RegressionEvaluation rank 4 fix + tests + axis configuration
* EvaluationBinary 3d/4d
* More evaluation 3d/4d tests
* #7847 Evaluation empty checks
* Small test ifx
* #7848 Fix median edge case
* Improve DL4J samediff layer tests
* [WIP] FastText wrapper implemented (#8)
* FastText implemented
* Some fixes
* Fix shapes for wordsNearest
* Validation of input vectors
* Fixes
* Fixed test
* Thread tagged
* Some tweaks
* setContextClassLoader for DeallocatorServiceThread
* Numpy format tests (#1)
* Various fixes (#11)
* #7852 SameDiff gather fix
* #7892 SameDiff placeholder to constant conversion
* #7890 validate input rank for MLN/CG init methods
* Fix broken permute shape calculation
* Permute and gather fixes
* Tests
* #7850 LogSumExp fix + test
* Handful of test fixes
* Empty arrays with non-scalar shapes (#10)
* minor rearrangements for lambdas
* empty tensors with non-scalar shapes
* numpy empty tensors with non-scalar shapes
* few more empty tweaks
* Small fixes
* conv3d signature update
* micro fix in batchnorm mkldnn
* Import fixes
* Fix
* MKL-DNN update
* Small fill fix
* fill with empty input + test
* Fixes
* Small error improvement
* Fix
* one special test
* couple of fixes for lstm
* Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone
* Fixes
* FP16
* Unsigned
* BFloat16
* Fill op - empty tweaks
* - couple of fixes for empty arrays construction
- stack updated
* strided slice fix
* one transform test
* provide method for reducing shapeInfo in case of input array is empty
* Fixed reduceAlongDimensions to use empty input properly.
* couple of broadcast tests
* couple of tests broadcast tests + tweak to make them pass
* add check of non-empty to methods producing sub-arrays
* Fixed reshapeC with zeros in shape.
* complete empty check in reduce_... legacy ops
* Concat and cumsum/prod
* Tweak to empty shape inference on import
* add empty check to the rest of reduce legacy ops
* one more test
* correct typo in evalReduceShapeInfoEmpty
* Added tests for reduce_* ops to tests with zero shapes.
* few more tests for empty reductions
* Fixed strided_slice op with empty case and tests.
* one more empty reduction test
* Fixed strided_slice test.
* add empty check to NDArray::reshapei
* infOrMax
* empty min/max with infinity tests
* made unstack working correctly with empty arrays
* few IndexReduce tests + tweaks for empty shapes
* add test for empty concat
* few tests fixed
* Validation fix for reductions on empty shapes
* Reverse fix
* Reduction shape calc fixes
* SameDiff.generateOutputVariable: don't use shape function to determine number of outputs
* Range fix
* - NDArray constructor updated for scalars/empty arrays
- few tests fixed
* More fixes
* Empty creator fixes
* concat fix
* concat fix
* TF import tests: allow 'both all NaN' and 'both all inf' to pass
* Slice, zero fraction, and reshape fixes
* transpose, gather
* Zero fraction
* scalar cast fix
* Empty reduction axis support
* few more tests fixed
* Fixed input checks conforming with TF for concat op and tests.
* few tests fixed
* matmul scalar shape fix
* Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats.
* broadcast bool fix
* few more tests
* few more tests
* correct evalReduceShapeInfoEmpty
* argmax/argmin + tests
* one more empty edge case + one more test
* argmax/argmin/realdiv_bp tweaks
* empty reshape test + fix
* Helper fixes
* Small fixes
* Gather test fix
* Gather test fix
* Small fixes
* reduce scalar zero values
* scalar mean workaround
* Remove debug code
* along dim mean workaround
* one more test
* - equalsTo() tweak for empty arrays
- one more test
* broadcast tweaks
* [WIP] Fixing outstanding issues for NLP (#9)
* Avoid using not-inited objects
* Test fixed.
* Redundant method avoided for models like FastText
* KMeans++ implementation
* KMeans++ implementation
* Disable parallel execution
* KMeans++
* Tests
* Dev branch merge (#16)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Fix some issues on master (#17)
* Fix DataVec test issue
* Fix issue with dl4j SameDiff output layer
* Dtype fix for lambda layers
* #7912 BertIterator dtype fix (use float32 not global default)
* [WIP] Next set of CUDA stuff (#7)
New CUDA implementations and improvements
* bad file
* Dev branch master merge (#23)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Compatibility of deserialization (#18)
Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
* SameDiff: add activation gradient checking support for debugging (#19)
* SameDiff gradient checker: first pass on activation gradient checks
* Fixes + tests for activation gradient checking
* Javadoc
* [WIP] Some nd4j data type corrections (#20)
* Adjust data type
* Set correct Data type.
* Size of proper data type.
* fix averaged cpu load (#22)
* SameDiff ops, TF import and fixes (#24)
* CheckNumerics tests + fixes + misc fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fake quant
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* FakeQuantWithMinMaxArgs
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* CheckNumerics fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix libnd4j ALL_INTS and ALL_FLOATS declaration (uint and bfloat types)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Small fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Javadoc
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Exception tweak
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix for out of scope stack allocated var use
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Ignores
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Ignore for known failing test (already logged issue)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Merge upstream to fork (#25)
* Add thousand-separator commas to TotalParams (#7915)
* Add thousand-separator commas to TotalParams
The number of parameters can be quite large, and it would help the reading of the summary printout to have the TotalParams column & values at the bottom have thousand-separator-commas in them.
* Add thousand-separator commas to MultiLayerNetwork
Corresponding change to MultiLayerNetwork
Signed-off-by: Jxtps Jxtps <jxtps435@gmail.com>
* Update contributing and issue/PR templates (#7934)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix link to AdaDelta paper (#7942)
Fix link to AdaDelta paper hosted on matthewzeiler.com
Signed-off-by: Jxtps
* Fixes, and ignores for known/logged failing issues (#7943)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* SameDiff + DL4J/SameDiff: Multiple fixes (#28)
* #7919 HDF5 attribute buffer length fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7909 Arbiter constructor exception ux improvements
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7925 RNN output layer length checks
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7939 Add listener for validating inputs are not incorrectly modified
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7939 Integrate NonInplaceValidationListener into tests
* #7844 DL4J SameDiff fixes for variable minibatch size
* DL4J SameDiff fixes - ensure gradient for input placeholder is available
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Tweaks to ExternalErrorsFunction - use placeholders, make more robust
* Another fix
* More fixes
* More SameDiff/DL4J fixes
* Scope out scalar array creation in BaseScalarOp
* Remove debug code
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] Final dev branch merge (#29)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Compatibility of deserialization (#18)
Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
* SameDiff: add activation gradient checking support for debugging (#19)
* SameDiff gradient checker: first pass on activation gradient checks
* Fixes + tests for activation gradient checking
* Javadoc
* [WIP] Some nd4j data type corrections (#20)
* Adjust data type
* Set correct Data type.
* Size of proper data type.
* fix averaged cpu load (#22)
* [WIP] Multiple dataset iterators (#27)
* Splitting dataset into arbitrary number
* Fixes
* Multiple split of iterator
* Test
* Test
* Some fixes
* signature change
* one more tweak
Signed-off-by: raver119 <raver119@gmail.com>
* one more test for sequential use of DataSetIteratorSplitter
Signed-off-by: raver119 <raver119@gmail.com>
* Fixes
* Fixes
* one more test for Alexander
Signed-off-by: raver119 <raver119@gmail.com>
* Some fixes
* Some fixes
* one more test for Alexander
Signed-off-by: raver119 <raver119@gmail.com>
* minor test fix
Signed-off-by: raver119 <raver119@gmail.com>
* Some fixes
* Some fixes
* couple of assertions tweaked
Signed-off-by: raver119 <raver119@gmail.com>
* MDS splitter test :/
Signed-off-by: raver119 <raver119@gmail.com>
* Minor refactoring
* Multi dataset
* Some fixes
* More tests
* Small number of test fixes/improvements (failures on CI) (#31)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] More CUDA stuff (#26)
* initial commit
Signed-off-by: raver119 <raver119@gmail.com>
* LRN BP CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* less memory
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed bug with crop_and_resize op helper.
* get rid of unnecessary index-calculation dunction
Signed-off-by: Yurii <yurii@skymind.io>
* Fixed sort with nth_element cuda-based helper.
* Refactored nth_element.
* Refactored nth_element op and tests.
* Modified usage of dim array with sortTad routine.
* Refactored main routine of helper for non_max_image_suppression op.
* non_max_image_suppression op helper with cuda kernel implementation. Initial revision.
* fix vol2col cuda kernel
* meh
Signed-off-by: raver119 <raver119@gmail.com>
* topK concept
Signed-off-by: raver119 <raver119@gmail.com>
* unsorted topK with scanWitdh of 1
Signed-off-by: raver119 <raver119@gmail.com>
* correct vol2col tests
* sorted/unsorted topK
Signed-off-by: raver119 <raver119@gmail.com>
* implementation and fixing col2im/col2vol
* Corrected usage flags with input/output with reverse op.
* dup is const now
Signed-off-by: raver119 <raver119@gmail.com>
* percentile op
Signed-off-by: raver119 <raver119@gmail.com>
* group tests for mapool2d
Signed-off-by: Yurii <yurii@skymind.io>
* special test for george
Signed-off-by: raver119 <raver119@gmail.com>
* less threads for sortTad
Signed-off-by: raver119 <raver119@gmail.com>
* provide conv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* remove auther in sort tad kernel code
Signed-off-by: Yurii <yurii@skymind.io>
* provide depthwise_conv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* - max_pooling_with_argmax
- null check for special use
Signed-off-by: raver119 <raver119@gmail.com>
* dts cuda
Signed-off-by: raver119 <raver119@gmail.com>
* provide sconv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* std cuda
Signed-off-by: raver119 <raver119@gmail.com>
* Refactored non_max_suppression op to conform TF implementation.
* Improved suppression helper.
* provide pooling3d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* minor lstm rearrangements
Signed-off-by: raver119 <raver119@gmail.com>
* more of minor lstm rearrangements
Signed-off-by: raver119 <raver119@gmail.com>
* (bi)dynamic_rnn
Signed-off-by: raver119 <raver119@gmail.com>
* templates init order
Signed-off-by: raver119 <raver119@gmail.com>
* Refactored non_max_suppression op.
* Added cuda kernel for non_max_suppression.
* CPU sort by key/value
Signed-off-by: raver119 <raver119@gmail.com>
* CPU sort TAD by key/value
Signed-off-by: raver119 <raver119@gmail.com>
* CPU sort TAD by key/value tests
Signed-off-by: raver119 <raver119@gmail.com>
* Eliminate compiler error with cuda implementation.
* - repaired gradCheck in cuda
- provide conv2d_bp for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* missed signature
Signed-off-by: raver119 <raver119@gmail.com>
* provide depthwise_conv2d_bp for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* Implementation of lup helper with cuda kernel. Initial commit.
* further work on backprops for convolutions
Signed-off-by: Yurii <yurii@skymind.io>
* CUDA linear sort by key/val
Signed-off-by: raver119 <raver119@gmail.com>
* CUDA tad sort by key/val
Signed-off-by: raver119 <raver119@gmail.com>
* start providing of backprop for pooling2d/3d
Signed-off-by: Yurii <yurii@skymind.io>
* Added atomicAdd for bool datatype.
* dynamic partition concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic partition concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic partition scalar CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* important comment
Signed-off-by: raver119 <raver119@gmail.com>
* fix pooling2d/3d backprop helpers
Signed-off-by: Yurii <yurii@skymind.io>
* Added non-linear test with dynamic_partition.
* Improved test for dynamic_partition.
* dynamic_partition TAD concept
Signed-off-by: raver119 <raver119@gmail.com>
* - dynamic_partition TAD CUDA impl
- dynamic_partition TAD CPU fix
Signed-off-by: raver119 <raver119@gmail.com>
* - rewrite cpu code for usampling2d/3d
- write cuda code for usampling2d/3d
Signed-off-by: Yurii <yurii@skymind.io>
* dynamic_stitch CUDA vector case
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic_stitch CUDA TAD case concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic_stitch CUDA TAD case impl
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for dynamic_stitch 3D-4D cases.
* minor tests tweaks
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed type check for dynamic stitch.
* min/max bp
Signed-off-by: raver119 <raver119@gmail.com>
* rewrite code for upsampling2d/3d cpu
Signed-off-by: Yurii <yurii@skymind.io>
* reduce min/max/norm_max bp
Signed-off-by: raver119 <raver119@gmail.com>
* lup implementation. Additional enhancements.
* provide code for upsamling2d/3d backprop
Signed-off-by: Yurii <yurii@skymind.io>
* weightedCrossEntropyWithLogits
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed template math atomicMul for 64bit ints.
* Refactored dynamic_partition_bp op.
* inverseBroadcast fix
Signed-off-by: raver119 <raver119@gmail.com>
* DynamicPartitionBP test datatype fixed.
* - nd4j_atomicMul Windows fix
- cpu/NDArrayLambda.hpp excluded from CUDA
Signed-off-by: raver119 <raver119@gmail.com>
2019-06-27 17:37:04 +02:00
|
|
|
ASSERT_TRUE(reshaped.isSameShape(z));
|
|
|
|
ASSERT_TRUE(reshaped.equalsTo(z));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, ExpandDimsTest3) {
|
|
|
|
auto input = NDArrayFactory::create<float>('c', {3, 4});
|
|
|
|
input.linspace(1);
|
|
|
|
auto reshaped = input.reshape('c', {3, 1, 4});
|
|
|
|
|
|
|
|
nd4j::ops::expand_dims op;
|
|
|
|
auto result = op.execute({&input}, {}, {-2});
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
Merge master to upstream (#7945)
* Shugeo strided slice zeros (#14)
* Modified strided_slice op to properly work with empty-like shapes.
* Fixed test for reduce_mean with empty-like input.
* [WIP] Last merge (#15)
* correct logsoftmax looss (#2)
* Small SameDiff listener fix (#4)
* Various fixes (#6)
* #7839 Fix for asXMatrix and tests
* #7866 EmbeddingSequenceLayer dtype fix + test
* #7856 SameDiff save/load stream methods
* #7859 RegressionEvaluation rank 4 fix + tests + axis configuration
* EvaluationBinary 3d/4d
* More evaluation 3d/4d tests
* #7847 Evaluation empty checks
* Small test ifx
* #7848 Fix median edge case
* Improve DL4J samediff layer tests
* [WIP] FastText wrapper implemented (#8)
* FastText implemented
* Some fixes
* Fix shapes for wordsNearest
* Validation of input vectors
* Fixes
* Fixed test
* Thread tagged
* Some tweaks
* setContextClassLoader for DeallocatorServiceThread
* Numpy format tests (#1)
* Various fixes (#11)
* #7852 SameDiff gather fix
* #7892 SameDiff placeholder to constant conversion
* #7890 validate input rank for MLN/CG init methods
* Fix broken permute shape calculation
* Permute and gather fixes
* Tests
* #7850 LogSumExp fix + test
* Handful of test fixes
* Empty arrays with non-scalar shapes (#10)
* minor rearrangements for lambdas
* empty tensors with non-scalar shapes
* numpy empty tensors with non-scalar shapes
* few more empty tweaks
* Small fixes
* conv3d signature update
* micro fix in batchnorm mkldnn
* Import fixes
* Fix
* MKL-DNN update
* Small fill fix
* fill with empty input + test
* Fixes
* Small error improvement
* Fix
* one special test
* couple of fixes for lstm
* Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone
* Fixes
* FP16
* Unsigned
* BFloat16
* Fill op - empty tweaks
* - couple of fixes for empty arrays construction
- stack updated
* strided slice fix
* one transform test
* provide method for reducing shapeInfo in case of input array is empty
* Fixed reduceAlongDimensions to use empty input properly.
* couple of broadcast tests
* couple of tests broadcast tests + tweak to make them pass
* add check of non-empty to methods producing sub-arrays
* Fixed reshapeC with zeros in shape.
* complete empty check in reduce_... legacy ops
* Concat and cumsum/prod
* Tweak to empty shape inference on import
* add empty check to the rest of reduce legacy ops
* one more test
* correct typo in evalReduceShapeInfoEmpty
* Added tests for reduce_* ops to tests with zero shapes.
* few more tests for empty reductions
* Fixed strided_slice op with empty case and tests.
* one more empty reduction test
* Fixed strided_slice test.
* add empty check to NDArray::reshapei
* infOrMax
* empty min/max with infinity tests
* made unstack working correctly with empty arrays
* few IndexReduce tests + tweaks for empty shapes
* add test for empty concat
* few tests fixed
* Validation fix for reductions on empty shapes
* Reverse fix
* Reduction shape calc fixes
* SameDiff.generateOutputVariable: don't use shape function to determine number of outputs
* Range fix
* - NDArray constructor updated for scalars/empty arrays
- few tests fixed
* More fixes
* Empty creator fixes
* concat fix
* concat fix
* TF import tests: allow 'both all NaN' and 'both all inf' to pass
* Slice, zero fraction, and reshape fixes
* transpose, gather
* Zero fraction
* scalar cast fix
* Empty reduction axis support
* few more tests fixed
* Fixed input checks conforming with TF for concat op and tests.
* few tests fixed
* matmul scalar shape fix
* Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats.
* broadcast bool fix
* few more tests
* few more tests
* correct evalReduceShapeInfoEmpty
* argmax/argmin + tests
* one more empty edge case + one more test
* argmax/argmin/realdiv_bp tweaks
* empty reshape test + fix
* Helper fixes
* Small fixes
* Gather test fix
* Gather test fix
* Small fixes
* reduce scalar zero values
* scalar mean workaround
* Remove debug code
* along dim mean workaround
* one more test
* - equalsTo() tweak for empty arrays
- one more test
* broadcast tweaks
* [WIP] Fixing outstanding issues for NLP (#9)
* Avoid using not-inited objects
* Test fixed.
* Redundant method avoided for models like FastText
* KMeans++ implementation
* KMeans++ implementation
* Disable parallel execution
* KMeans++
* Tests
* Dev branch merge (#16)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Fix some issues on master (#17)
* Fix DataVec test issue
* Fix issue with dl4j SameDiff output layer
* Dtype fix for lambda layers
* #7912 BertIterator dtype fix (use float32 not global default)
* [WIP] Next set of CUDA stuff (#7)
New CUDA implementations and improvements
* bad file
* Dev branch master merge (#23)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Compatibility of deserialization (#18)
Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
* SameDiff: add activation gradient checking support for debugging (#19)
* SameDiff gradient checker: first pass on activation gradient checks
* Fixes + tests for activation gradient checking
* Javadoc
* [WIP] Some nd4j data type corrections (#20)
* Adjust data type
* Set correct Data type.
* Size of proper data type.
* fix averaged cpu load (#22)
* SameDiff ops, TF import and fixes (#24)
* CheckNumerics tests + fixes + misc fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fake quant
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* FakeQuantWithMinMaxArgs
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* CheckNumerics fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix libnd4j ALL_INTS and ALL_FLOATS declaration (uint and bfloat types)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Small fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Javadoc
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Exception tweak
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix for out of scope stack allocated var use
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Ignores
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Ignore for known failing test (already logged issue)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Merge upstream to fork (#25)
* Add thousand-separator commas to TotalParams (#7915)
* Add thousand-separator commas to TotalParams
The number of parameters can be quite large, and it would help the reading of the summary printout to have the TotalParams column & values at the bottom have thousand-separator-commas in them.
* Add thousand-separator commas to MultiLayerNetwork
Corresponding change to MultiLayerNetwork
Signed-off-by: Jxtps Jxtps <jxtps435@gmail.com>
* Update contributing and issue/PR templates (#7934)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix link to AdaDelta paper (#7942)
Fix link to AdaDelta paper hosted on matthewzeiler.com
Signed-off-by: Jxtps
* Fixes, and ignores for known/logged failing issues (#7943)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* SameDiff + DL4J/SameDiff: Multiple fixes (#28)
* #7919 HDF5 attribute buffer length fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7909 Arbiter constructor exception ux improvements
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7925 RNN output layer length checks
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7939 Add listener for validating inputs are not incorrectly modified
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7939 Integrate NonInplaceValidationListener into tests
* #7844 DL4J SameDiff fixes for variable minibatch size
* DL4J SameDiff fixes - ensure gradient for input placeholder is available
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Tweaks to ExternalErrorsFunction - use placeholders, make more robust
* Another fix
* More fixes
* More SameDiff/DL4J fixes
* Scope out scalar array creation in BaseScalarOp
* Remove debug code
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] Final dev branch merge (#29)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Compatibility of deserialization (#18)
Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
* SameDiff: add activation gradient checking support for debugging (#19)
* SameDiff gradient checker: first pass on activation gradient checks
* Fixes + tests for activation gradient checking
* Javadoc
* [WIP] Some nd4j data type corrections (#20)
* Adjust data type
* Set correct Data type.
* Size of proper data type.
* fix averaged cpu load (#22)
* [WIP] Multiple dataset iterators (#27)
* Splitting dataset into arbitrary number
* Fixes
* Multiple split of iterator
* Test
* Test
* Some fixes
* signature change
* one more tweak
Signed-off-by: raver119 <raver119@gmail.com>
* one more test for sequential use of DataSetIteratorSplitter
Signed-off-by: raver119 <raver119@gmail.com>
* Fixes
* Fixes
* one more test for Alexander
Signed-off-by: raver119 <raver119@gmail.com>
* Some fixes
* Some fixes
* one more test for Alexander
Signed-off-by: raver119 <raver119@gmail.com>
* minor test fix
Signed-off-by: raver119 <raver119@gmail.com>
* Some fixes
* Some fixes
* couple of assertions tweaked
Signed-off-by: raver119 <raver119@gmail.com>
* MDS splitter test :/
Signed-off-by: raver119 <raver119@gmail.com>
* Minor refactoring
* Multi dataset
* Some fixes
* More tests
* Small number of test fixes/improvements (failures on CI) (#31)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] More CUDA stuff (#26)
* initial commit
Signed-off-by: raver119 <raver119@gmail.com>
* LRN BP CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* less memory
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed bug with crop_and_resize op helper.
* get rid of unnecessary index-calculation dunction
Signed-off-by: Yurii <yurii@skymind.io>
* Fixed sort with nth_element cuda-based helper.
* Refactored nth_element.
* Refactored nth_element op and tests.
* Modified usage of dim array with sortTad routine.
* Refactored main routine of helper for non_max_image_suppression op.
* non_max_image_suppression op helper with cuda kernel implementation. Initial revision.
* fix vol2col cuda kernel
* meh
Signed-off-by: raver119 <raver119@gmail.com>
* topK concept
Signed-off-by: raver119 <raver119@gmail.com>
* unsorted topK with scanWitdh of 1
Signed-off-by: raver119 <raver119@gmail.com>
* correct vol2col tests
* sorted/unsorted topK
Signed-off-by: raver119 <raver119@gmail.com>
* implementation and fixing col2im/col2vol
* Corrected usage flags with input/output with reverse op.
* dup is const now
Signed-off-by: raver119 <raver119@gmail.com>
* percentile op
Signed-off-by: raver119 <raver119@gmail.com>
* group tests for mapool2d
Signed-off-by: Yurii <yurii@skymind.io>
* special test for george
Signed-off-by: raver119 <raver119@gmail.com>
* less threads for sortTad
Signed-off-by: raver119 <raver119@gmail.com>
* provide conv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* remove auther in sort tad kernel code
Signed-off-by: Yurii <yurii@skymind.io>
* provide depthwise_conv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* - max_pooling_with_argmax
- null check for special use
Signed-off-by: raver119 <raver119@gmail.com>
* dts cuda
Signed-off-by: raver119 <raver119@gmail.com>
* provide sconv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* std cuda
Signed-off-by: raver119 <raver119@gmail.com>
* Refactored non_max_suppression op to conform TF implementation.
* Improved suppression helper.
* provide pooling3d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* minor lstm rearrangements
Signed-off-by: raver119 <raver119@gmail.com>
* more of minor lstm rearrangements
Signed-off-by: raver119 <raver119@gmail.com>
* (bi)dynamic_rnn
Signed-off-by: raver119 <raver119@gmail.com>
* templates init order
Signed-off-by: raver119 <raver119@gmail.com>
* Refactored non_max_suppression op.
* Added cuda kernel for non_max_suppression.
* CPU sort by key/value
Signed-off-by: raver119 <raver119@gmail.com>
* CPU sort TAD by key/value
Signed-off-by: raver119 <raver119@gmail.com>
* CPU sort TAD by key/value tests
Signed-off-by: raver119 <raver119@gmail.com>
* Eliminate compiler error with cuda implementation.
* - repaired gradCheck in cuda
- provide conv2d_bp for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* missed signature
Signed-off-by: raver119 <raver119@gmail.com>
* provide depthwise_conv2d_bp for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* Implementation of lup helper with cuda kernel. Initial commit.
* further work on backprops for convolutions
Signed-off-by: Yurii <yurii@skymind.io>
* CUDA linear sort by key/val
Signed-off-by: raver119 <raver119@gmail.com>
* CUDA tad sort by key/val
Signed-off-by: raver119 <raver119@gmail.com>
* start providing of backprop for pooling2d/3d
Signed-off-by: Yurii <yurii@skymind.io>
* Added atomicAdd for bool datatype.
* dynamic partition concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic partition concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic partition scalar CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* important comment
Signed-off-by: raver119 <raver119@gmail.com>
* fix pooling2d/3d backprop helpers
Signed-off-by: Yurii <yurii@skymind.io>
* Added non-linear test with dynamic_partition.
* Improved test for dynamic_partition.
* dynamic_partition TAD concept
Signed-off-by: raver119 <raver119@gmail.com>
* - dynamic_partition TAD CUDA impl
- dynamic_partition TAD CPU fix
Signed-off-by: raver119 <raver119@gmail.com>
* - rewrite cpu code for usampling2d/3d
- write cuda code for usampling2d/3d
Signed-off-by: Yurii <yurii@skymind.io>
* dynamic_stitch CUDA vector case
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic_stitch CUDA TAD case concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic_stitch CUDA TAD case impl
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for dynamic_stitch 3D-4D cases.
* minor tests tweaks
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed type check for dynamic stitch.
* min/max bp
Signed-off-by: raver119 <raver119@gmail.com>
* rewrite code for upsampling2d/3d cpu
Signed-off-by: Yurii <yurii@skymind.io>
* reduce min/max/norm_max bp
Signed-off-by: raver119 <raver119@gmail.com>
* lup implementation. Additional enhancements.
* provide code for upsamling2d/3d backprop
Signed-off-by: Yurii <yurii@skymind.io>
* weightedCrossEntropyWithLogits
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed template math atomicMul for 64bit ints.
* Refactored dynamic_partition_bp op.
* inverseBroadcast fix
Signed-off-by: raver119 <raver119@gmail.com>
* DynamicPartitionBP test datatype fixed.
* - nd4j_atomicMul Windows fix
- cpu/NDArrayLambda.hpp excluded from CUDA
Signed-off-by: raver119 <raver119@gmail.com>
2019-06-27 17:37:04 +02:00
|
|
|
ASSERT_TRUE(reshaped.isSameShape(z));
|
|
|
|
ASSERT_TRUE(reshaped.equalsTo(z));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, ExpandDimsTest4) {
|
|
|
|
auto input = NDArrayFactory::create<float>('c', {3, 4});
|
|
|
|
input.linspace(1);
|
|
|
|
auto reshaped = input.reshape('c', {1, 3, 4});
|
|
|
|
|
|
|
|
nd4j::ops::expand_dims op;
|
|
|
|
auto result = op.execute({&input}, {}, {-3});
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
Merge master to upstream (#7945)
* Shugeo strided slice zeros (#14)
* Modified strided_slice op to properly work with empty-like shapes.
* Fixed test for reduce_mean with empty-like input.
* [WIP] Last merge (#15)
* correct logsoftmax looss (#2)
* Small SameDiff listener fix (#4)
* Various fixes (#6)
* #7839 Fix for asXMatrix and tests
* #7866 EmbeddingSequenceLayer dtype fix + test
* #7856 SameDiff save/load stream methods
* #7859 RegressionEvaluation rank 4 fix + tests + axis configuration
* EvaluationBinary 3d/4d
* More evaluation 3d/4d tests
* #7847 Evaluation empty checks
* Small test ifx
* #7848 Fix median edge case
* Improve DL4J samediff layer tests
* [WIP] FastText wrapper implemented (#8)
* FastText implemented
* Some fixes
* Fix shapes for wordsNearest
* Validation of input vectors
* Fixes
* Fixed test
* Thread tagged
* Some tweaks
* setContextClassLoader for DeallocatorServiceThread
* Numpy format tests (#1)
* Various fixes (#11)
* #7852 SameDiff gather fix
* #7892 SameDiff placeholder to constant conversion
* #7890 validate input rank for MLN/CG init methods
* Fix broken permute shape calculation
* Permute and gather fixes
* Tests
* #7850 LogSumExp fix + test
* Handful of test fixes
* Empty arrays with non-scalar shapes (#10)
* minor rearrangements for lambdas
* empty tensors with non-scalar shapes
* numpy empty tensors with non-scalar shapes
* few more empty tweaks
* Small fixes
* conv3d signature update
* micro fix in batchnorm mkldnn
* Import fixes
* Fix
* MKL-DNN update
* Small fill fix
* fill with empty input + test
* Fixes
* Small error improvement
* Fix
* one special test
* couple of fixes for lstm
* Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone
* Fixes
* FP16
* Unsigned
* BFloat16
* Fill op - empty tweaks
* - couple of fixes for empty arrays construction
- stack updated
* strided slice fix
* one transform test
* provide method for reducing shapeInfo in case of input array is empty
* Fixed reduceAlongDimensions to use empty input properly.
* couple of broadcast tests
* couple of tests broadcast tests + tweak to make them pass
* add check of non-empty to methods producing sub-arrays
* Fixed reshapeC with zeros in shape.
* complete empty check in reduce_... legacy ops
* Concat and cumsum/prod
* Tweak to empty shape inference on import
* add empty check to the rest of reduce legacy ops
* one more test
* correct typo in evalReduceShapeInfoEmpty
* Added tests for reduce_* ops to tests with zero shapes.
* few more tests for empty reductions
* Fixed strided_slice op with empty case and tests.
* one more empty reduction test
* Fixed strided_slice test.
* add empty check to NDArray::reshapei
* infOrMax
* empty min/max with infinity tests
* made unstack working correctly with empty arrays
* few IndexReduce tests + tweaks for empty shapes
* add test for empty concat
* few tests fixed
* Validation fix for reductions on empty shapes
* Reverse fix
* Reduction shape calc fixes
* SameDiff.generateOutputVariable: don't use shape function to determine number of outputs
* Range fix
* - NDArray constructor updated for scalars/empty arrays
- few tests fixed
* More fixes
* Empty creator fixes
* concat fix
* concat fix
* TF import tests: allow 'both all NaN' and 'both all inf' to pass
* Slice, zero fraction, and reshape fixes
* transpose, gather
* Zero fraction
* scalar cast fix
* Empty reduction axis support
* few more tests fixed
* Fixed input checks conforming with TF for concat op and tests.
* few tests fixed
* matmul scalar shape fix
* Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats.
* broadcast bool fix
* few more tests
* few more tests
* correct evalReduceShapeInfoEmpty
* argmax/argmin + tests
* one more empty edge case + one more test
* argmax/argmin/realdiv_bp tweaks
* empty reshape test + fix
* Helper fixes
* Small fixes
* Gather test fix
* Gather test fix
* Small fixes
* reduce scalar zero values
* scalar mean workaround
* Remove debug code
* along dim mean workaround
* one more test
* - equalsTo() tweak for empty arrays
- one more test
* broadcast tweaks
* [WIP] Fixing outstanding issues for NLP (#9)
* Avoid using not-inited objects
* Test fixed.
* Redundant method avoided for models like FastText
* KMeans++ implementation
* KMeans++ implementation
* Disable parallel execution
* KMeans++
* Tests
* Dev branch merge (#16)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Fix some issues on master (#17)
* Fix DataVec test issue
* Fix issue with dl4j SameDiff output layer
* Dtype fix for lambda layers
* #7912 BertIterator dtype fix (use float32 not global default)
* [WIP] Next set of CUDA stuff (#7)
New CUDA implementations and improvements
* bad file
* Dev branch master merge (#23)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Compatibility of deserialization (#18)
Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
* SameDiff: add activation gradient checking support for debugging (#19)
* SameDiff gradient checker: first pass on activation gradient checks
* Fixes + tests for activation gradient checking
* Javadoc
* [WIP] Some nd4j data type corrections (#20)
* Adjust data type
* Set correct Data type.
* Size of proper data type.
* fix averaged cpu load (#22)
* SameDiff ops, TF import and fixes (#24)
* CheckNumerics tests + fixes + misc fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fake quant
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* FakeQuantWithMinMaxArgs
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* CheckNumerics fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix libnd4j ALL_INTS and ALL_FLOATS declaration (uint and bfloat types)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Small fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Javadoc
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Exception tweak
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix for out of scope stack allocated var use
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Ignores
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Ignore for known failing test (already logged issue)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Merge upstream to fork (#25)
* Add thousand-separator commas to TotalParams (#7915)
* Add thousand-separator commas to TotalParams
The number of parameters can be quite large, and it would help the reading of the summary printout to have the TotalParams column & values at the bottom have thousand-separator-commas in them.
* Add thousand-separator commas to MultiLayerNetwork
Corresponding change to MultiLayerNetwork
Signed-off-by: Jxtps Jxtps <jxtps435@gmail.com>
* Update contributing and issue/PR templates (#7934)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix link to AdaDelta paper (#7942)
Fix link to AdaDelta paper hosted on matthewzeiler.com
Signed-off-by: Jxtps
* Fixes, and ignores for known/logged failing issues (#7943)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* SameDiff + DL4J/SameDiff: Multiple fixes (#28)
* #7919 HDF5 attribute buffer length fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7909 Arbiter constructor exception ux improvements
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7925 RNN output layer length checks
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7939 Add listener for validating inputs are not incorrectly modified
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7939 Integrate NonInplaceValidationListener into tests
* #7844 DL4J SameDiff fixes for variable minibatch size
* DL4J SameDiff fixes - ensure gradient for input placeholder is available
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Tweaks to ExternalErrorsFunction - use placeholders, make more robust
* Another fix
* More fixes
* More SameDiff/DL4J fixes
* Scope out scalar array creation in BaseScalarOp
* Remove debug code
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] Final dev branch merge (#29)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Compatibility of deserialization (#18)
Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
* SameDiff: add activation gradient checking support for debugging (#19)
* SameDiff gradient checker: first pass on activation gradient checks
* Fixes + tests for activation gradient checking
* Javadoc
* [WIP] Some nd4j data type corrections (#20)
* Adjust data type
* Set correct Data type.
* Size of proper data type.
* fix averaged cpu load (#22)
* [WIP] Multiple dataset iterators (#27)
* Splitting dataset into arbitrary number
* Fixes
* Multiple split of iterator
* Test
* Test
* Some fixes
* signature change
* one more tweak
Signed-off-by: raver119 <raver119@gmail.com>
* one more test for sequential use of DataSetIteratorSplitter
Signed-off-by: raver119 <raver119@gmail.com>
* Fixes
* Fixes
* one more test for Alexander
Signed-off-by: raver119 <raver119@gmail.com>
* Some fixes
* Some fixes
* one more test for Alexander
Signed-off-by: raver119 <raver119@gmail.com>
* minor test fix
Signed-off-by: raver119 <raver119@gmail.com>
* Some fixes
* Some fixes
* couple of assertions tweaked
Signed-off-by: raver119 <raver119@gmail.com>
* MDS splitter test :/
Signed-off-by: raver119 <raver119@gmail.com>
* Minor refactoring
* Multi dataset
* Some fixes
* More tests
* Small number of test fixes/improvements (failures on CI) (#31)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] More CUDA stuff (#26)
* initial commit
Signed-off-by: raver119 <raver119@gmail.com>
* LRN BP CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* less memory
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed bug with crop_and_resize op helper.
* get rid of unnecessary index-calculation dunction
Signed-off-by: Yurii <yurii@skymind.io>
* Fixed sort with nth_element cuda-based helper.
* Refactored nth_element.
* Refactored nth_element op and tests.
* Modified usage of dim array with sortTad routine.
* Refactored main routine of helper for non_max_image_suppression op.
* non_max_image_suppression op helper with cuda kernel implementation. Initial revision.
* fix vol2col cuda kernel
* meh
Signed-off-by: raver119 <raver119@gmail.com>
* topK concept
Signed-off-by: raver119 <raver119@gmail.com>
* unsorted topK with scanWitdh of 1
Signed-off-by: raver119 <raver119@gmail.com>
* correct vol2col tests
* sorted/unsorted topK
Signed-off-by: raver119 <raver119@gmail.com>
* implementation and fixing col2im/col2vol
* Corrected usage flags with input/output with reverse op.
* dup is const now
Signed-off-by: raver119 <raver119@gmail.com>
* percentile op
Signed-off-by: raver119 <raver119@gmail.com>
* group tests for mapool2d
Signed-off-by: Yurii <yurii@skymind.io>
* special test for george
Signed-off-by: raver119 <raver119@gmail.com>
* less threads for sortTad
Signed-off-by: raver119 <raver119@gmail.com>
* provide conv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* remove auther in sort tad kernel code
Signed-off-by: Yurii <yurii@skymind.io>
* provide depthwise_conv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* - max_pooling_with_argmax
- null check for special use
Signed-off-by: raver119 <raver119@gmail.com>
* dts cuda
Signed-off-by: raver119 <raver119@gmail.com>
* provide sconv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* std cuda
Signed-off-by: raver119 <raver119@gmail.com>
* Refactored non_max_suppression op to conform TF implementation.
* Improved suppression helper.
* provide pooling3d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* minor lstm rearrangements
Signed-off-by: raver119 <raver119@gmail.com>
* more of minor lstm rearrangements
Signed-off-by: raver119 <raver119@gmail.com>
* (bi)dynamic_rnn
Signed-off-by: raver119 <raver119@gmail.com>
* templates init order
Signed-off-by: raver119 <raver119@gmail.com>
* Refactored non_max_suppression op.
* Added cuda kernel for non_max_suppression.
* CPU sort by key/value
Signed-off-by: raver119 <raver119@gmail.com>
* CPU sort TAD by key/value
Signed-off-by: raver119 <raver119@gmail.com>
* CPU sort TAD by key/value tests
Signed-off-by: raver119 <raver119@gmail.com>
* Eliminate compiler error with cuda implementation.
* - repaired gradCheck in cuda
- provide conv2d_bp for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* missed signature
Signed-off-by: raver119 <raver119@gmail.com>
* provide depthwise_conv2d_bp for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* Implementation of lup helper with cuda kernel. Initial commit.
* further work on backprops for convolutions
Signed-off-by: Yurii <yurii@skymind.io>
* CUDA linear sort by key/val
Signed-off-by: raver119 <raver119@gmail.com>
* CUDA tad sort by key/val
Signed-off-by: raver119 <raver119@gmail.com>
* start providing of backprop for pooling2d/3d
Signed-off-by: Yurii <yurii@skymind.io>
* Added atomicAdd for bool datatype.
* dynamic partition concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic partition concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic partition scalar CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* important comment
Signed-off-by: raver119 <raver119@gmail.com>
* fix pooling2d/3d backprop helpers
Signed-off-by: Yurii <yurii@skymind.io>
* Added non-linear test with dynamic_partition.
* Improved test for dynamic_partition.
* dynamic_partition TAD concept
Signed-off-by: raver119 <raver119@gmail.com>
* - dynamic_partition TAD CUDA impl
- dynamic_partition TAD CPU fix
Signed-off-by: raver119 <raver119@gmail.com>
* - rewrite cpu code for usampling2d/3d
- write cuda code for usampling2d/3d
Signed-off-by: Yurii <yurii@skymind.io>
* dynamic_stitch CUDA vector case
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic_stitch CUDA TAD case concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic_stitch CUDA TAD case impl
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for dynamic_stitch 3D-4D cases.
* minor tests tweaks
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed type check for dynamic stitch.
* min/max bp
Signed-off-by: raver119 <raver119@gmail.com>
* rewrite code for upsampling2d/3d cpu
Signed-off-by: Yurii <yurii@skymind.io>
* reduce min/max/norm_max bp
Signed-off-by: raver119 <raver119@gmail.com>
* lup implementation. Additional enhancements.
* provide code for upsamling2d/3d backprop
Signed-off-by: Yurii <yurii@skymind.io>
* weightedCrossEntropyWithLogits
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed template math atomicMul for 64bit ints.
* Refactored dynamic_partition_bp op.
* inverseBroadcast fix
Signed-off-by: raver119 <raver119@gmail.com>
* DynamicPartitionBP test datatype fixed.
* - nd4j_atomicMul Windows fix
- cpu/NDArrayLambda.hpp excluded from CUDA
Signed-off-by: raver119 <raver119@gmail.com>
2019-06-27 17:37:04 +02:00
|
|
|
ASSERT_TRUE(reshaped.isSameShape(z));
|
|
|
|
ASSERT_TRUE(reshaped.equalsTo(z));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, Test_Shape_1) {
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {3, 4, 5, 6});
|
|
|
|
auto exp = NDArrayFactory::create<Nd4jLong>('c', {4}, {3, 4, 5, 6});
|
|
|
|
|
|
|
|
nd4j::ops::shape_of op;
|
|
|
|
auto result = op.execute({&x}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, Test_Equals_1) {
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {1, 5}, {1, 2, 3, 4, 5});
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {1, 5}, {1, 0, 3, 0, 5});
|
|
|
|
auto exp = NDArrayFactory::create<bool>('c', {1, 5}, {1, 0, 1, 0, 1});
|
|
|
|
|
|
|
|
nd4j::ops::equals op;
|
|
|
|
auto result = op.execute({&x, &y}, {}, {}, {}, false, nd4j::DataType::BOOL);
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, Test_NotEquals_1) {
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {1, 5}, {1, 2, 3, 4, 5});
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {1, 5}, {1, 0, 3, 0, 5});
|
|
|
|
auto exp = NDArrayFactory::create<bool>('c', {1, 5}, {0, 1, 0, 1, 0});
|
|
|
|
|
|
|
|
nd4j::ops::not_equals op;
|
|
|
|
auto result = op.execute({&x, &y}, {}, {}, {}, false, nd4j::DataType::BOOL);
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, Test_Less_1) {
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {1, 5}, {1, 2, 3, 4, 5});
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {1, 5}, {5, 4, 3, 2, 1});
|
|
|
|
auto exp = NDArrayFactory::create<bool>('c', {1, 5}, {1, 1, 0, 0, 0});
|
|
|
|
|
|
|
|
nd4j::ops::less op;
|
|
|
|
auto result = op.execute({&x, &y}, {}, {}, {}, false, nd4j::DataType::BOOL);
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, Test_LessEquals_1) {
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {1, 5}, {1, 2, 3, 4, 5});
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {1, 5}, {5, 4, 3, 2, 1});
|
|
|
|
auto exp = NDArrayFactory::create<bool>('c', {1, 5}, {1, 1, 1, 0, 0});
|
|
|
|
|
|
|
|
nd4j::ops::less_equal op;
|
|
|
|
auto result = op.execute({&x, &y}, {}, {}, {}, false, nd4j::DataType::BOOL);
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, Test_GreaterEquals_1) {
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {1, 5}, {1, 2, 3, 4, 5});
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {1, 5}, {5, 4, 3, 2, 1});
|
|
|
|
auto exp = NDArrayFactory::create<bool>('c', {1, 5}, {0, 0, 1, 1, 1});
|
|
|
|
|
|
|
|
nd4j::ops::greater_equal op;
|
|
|
|
auto result = op.execute({&x, &y}, {}, {}, {}, false, nd4j::DataType::BOOL);
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, Test_GreaterEquals_2) {
|
|
|
|
auto x = NDArrayFactory::create<double>('c', {1, 5}, {1, 2, 3, 4, 5});
|
|
|
|
auto y = NDArrayFactory::create<double>('c', {1, 5}, {5, 4, 3, 2, 1});
|
|
|
|
auto exp = NDArrayFactory::create<bool>('c', {1, 5}, {0, 0, 1, 1, 1});
|
|
|
|
|
|
|
|
nd4j::ops::greater_equal op;
|
|
|
|
auto result = op.execute({&x, &y}, {}, {}, {}, false);
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, Test_Greater_1) {
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {1, 5}, {1, 2, 3, 4, 5});
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {1, 5}, {5, 4, 3, 2, 1});
|
|
|
|
auto exp = NDArrayFactory::create<bool>('c', {1, 5}, {0, 0, 0, 1, 1});
|
|
|
|
|
|
|
|
nd4j::ops::greater op;
|
|
|
|
auto result = op.execute({&x, &y}, {}, {}, {}, false, nd4j::DataType::BOOL);
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, Test_Where_1) {
|
|
|
|
auto mask = NDArrayFactory::create<bool>('c', {3, 3}, {1, 1, 1, 0, 0, 0, 1, 1, 1});
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {3, 3}, {1, 2, 3, 4, 5, 6, 7, 8, 9});
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {3, 3}, {9, 8, 7, 6, 5, 4, 3, 2, 1});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {3, 3}, {1, 2, 3, 6, 5, 4, 7, 8, 9});
|
|
|
|
|
|
|
|
nd4j::ops::Where op;
|
|
|
|
auto result = op.execute({&mask, &x, &y}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
// z->printIndexedBuffer("result");
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, Test_Where_2) {
|
|
|
|
auto mask = NDArrayFactory::create<bool>('c', {1, 3}, {1, 0, 0});
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {3, 3}, {1, 2, 3, 4, 5, 6, 7, 8, 9});
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {3, 3}, {9, 8, 7, 6, 5, 4, 3, 2, 1});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {3, 3}, {1, 2, 3, 6, 5, 4, 3, 2, 1});
|
|
|
|
|
|
|
|
nd4j::ops::Where op;
|
|
|
|
auto result = op.execute({&mask, &x, &y}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, Test_Where_3) {
|
|
|
|
auto mask = NDArrayFactory::create<bool>('c', {2, 2, 3}, {0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1});
|
|
|
|
auto exp = NDArrayFactory::create<Nd4jLong>('c', {5, 3}, {0, 0, 1, 0, 0, 2, 0, 1, 1, 1, 0, 0, 1, 1, 2});
|
|
|
|
|
|
|
|
nd4j::ops::Where op;
|
|
|
|
auto result = op.execute({&mask}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
// z->printShapeInfo("z");
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, Test_Select_1) {
|
|
|
|
auto mask = NDArrayFactory::create<bool>('c', {1, 3}, {1, 0, 0});
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {3, 3}, {1, 2, 3, 4, 5, 6, 7, 8, 9});
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {3, 3}, {9, 8, 7, 6, 5, 4, 3, 2, 1});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {3, 3}, {1, 2, 3, 6, 5, 4, 3, 2, 1});
|
|
|
|
|
|
|
|
nd4j::ops::select op;
|
|
|
|
auto result = op.execute({&mask, &x, &y}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, Test_Select_2) {
|
|
|
|
auto mask = NDArrayFactory::create<bool>('c', {2, 2}, {1, 0, 1, 0});
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {2, 2}, {1, 2, 3, 4 });
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {2, 2}, {9, 8, 7, 6});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {2, 2}, {1, 8, 3, 6});
|
|
|
|
|
|
|
|
nd4j::ops::select op;
|
|
|
|
auto result = op.execute({&mask, &x, &y}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, Test_Select_3) {
|
2019-07-10 13:32:12 +02:00
|
|
|
bool value = false;
|
|
|
|
auto mask = NDArrayFactory::create<bool>('c', {1, 1}, {value});
|
2019-06-06 14:21:15 +02:00
|
|
|
auto x = NDArrayFactory::create<float>('c', {1, 1}, {1});
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {1, 1}, {2});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {1, 1}, {2});
|
|
|
|
|
|
|
|
nd4j::ops::select op;
|
|
|
|
auto result = op.execute({&mask, &x, &y}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, Test_Reshape_TF_1) {
|
|
|
|
auto x = NDArrayFactory::create<int>('c', {2, 2}, {1, 2, 3, 4});
|
|
|
|
auto shape = NDArrayFactory::create<int>('c', {1, 3}, {1, 2, 2});
|
|
|
|
|
|
|
|
auto exp = NDArrayFactory::create<int>('c', {1, 2, 2}, {1, 2, 3, 4});
|
|
|
|
|
|
|
|
nd4j::ops::reshape op;
|
|
|
|
|
|
|
|
auto result = op.execute({&x, &shape}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, Test_Bias_Add_1) {
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {10, 5});
|
|
|
|
x.assign(0.0);
|
2019-09-11 19:12:09 +02:00
|
|
|
auto bias = NDArrayFactory::create<float>('c', {5}, {1, 2, 3, 4, 5});
|
2019-06-06 14:21:15 +02:00
|
|
|
nd4j::ops::biasadd op;
|
|
|
|
|
|
|
|
auto result = op.execute({&x, &bias}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
auto tads = z->allTensorsAlongDimension({1});
|
2019-12-20 20:35:39 +01:00
|
|
|
for (int e = 0; e < tads.size(); e++) {
|
|
|
|
ASSERT_TRUE(bias.equalsTo(tads.at(e)));
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, Test_Scatter_Add_1) {
|
|
|
|
auto matrix = NDArrayFactory::create<float>('c', {2, 2}, {1, 2, 3, 4});
|
|
|
|
NDArray idc('c', {1}, {0}, nd4j::DataType::INT64);
|
|
|
|
auto updates = NDArrayFactory::create<float>('c', {1, 2}, {1, 1});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {2, 2}, {2, 3, 3, 4});
|
|
|
|
|
|
|
|
nd4j::ops::scatter_add op;
|
|
|
|
auto result = op.execute({&matrix, &idc, &updates}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, Test_Scatter_Add_2) {
|
2019-07-20 07:58:44 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
auto vec = NDArrayFactory::create<float>('c', {4}, {1, 2, 3, 4});
|
|
|
|
NDArray idc('c', {1, 4}, {0, 1, 2, 3}, nd4j::DataType::INT64);
|
|
|
|
auto updates = NDArrayFactory::create<float>('c', {1, 4}, {1, 1, 1, 1});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {1, 4}, {2, 3, 4, 5});
|
|
|
|
|
|
|
|
nd4j::ops::scatter_add op;
|
|
|
|
auto result = op.execute({&vec, &idc, &updates}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, Test_Scatter_Add_3) {
|
|
|
|
auto matrix = NDArrayFactory::create<float>('c', {2, 2, 2}, {1, 2, 3, 4, 5, 6, 7, 8});
|
|
|
|
NDArray idc('c', {1}, {0}, nd4j::DataType::INT64);
|
|
|
|
auto updates = NDArrayFactory::create<float>('c', {1, 2, 2}, {1, 1, 1, 1});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {2, 2, 2}, {2, 3, 4, 5, 5, 6, 7, 8});
|
|
|
|
|
|
|
|
nd4j::ops::scatter_add op;
|
|
|
|
auto result = op.execute({&matrix, &idc, &updates}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, Test_Scatter_Add_4) {
|
|
|
|
auto matrix = NDArrayFactory::create<float>('c', {2, 2, 2}, {1, 2, 3, 4, 5, 6, 7, 8});
|
|
|
|
NDArray idc('c', {1, 2}, {0, 0}, nd4j::DataType::INT64);
|
|
|
|
auto updates = NDArrayFactory::create<float>('c', {1, 2, 2, 2}, {1, 1, 1, 1, 1, 1, 1, 1});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {2, 2, 2}, {3, 4, 5, 6, 5, 6, 7, 8});
|
|
|
|
|
|
|
|
nd4j::ops::scatter_add op;
|
2019-11-26 18:29:09 +01:00
|
|
|
auto result = op.execute({&matrix, &idc, &updates}, {}, {}, {true, true});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, Test_Scatter_Add_5) {
|
|
|
|
auto matrix = NDArrayFactory::create<float>('c', {2, 2, 3}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1});
|
|
|
|
NDArray idc('c', {2, 2}, {1, 1, 0, 0}, nd4j::DataType::INT64);
|
|
|
|
auto updates = NDArrayFactory::create<float>('c', {2, 2, 2, 3}, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {2, 2, 3}, {9., 11., 13.,15., 17., 19., 9., 11., 13.,15., 17., 19.});
|
|
|
|
|
|
|
|
nd4j::ops::scatter_add op;
|
|
|
|
auto result = op.execute({&matrix, &idc, &updates}, {}, {}, {true});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
// z->printBuffer();
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, Test_Scatter_Add_6) {
|
|
|
|
auto matrix = NDArrayFactory::create<float>('c', {2, 2, 2}, {1, 1, 1, 1, 1, 1, 1, 1});
|
|
|
|
NDArray idc('c', {2, 2}, {1, 1, 0, 0}, nd4j::DataType::INT64);
|
|
|
|
auto updates = NDArrayFactory::create<float>('c', {2, 2, 2, 2}, {1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {2, 2, 2}, {7, 9, 11, 13, 7, 9, 11, 13});
|
|
|
|
|
|
|
|
nd4j::ops::scatter_add op;
|
2019-11-26 18:29:09 +01:00
|
|
|
auto result = op.execute({&matrix, &idc, &updates}, {}, {}, {true, true});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, Test_Scatter_Add_7) {
|
|
|
|
auto matrix = NDArrayFactory::create<float>('c', {10, 3}, {1.f,2.f,3.f,4.f,5.f,6.f,7.f,8.f,9.f,10.f,11.f,12.f,13.f,14.f,15.f,16.f,17.f,18.f,19.f,20.f,21.f,22.f,23.f,24.f,25.f,26.f,27.f,28.f,29.f,30.f});
|
2019-06-15 13:34:34 +02:00
|
|
|
NDArray idc('c', {}, {5}, nd4j::DataType::INT64);
|
2019-06-06 14:21:15 +02:00
|
|
|
auto updates = NDArrayFactory::create<float>('c', {3}, {10.f, 20.f, 30.f});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {10, 3}, {1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f, 9.f, 10.f,11.f,12.f, 13.f,14.f,15.f, 26.f,37.f,48.f, 19.f,20.f,21.f, 22.f,23.f,24.f, 25.f,26.f,27.f, 28.f,29.f,30.f});
|
|
|
|
|
|
|
|
nd4j::ops::scatter_add op;
|
|
|
|
auto result = op.execute({&matrix, &idc, &updates}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(ParityOpsTests, Test_Scatter_Add_8) {
|
|
|
|
|
|
|
|
NDArray input('c', {8}, {1,1,1,1,1,1,1,1}, nd4j::DataType::FLOAT32);
|
|
|
|
NDArray indices('c', {4}, {1, 1, 1, 1}, nd4j::DataType::INT32);
|
|
|
|
NDArray updates('c', {4}, {1,2,3,4}, nd4j::DataType::FLOAT32);
|
|
|
|
NDArray expected('c', {8}, {1.f, 11.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f}, nd4j::DataType::FLOAT32);
|
|
|
|
|
|
|
|
NDArray z('c', {8}, nd4j::DataType::FLOAT32);
|
|
|
|
|
|
|
|
nd4j::ops::scatter_add op;
|
|
|
|
Nd4jStatus status = op.execute({&input, &indices, &updates}, {&z}, {}, {}, {true});
|
|
|
|
// z.printBuffer();
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, status);
|
2019-12-20 20:35:39 +01:00
|
|
|
ASSERT_TRUE(expected.isSameShapeStrict(z));
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(expected.equalsTo(z));
|
|
|
|
}
|
|
|
|
|
2019-11-26 18:29:09 +01:00
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(ParityOpsTests, Test_Scatter_Add_9) {
|
|
|
|
auto matrix = NDArrayFactory::create<float>('c', {2, 2, 3}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1});
|
|
|
|
NDArray idc('c', {2, 2}, {1, 10, 0, 0}, nd4j::DataType::INT64);
|
|
|
|
auto updates = NDArrayFactory::create<float>('c', {2, 2, 2, 3}, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12});
|
|
|
|
auto output = NDArrayFactory::create<float>('c', {2, 2, 3});
|
|
|
|
|
|
|
|
nd4j::ops::scatter_add op;
|
|
|
|
|
|
|
|
ASSERT_ANY_THROW(op.execute({&matrix, &idc, &updates}, {&output}, {}, {}, {true, true}));
|
|
|
|
}
|
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(ParityOpsTests, scatterMax_test1) {
|
|
|
|
auto matrix = NDArrayFactory::create<float>('c', {2, 2}, {1, 2, 3, 4});
|
|
|
|
NDArray idc('c', {1}, {0.}, nd4j::DataType::INT64);
|
|
|
|
auto updates = NDArrayFactory::create<float>('c', {1, 2}, {10, 1});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {2, 2}, {10, 2, 3, 4});
|
|
|
|
|
|
|
|
nd4j::ops::scatter_max op;
|
|
|
|
auto result = op.execute({&matrix, &idc, &updates}, {}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, scatterMax_test2) {
|
|
|
|
auto vec = NDArrayFactory::create<float>('c', {4}, {1, 2, 3, 4});
|
|
|
|
NDArray idc('c', {1, 4}, {0, 1, 2, 3}, nd4j::DataType::INT64);
|
|
|
|
auto updates = NDArrayFactory::create<float>('c', {1, 4}, {10, 1, 30, 1});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {1, 4}, {10, 2, 30, 4});
|
|
|
|
|
|
|
|
nd4j::ops::scatter_max op;
|
|
|
|
auto result = op.execute({&vec, &idc, &updates}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, scatterMax_test3) {
|
|
|
|
auto matrix = NDArrayFactory::create<float>('c', {2, 2, 2}, {1, 2, 3, 4, 5, 6, 7, 8});
|
|
|
|
NDArray idc('c', {1}, {0}, nd4j::DataType::INT64);
|
|
|
|
auto updates = NDArrayFactory::create<float>('c', {1, 2, 2}, {10, 1, 30, 1});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {2, 2, 2}, {10, 2, 30, 4, 5, 6, 7, 8});
|
|
|
|
|
|
|
|
nd4j::ops::scatter_max op;
|
|
|
|
auto result = op.execute({&matrix, &idc, &updates}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, scatterMax_test4) {
|
|
|
|
auto matrix = NDArrayFactory::create<float>('c', {2, 2, 2}, {1, 2, 3, 4, 5, 6, 7, 8});
|
|
|
|
NDArray idc('c', {1,2}, {0,0}, nd4j::DataType::INT32);
|
|
|
|
auto updates = NDArrayFactory::create<float>('c', {1, 2, 2, 2}, {1,10,1,10, 1,1,10,1.});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {2, 2, 2}, {1, 10, 10, 10, 5, 6, 7, 8});
|
|
|
|
|
|
|
|
nd4j::ops::scatter_max op;
|
2019-11-29 12:14:30 +01:00
|
|
|
auto result = op.execute({&matrix, &idc, &updates}, {}, {true});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, scatterMax_test5) {
|
|
|
|
auto matrix = NDArrayFactory::create<float>('c', {2, 2, 3}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1});
|
|
|
|
NDArray idc('c', {2, 2}, {1, 1, 0, 0}, nd4j::DataType::INT32);
|
|
|
|
auto updates = NDArrayFactory::create<float>('c', {2, 2, 2, 3}, {2,10,1,10, 2,10,1,10, 2,10,1,10, 10,2,10,1, 10,2,10,1, 10,2,10,1.});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {2, 2, 3}, {10, 2, 10, 2, 10, 2, 2, 10, 2, 10, 2, 10});
|
|
|
|
|
|
|
|
nd4j::ops::scatter_max op;
|
|
|
|
auto result = op.execute({&matrix, &idc, &updates}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, scatterMax_test6) {
|
|
|
|
auto matrix = NDArrayFactory::create<float>('c', {2, 2, 2}, {1, 1, 1, 1, 1, 1, 1, 1});
|
|
|
|
NDArray idc('c', {2, 2}, {1, 1, 0, 0}, nd4j::DataType::INT32);
|
|
|
|
auto updates = NDArrayFactory::create<float>('c', {2, 2, 2, 2}, {0,2,0,2, 0,2,0,2, 2,0,2,0., 2,0,2,0});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {2, 2, 2}, {2, 1, 2, 1, 1, 2, 1, 2});
|
|
|
|
|
|
|
|
nd4j::ops::scatter_max op;
|
|
|
|
auto result = op.execute({&matrix, &idc, &updates}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, scatterMin_test1) {
|
|
|
|
auto matrix = NDArrayFactory::create<float>('c', {2, 2}, {1, 2, 3, 4});
|
|
|
|
NDArray idc('c', {1}, {0}, nd4j::DataType::INT32);
|
|
|
|
auto updates = NDArrayFactory::create<float>('c', {1, 2}, {-1, 1});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {2, 2}, {-1, 1, 3, 4});
|
|
|
|
|
|
|
|
nd4j::ops::scatter_min op;
|
|
|
|
auto result = op.execute({&matrix, &idc, &updates}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, scatterMin_test2) {
|
|
|
|
auto vec = NDArrayFactory::create<float>('c', {4}, {1, 2, 3, 4});
|
|
|
|
NDArray idc('c', {1, 4}, {0, 1, 2, 3}, nd4j::DataType::INT32);
|
|
|
|
auto updates = NDArrayFactory::create<float>('c', {1, 4}, {10, 1, 30, 1});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {1, 4}, {1, 1, 3, 1});
|
|
|
|
|
|
|
|
nd4j::ops::scatter_min op;
|
|
|
|
auto result = op.execute({&vec, &idc, &updates}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, scatterMin_test3) {
|
|
|
|
auto matrix = NDArrayFactory::create<float>('c', {2, 2, 2}, {1, 2, 3, 4, 5, 6, 7, 8});
|
|
|
|
NDArray idc('c', {1}, {0}, nd4j::DataType::INT32);
|
|
|
|
auto updates = NDArrayFactory::create<float>('c', {1, 2, 2}, {10, 1, 30, 2});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {2, 2, 2}, {1, 1, 3, 2, 5, 6, 7, 8});
|
|
|
|
|
|
|
|
nd4j::ops::scatter_min op;
|
|
|
|
auto result = op.execute({&matrix, &idc, &updates}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(ParityOpsTests, scatterMin_test4) {
|
|
|
|
auto matrix = NDArrayFactory::create<float>('c', {2, 2, 2}, {1, 2, 3, 4, 5, 6, 7, 8});
|
|
|
|
NDArray idc('c', {1,2}, {0,0}, nd4j::DataType::INT32);
|
|
|
|
auto updates = NDArrayFactory::create<float>('c', {1, 2, 2, 2}, {1,10,1,10, 1,1,10,1.});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {2, 2, 2}, {1, 1, 1, 1, 5, 6, 7, 8});
|
|
|
|
|
|
|
|
nd4j::ops::scatter_min op;
|
|
|
|
auto result = op.execute({&matrix, &idc, &updates}, {}, {}, {true});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
// z->printBuffer();
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
2019-11-26 18:29:09 +01:00
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(ParityOpsTests, scatterMin_test5) {
|
|
|
|
auto matrix = NDArrayFactory::create<float>('c', {2, 2, 2}, {1, 2, 3, 4, 5, 6, 7, 8});
|
|
|
|
NDArray idc('c', {1,2}, {10,10}, nd4j::DataType::INT32);
|
|
|
|
auto updates = NDArrayFactory::create<float>('c', {1, 2, 2, 2}, {1,10,1,10, 1,1,10,1.});
|
|
|
|
auto output = NDArrayFactory::create<float>('c', {2, 2, 2});
|
|
|
|
|
|
|
|
nd4j::ops::scatter_min op;
|
|
|
|
|
|
|
|
ASSERT_ANY_THROW(op.execute({&matrix, &idc, &updates}, {&output}, {}, {}, {true, true}));
|
|
|
|
}
|
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(ParityOpsTests, scatterND_test1) {
|
|
|
|
|
|
|
|
NDArray indices('c', {2, 1}, {1., 0.}, nd4j::DataType::INT32);
|
|
|
|
auto updates = NDArrayFactory::create<float>('c', {2, 4}, {10.f, 20.f, 30.f, 40.f, 50.f, 60.f, 70.f, 80.f});
|
|
|
|
auto shape = NDArrayFactory::create<int>('c', {2}, {3, 4});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {3, 4}, {50.f, 60.f, 70.f, 80.f, 10.f, 20.f, 30.f, 40.f, 0.f, 0.f, 0.f, 0.f});
|
|
|
|
|
|
|
|
nd4j::ops::scatter_nd op;
|
2019-11-26 18:29:09 +01:00
|
|
|
auto result = op.execute({&indices, &updates, &shape}, {}, {false, true});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
// z->printBuffer();
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(ParityOpsTests, scatterND_test2) {
|
|
|
|
|
|
|
|
NDArray indices('c', {3, 1}, {4., 2., 0.}, nd4j::DataType::INT32);
|
|
|
|
auto updates = NDArrayFactory::create<float>('c', {3, 4});
|
|
|
|
auto shape = NDArrayFactory::create<int>('c', {2}, {5, 4});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {5, 4}, {9.f,10.f,11.f,12.f, 0.f, 0.f, 0.f, 0.f, 5.f, 6.f, 7.f, 8.f, 0.f, 0.f, 0.f, 0.f, 1.f, 2.f, 3.f, 4.f});
|
|
|
|
updates.linspace(1.f);
|
|
|
|
|
|
|
|
nd4j::ops::scatter_nd op;
|
|
|
|
auto result = op.execute({&indices, &updates, &shape}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(ParityOpsTests, scatterND_test3) {
|
|
|
|
|
|
|
|
NDArray indices('c', {2, 3, 1}, {0., 2., 7., 3., 6., 9.}, nd4j::DataType::INT32);
|
|
|
|
auto updates = NDArrayFactory::create<float>('c', {2,3, 3,4});
|
|
|
|
auto shape = NDArrayFactory::create<int>('c', {3}, {10, 3, 4});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {10, 3, 4}, {1.f, 2.f, 3.f, 4., 5.f, 6.f, 7.f, 8., 9.f, 10.f, 11.f, 12., 0.f, 0.f, 0.f, 0., 0.f, 0.f, 0.f, 0., 0.f, 0.f, 0.f, 0.,
|
|
|
|
13.f, 14.f, 15.f, 16.,17.f, 18.f, 19.f, 20.,21.f, 22.f, 23.f, 24.,37.f, 38.f, 39.f, 40.,41.f, 42.f, 43.f, 44.,45.f, 46.f, 47.f, 48.,
|
|
|
|
0.f, 0.f, 0.f, 0., 0.f, 0.f, 0.f, 0., 0.f, 0.f, 0.f, 0., 0.f, 0.f, 0.f, 0., 0.f, 0.f, 0.f, 0., 0.f, 0.f, 0.f, 0.,
|
|
|
|
49.f, 50.f, 51.f, 52.,53.f, 54.f, 55.f, 56.,57.f, 58.f, 59.f, 60.,25.f, 26.f, 27.f, 28.,29.f, 30.f, 31.f, 32.,33.f, 34.f, 35.f, 36.,
|
|
|
|
0.f, 0.f, 0.f, 0., 0.f, 0.f, 0.f, 0., 0.f, 0.f, 0.f, 0.,61.f, 62.f, 63.f, 64.,65.f, 66.f, 67.f, 68.,69.f, 70.f, 71.f, 72.,});
|
|
|
|
updates.linspace(1.f);
|
|
|
|
|
|
|
|
nd4j::ops::scatter_nd op;
|
2019-11-26 18:29:09 +01:00
|
|
|
auto result = op.execute({&indices, &updates, &shape}, {}, {false, true});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(ParityOpsTests, scatterND_test4) {
|
|
|
|
|
|
|
|
NDArray indices('c', {4, 1}, {4., 3., 1., 7.}, nd4j::DataType::INT32);
|
|
|
|
auto updates = NDArrayFactory::create<float>('c', {4}, {9.f, 10.f, 11.f, 12.f});
|
|
|
|
auto shape = NDArrayFactory::create<int>('c', {1}, {8});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {8}, {0.f, 11.f, 0.f, 10.f, 9.f, 0.f, 0.f, 12.f});
|
|
|
|
|
|
|
|
nd4j::ops::scatter_nd op;
|
|
|
|
auto result = op.execute({&indices, &updates, &shape}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(ParityOpsTests, scatterND_test5) {
|
|
|
|
|
|
|
|
NDArray indices('c', {4, 1}, {1, 1, 1, 1}, nd4j::DataType::INT32);
|
|
|
|
auto updates = NDArrayFactory::create<float>('c', {4}, {1.f, 2.f, 3.f, 4.f});
|
|
|
|
auto shape = NDArrayFactory::create<int>('c', {1}, {8});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {8}, {0.f, 10.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f});
|
|
|
|
|
|
|
|
nd4j::ops::scatter_nd op;
|
|
|
|
auto result = op.execute({&indices, &updates, &shape}, {}, {}, {true});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
// z->printBuffer();
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(ParityOpsTests, scatterND_test6) {
|
|
|
|
|
|
|
|
NDArray indices('c', {3, 2}, {0,1,1,0,3,2}, nd4j::DataType::INT32);
|
|
|
|
NDArray updates('c', {3, 2, 3}, nd4j::DataType::FLOAT32);
|
|
|
|
NDArray shape('c', {4}, {5,4,2,3}, nd4j::DataType::INT32);
|
|
|
|
|
|
|
|
NDArray exp('c', {5,4,2,3}, {0., 0., 0.,0., 0., 0.,1., 2., 3.,4., 5., 6.,0., 0., 0.,0., 0., 0., 0., 0., 0.,0., 0., 0.,
|
|
|
|
7., 8., 9., 10., 11., 12., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
|
|
|
|
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
|
|
|
|
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 13., 14., 15., 16., 17., 18., 0., 0., 0., 0., 0., 0.,
|
|
|
|
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.}, nd4j::DataType::FLOAT32);
|
|
|
|
updates.linspace(1);
|
|
|
|
|
|
|
|
nd4j::ops::scatter_nd op;
|
|
|
|
auto result = op.execute({&indices, &updates, &shape}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
// z->printBuffer();
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(ParityOpsTests, scatterND_test7) {
|
|
|
|
|
|
|
|
NDArray indices('c', {4,3,2}, {0,1,1,0,3,2,1,0,0,1,1,0,3,2,1,0,0,1,1,0,3,2,1,0}, nd4j::DataType::INT32);
|
|
|
|
NDArray updates('c', {4,3,2,3}, nd4j::DataType::FLOAT32);
|
|
|
|
NDArray shape('c', {4}, {5,4,2,3}, nd4j::DataType::INT32);
|
|
|
|
|
|
|
|
NDArray exp('c', {5,4,2,3}, {0., 0., 0., 0., 0., 0., 75., 78., 81., 84., 87., 90., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
|
|
|
|
222., 228., 234., 240., 246., 252., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
|
|
|
|
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
|
|
|
|
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 111., 114., 117., 120., 123., 126., 0., 0., 0., 0., 0., 0.,
|
|
|
|
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.}, nd4j::DataType::FLOAT32);
|
|
|
|
updates.linspace(1);
|
|
|
|
|
|
|
|
nd4j::ops::scatter_nd op;
|
2019-11-26 18:29:09 +01:00
|
|
|
auto result = op.execute({&indices, &updates, &shape}, {}, {}, {true, true});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
// z->printBuffer();
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(ParityOpsTests, scatterND_test8) {
|
|
|
|
|
|
|
|
NDArray indices('c', {3, 2}, {0,0, 1,1, 2,2}, nd4j::DataType::INT32);
|
|
|
|
auto updates = NDArrayFactory::create<float>('c', {3}, {1.f, 2.f, 3.f});
|
|
|
|
auto shape = NDArrayFactory::create<int>('c', {2}, {6,4});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {6,4}, {1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0});
|
|
|
|
|
|
|
|
nd4j::ops::scatter_nd op;
|
|
|
|
auto result = op.execute({&indices, &updates, &shape}, {}, {true});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
// z->printBuffer();
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
2019-11-26 18:29:09 +01:00
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(ParityOpsTests, scatterND_test9) {
|
|
|
|
|
|
|
|
NDArray indices('c', {2, 3, 1}, {0., 20., 7., 30., 6., 90.}, nd4j::DataType::INT32);
|
|
|
|
auto updates = NDArrayFactory::create<float>('c', {2,3, 3,4});
|
|
|
|
auto shape = NDArrayFactory::create<int>('c', {3}, {10, 3, 4});
|
|
|
|
auto output = NDArrayFactory::create<float>('c', {10, 3, 4});
|
|
|
|
|
|
|
|
nd4j::ops::scatter_nd op;
|
|
|
|
|
|
|
|
ASSERT_ANY_THROW(auto result = op.execute({&indices, &updates, &shape}, {&output}, {}, {}, {false, true}));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(ParityOpsTests, scatterND_add_test1) {
|
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<float>('c', {8}, {1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f});
|
|
|
|
NDArray indices('c', {4, 1}, {4., 3., 1., 7.}, nd4j::DataType::INT32);
|
|
|
|
auto updates = NDArrayFactory::create<float>('c', {4}, {9.f, 10.f, 11.f, 12.f});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {8}, {1.f, 13.f, 3.f, 14.f, 14.f, 6.f, 7.f, 20.f});
|
|
|
|
|
|
|
|
nd4j::ops::scatter_nd_add op;
|
|
|
|
auto result = op.execute({&input, &indices, &updates}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(ParityOpsTests, scatterND_add_test2) {
|
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<float>('c', {6, 4});
|
|
|
|
NDArray indices('c', {3, 3, 2}, {0.f,0.f, 1.f,1.f, 2.f,2.f, 3.f,3.f, 4.f,0.f, 5.f,1.f, 0.f,2.f, 1.f,3.f, 2.f,0.f}, nd4j::DataType::INT32);
|
|
|
|
auto updates = NDArrayFactory::create<float>('c', {3,3});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {6,4}, {1.f,0.f,7.f,0.f, 0.f,2.f,0.f,8.f, 9.f,0.f,3.f,0.f, 0.f,0.f,0.f,4.f, 5.f,0.f,0.f,0.f, 0.f,6.f,0.f,0.f});
|
|
|
|
|
|
|
|
input = 0.f;
|
|
|
|
updates.linspace(1.f);
|
|
|
|
|
|
|
|
nd4j::ops::scatter_nd_add op;
|
|
|
|
auto result = op.execute({&input, &indices, &updates}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
// z->printIndexedBuffer();
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(ParityOpsTests, scatterND_add_test3) {
|
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<float>('c', {6, 4});
|
|
|
|
NDArray indices('c', {2, 3, 1}, {5.f, 1.f, 2.f, 3.f, 4.f, 0.f}, nd4j::DataType::INT32);
|
|
|
|
auto updates = NDArrayFactory::create<float>('c', {2,3,4});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {6,4}, {21.f, 22.f, 23.f, 24.f, 5.f, 6.f, 7.f, 8.f, 9.f, 10.f, 11.f, 12.f,13.f, 14.f, 15.f, 16.f,17.f, 18.f, 19.f, 20.f, 1.f, 2.f, 3.f, 4.f});
|
|
|
|
|
|
|
|
input = 0.f;
|
|
|
|
updates.linspace(1.f);
|
|
|
|
|
|
|
|
nd4j::ops::scatter_nd_add op;
|
|
|
|
auto result = op.execute({&input, &indices, &updates}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(ParityOpsTests, scatterND_add_test4) {
|
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<float>('c', {6, 4, 5});
|
|
|
|
NDArray indices('c', {3, 3, 2}, {0.f,0.f, 1.f,1.f, 2.f,2.f, 3.f,3.f, 4.f,0.f, 5.f,1.f, 0.f,2.f, 1.f,3.f, 2.f,0.f}, nd4j::DataType::INT32);
|
|
|
|
auto updates = NDArrayFactory::create<float>('c', {3,3,5});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {6,4,5}, {1.f, 2.f, 3.f, 4.f, 5.f, 0.f, 0.f, 0.f, 0.f, 0.f,31.f, 32.f, 33.f, 34.f, 35.f, 0.f, 0.f, 0.f, 0.f, 0.f,
|
|
|
|
0.f, 0.f, 0.f, 0.f, 0.f, 6.f, 7.f, 8.f, 9.f, 10.f, 0.f, 0.f, 0.f, 0.f, 0.f,36.f, 37.f, 38.f, 39.f, 40.f,
|
|
|
|
41.f, 42.f, 43.f, 44.f, 45.f, 0.f, 0.f, 0.f, 0.f, 0.f,11.f, 12.f, 13.f, 14.f, 15.f, 0.f, 0.f, 0.f, 0.f, 0.f,
|
|
|
|
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,16.f, 17.f, 18.f, 19.f, 20.f,
|
|
|
|
21.f, 22.f, 23.f, 24.f, 25.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
|
|
|
|
0.f, 0.f, 0.f, 0.f, 0.f,26.f, 27.f, 28.f, 29.f, 30.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f});
|
|
|
|
input = 0.f;
|
|
|
|
updates.linspace(1.f);
|
|
|
|
|
|
|
|
nd4j::ops::scatter_nd_add op;
|
|
|
|
auto result = op.execute({&input, &indices, &updates}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(ParityOpsTests, scatterND_add_test5) {
|
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<float>('c', {6,5,4,3,2});
|
|
|
|
NDArray indices('c', {2,2,3}, {0.f,0.f,0.f, 1.f,1.f,1.f, 2.f,2.f,2.f, 3.f,3.f,3.f}, nd4j::DataType::INT32);
|
|
|
|
auto updates = NDArrayFactory::create<float>('c', {2,2,3,2});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {6,5,4,3,2}, { 1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
|
|
|
|
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
|
|
|
|
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
|
|
|
|
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 7.f, 8.f, 9.f, 10.f,11.f, 12.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
|
|
|
|
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
|
|
|
|
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
|
|
|
|
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,13.f, 14.f,15.f, 16.f,17.f, 18.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
|
|
|
|
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
|
|
|
|
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
|
|
|
|
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,19.f, 20.f,21.f, 22.f,23.f, 24.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
|
|
|
|
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
|
|
|
|
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
|
|
|
|
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
|
|
|
|
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
|
|
|
|
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f});
|
|
|
|
input = 0.f;
|
|
|
|
updates.linspace(1.f);
|
|
|
|
|
|
|
|
nd4j::ops::scatter_nd_add op;
|
|
|
|
auto result = op.execute({&input, &indices, &updates}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
2019-11-26 18:29:09 +01:00
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(ParityOpsTests, scatterND_add_test6) {
|
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<float>('c', {6, 4});
|
|
|
|
NDArray indices('c', {2, 3, 1}, {50.f, 1.f, 2.f, 3.f, 40.f, 0.f}, nd4j::DataType::INT32);
|
|
|
|
auto updates = NDArrayFactory::create<float>('c', {2,3,4});
|
|
|
|
auto output = NDArrayFactory::create<float>('c', {6,4});
|
|
|
|
|
|
|
|
nd4j::ops::scatter_nd_add op;
|
|
|
|
|
|
|
|
ASSERT_ANY_THROW(op.execute({&input, &indices, &updates}, {&output}, {}, {}, {false, true}));
|
|
|
|
}
|
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(ParityOpsTests, scatterND_sub_test1) {
|
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<float>('c', {8}, {1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f});
|
|
|
|
NDArray indices('c', {4, 1}, {4.f, 3.f, 1.f, 7.f}, nd4j::DataType::INT32);
|
|
|
|
auto updates = NDArrayFactory::create<float>('c', {4}, {9.f, 10.f, 11.f, 12.f});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {8}, {1.f, -9.f, 3.f, -6.f, -4.f, 6.f, 7.f, -4.f});
|
|
|
|
|
|
|
|
nd4j::ops::scatter_nd_sub op;
|
|
|
|
auto result = op.execute({&input, &indices, &updates}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(ParityOpsTests, scatterND_sub_test2) {
|
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<float>('c', {6, 4});
|
|
|
|
NDArray indices('c', {3, 3, 2}, {0.f,0.f, 1.f,1.f, 2.f,2.f, 3.f,3.f, 4.f,0.f, 5.f,1.f, 0.f,2.f, 1.f,3.f, 2.f,0.f}, nd4j::DataType::INT32);
|
|
|
|
auto updates = NDArrayFactory::create<float>('c', {3,3});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {6,4}, {-1.f,0.f,-7.f,0.f, 0.f,-2.f,0.f,-8.f, -9.f,0.f,-3.f,0.f, 0.f,0.f,0.f,-4.f, -5.f,0.f,0.f,0.f, 0.f,-6.f,0.f,0.f});
|
|
|
|
|
|
|
|
input = 0.f;
|
|
|
|
updates.linspace(1.f);
|
|
|
|
|
|
|
|
nd4j::ops::scatter_nd_sub op;
|
|
|
|
auto result = op.execute({&input, &indices, &updates}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
2019-11-13 15:15:18 +01:00
|
|
|
//exp.printIndexedBuffer("e");
|
|
|
|
//z->printIndexedBuffer("z");
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(ParityOpsTests, scatterND_sub_test3) {
|
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<float>('c', {6, 4});
|
|
|
|
NDArray indices('c', {2, 3, 1}, {5.f, 1.f, 2.f, 3.f,4.f, 0.f}, nd4j::DataType::INT32);
|
|
|
|
auto updates = NDArrayFactory::create<float>('c', {2,3,4});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {6,4}, {-21.f,-22.f,-23.f,-24., -5.f, -6.f, -7.f, -8., -9.f,-10.f,-11.f,-12., -13.f,-14.f,-15.f,-16., -17.f,-18.f,-19.f,-20., -1.f, -2.f, -3.f, -4.f});
|
|
|
|
|
|
|
|
input = 0.f;
|
|
|
|
updates.linspace(1.f);
|
|
|
|
|
|
|
|
nd4j::ops::scatter_nd_sub op;
|
|
|
|
auto result = op.execute({&input, &indices, &updates}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(ParityOpsTests, scatterND_sub_test4) {
|
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<float>('c', {6, 4, 5});
|
|
|
|
NDArray indices('c', {3, 3, 2}, {0.f,0.f, 1.f,1.f, 2.f,2.f, 3.f,3.f, 4.f,0.f, 5.f,1.f, 0.f,2.f, 1.f,3.f, 2.f,0.f}, nd4j::DataType::INT32);
|
|
|
|
auto updates = NDArrayFactory::create<float>('c', {3,3,5});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {6,4,5}, {-1.f, -2.f, -3.f, -4.f, -5.f, 0.f, 0.f, 0.f, 0.f, 0.f,-31.f, -32.f, -33.f, -34.f, -35.f, 0.f, 0.f, 0.f, 0.f, 0.f,
|
|
|
|
0.f, 0.f, 0.f, 0.f, 0.f, -6.f, -7.f, -8.f, -9.f, -10.f, 0.f, 0.f, 0.f, 0.f, 0.f,-36.f, -37.f, -38.f, -39.f, -40.f,
|
|
|
|
-41.f, -42.f, -43.f, -44.f, -45.f, 0.f, 0.f, 0.f, 0.f, 0.f,-11.f, -12.f, -13.f, -14.f, -15.f, 0.f, 0.f, 0.f, 0.f, 0.f,
|
|
|
|
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,-16.f, -17.f, -18.f, -19.f, -20.f,
|
|
|
|
-21.f, -22.f, -23.f, -24.f, -25.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
|
|
|
|
0.f, 0.f, 0.f, 0.f, 0.f,-26.f, -27.f, -28.f, -29.f, -30.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f});
|
|
|
|
input = 0.f;
|
|
|
|
updates.linspace(1.f);
|
|
|
|
|
|
|
|
nd4j::ops::scatter_nd_sub op;
|
|
|
|
auto result = op.execute({&input, &indices, &updates}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(ParityOpsTests, scatterND_sub_test5) {
|
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<float>('c', {6,5,4,3,2});
|
|
|
|
NDArray indices('c', {2,2,3}, {0.f,0.f,0.f, 1.f,1.f,1.f, 2.f,2.f,2.f, 3.f,3.f,3.f}, nd4j::DataType::INT32);
|
|
|
|
auto updates = NDArrayFactory::create<float>('c', {2,2,3,2});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {6,5,4,3,2}, { -1.f, -2.f, -3.f, -4.f, -5.f, -6.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
|
|
|
|
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
|
|
|
|
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
|
|
|
|
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, -7.f, -8.f, -9.f, -10.f,-11.f, -12.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
|
|
|
|
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
|
|
|
|
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
|
|
|
|
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,-13.f, -14.f,-15.f, -16.f,-17.f, -18.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
|
|
|
|
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
|
|
|
|
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
|
|
|
|
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,-19.f, -20.f,-21.f, -22.f,-23.f,-24.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
|
|
|
|
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
|
|
|
|
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
|
|
|
|
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
|
|
|
|
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
|
|
|
|
0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f});
|
|
|
|
input = 0.f;
|
|
|
|
updates.linspace(1.f);
|
|
|
|
|
|
|
|
nd4j::ops::scatter_nd_sub op;
|
|
|
|
auto result = op.execute({&input, &indices, &updates}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(ParityOpsTests, scatterND_update_test1) {
|
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<float>('c', {8}, {1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f});
|
|
|
|
NDArray indices('c', {4, 1}, {4.f, 3.f, 1.f, 7.f}, nd4j::DataType::INT32);
|
|
|
|
auto updates = NDArrayFactory::create<float>('c', {4}, {9.f, 10.f, 11.f, 12.f});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {8}, {1.f, 11.f, 3.f, 10.f, 9.f, 6.f, 7.f, 12.f});
|
|
|
|
|
|
|
|
nd4j::ops::scatter_nd_update op;
|
|
|
|
auto result = op.execute({&input, &indices, &updates}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(ParityOpsTests, scatterND_update_test2) {
|
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<float>('c', {6, 4});
|
|
|
|
NDArray indices('c', {3, 3, 2}, {0.f,0.f, 1.f,1.f, 2.f,2.f, 3.f,3.f, 4.f,0.f, 5.f,1.f, 0.f,2.f, 1.f,3.f, 2.f,0.f}, nd4j::DataType::INT32);
|
|
|
|
auto updates = NDArrayFactory::create<float>('c', {3,3});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {6,4}, {1.f,-1.f,7.f,-1.f, -1.f,2.f,-1.f,8.f, 9.f,-1.f,3.f,-1.f, -1.f,-1.f,-1.f,4.f, 5.f,-1.f,-1.f,-1.f, -1.f,6.f,-1.f,-1.f});
|
|
|
|
|
|
|
|
input = -1.f;
|
|
|
|
updates.linspace(1.f);
|
|
|
|
|
|
|
|
nd4j::ops::scatter_nd_update op;
|
|
|
|
auto result = op.execute({&input, &indices, &updates}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
// z->printIndexedBuffer();
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(ParityOpsTests, scatterND_update_test3) {
|
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<float>('c', {6, 4});
|
|
|
|
NDArray indices('c', {2, 3, 1}, {5.f, 1.f, 2.f, 3.f, 4.f, 0.f}, nd4j::DataType::INT32);
|
|
|
|
auto updates = NDArrayFactory::create<float>('c', {2,3,4});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {6,4}, {21.f, 22.f, 23.f, 24.f, 5.f, 6.f, 7.f, 8.f, 9.f, 10.f, 11.f, 12.f,13.f, 14.f, 15.f, 16.f,17.f, 18.f, 19.f, 20.f, 1.f, 2.f, 3.f, 4.f,});
|
|
|
|
|
|
|
|
input = -1.f;
|
|
|
|
updates.linspace(1.f);
|
|
|
|
|
|
|
|
nd4j::ops::scatter_nd_update op;
|
|
|
|
auto result = op.execute({&input, &indices, &updates}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
// z->printBuffer();
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(ParityOpsTests, scatterND_update_test4) {
|
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<float>('c', {6, 4, 5});
|
|
|
|
NDArray indices('c', {3, 3, 2}, {0.f,0.f, 1.f,1.f, 2.f,2.f, 3.f,3.f, 4.f,0.f, 5.f,1.f, 0.f,2.f, 1.f,3.f, 2.f,0.f}, nd4j::DataType::INT32);
|
|
|
|
auto updates = NDArrayFactory::create<float>('c', {3,3,5});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {6,4,5}, {1.f, 2.f, 3.f, 4.f, 5.f, -1.f, -1.f, -1.f, -1.f, -1.f,31.f, 32.f, 33.f, 34.f, 35.f, -1.f, -1.f, -1.f, -1.f, -1.f,
|
|
|
|
-1.f, -1.f, -1.f, -1.f, -1.f, 6.f, 7.f, 8.f, 9.f, 10.f, -1.f, -1.f, -1.f, -1.f, -1.f,36.f, 37.f, 38.f, 39.f, 40.f,
|
|
|
|
41.f, 42.f, 43.f, 44.f, 45.f, -1.f, -1.f, -1.f, -1.f, -1.f,11.f, 12.f, 13.f, 14.f, 15.f, -1.f, -1.f, -1.f, -1.f, -1.f,
|
|
|
|
-1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f,16.f, 17.f, 18.f, 19.f, 20.f,
|
|
|
|
21.f, 22.f, 23.f, 24.f, 25.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f,
|
|
|
|
-1.f, -1.f, -1.f, -1.f, -1.f,26.f, 27.f, 28.f, 29.f, 30.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f});
|
|
|
|
input = -1.f;
|
|
|
|
updates.linspace(1.f);
|
|
|
|
|
|
|
|
nd4j::ops::scatter_nd_update op;
|
|
|
|
auto result = op.execute({&input, &indices, &updates}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(ParityOpsTests, scatterND_update_test5) {
|
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<float>('c', {6,5,4,3,2});
|
|
|
|
NDArray indices('c', {2,2,3}, {0.f,0.f,0.f, 1.f,1.f,1.f, 2.f,2.f,2.f, 3.f,3.f,3.f}, nd4j::DataType::INT32);
|
|
|
|
auto updates = NDArrayFactory::create<float>('c', {2,2,3,2});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {6,5,4,3,2}, { 1.f, 2.f, 3.f, 4.f, 5.f, 6.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f,
|
|
|
|
-1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f,
|
|
|
|
-1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f,
|
|
|
|
-1.f, -1.f, -1.f, -1.f, -1.f, -1.f, 7.f, 8.f, 9.f, 10.f,11.f, 12.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f,
|
|
|
|
-1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f,
|
|
|
|
-1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f,
|
|
|
|
-1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f,13.f, 14.f,15.f, 16.f,17.f, 18.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f,
|
|
|
|
-1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f,
|
|
|
|
-1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f,
|
|
|
|
-1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f,19.f, 20.f,21.f, 22.f,23.f, 24.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f,
|
|
|
|
-1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f,
|
|
|
|
-1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f,
|
|
|
|
-1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f,
|
|
|
|
-1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f,
|
|
|
|
-1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f, -1.f});
|
|
|
|
input = -1.f;
|
|
|
|
updates.linspace(1.f);
|
|
|
|
|
|
|
|
nd4j::ops::scatter_nd_update op;
|
|
|
|
auto result = op.execute({&input, &indices, &updates}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
|
|
|
|
auto z = result->at(0);
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
delete result;
|
|
|
|
}
|
|
|
|
|
2019-11-26 18:29:09 +01:00
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(ParityOpsTests, scatterND_update_test6) {
|
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<float>('c', {6, 4});
|
|
|
|
NDArray indices('c', {3, 3, 2}, {0.f,0.f, 10.f,1.f, 20.f,2.f, 30.f,3.f, 40.f,0.f, 50.f,1.f, 0.f,2.f, 1.f,3.f, 2.f,0.f}, nd4j::DataType::INT32);
|
|
|
|
auto updates = NDArrayFactory::create<float>('c', {3,3});
|
|
|
|
auto output = NDArrayFactory::create<float>('c', {6,4});
|
|
|
|
|
|
|
|
nd4j::ops::scatter_nd_update op;
|
|
|
|
|
|
|
|
ASSERT_ANY_THROW(op.execute({&input, &indices, &updates}, {&output}, {}, {}, {true, true}));
|
|
|
|
}
|
|
|
|
|
2019-07-20 07:58:44 +02:00
|
|
|
//////////////////////////////////////////////////////////////////////
|
2019-06-06 14:21:15 +02:00
|
|
|
TEST_F(ParityOpsTests, scatter_update_1) {
|
|
|
|
|
2019-07-20 07:58:44 +02:00
|
|
|
NDArray x('c', {2,2}, {1,2,3,4}, nd4j::DataType::INT32);
|
|
|
|
NDArray updates('c', {2,2}, {10,20,30,40}, nd4j::DataType::INT32);
|
|
|
|
|
|
|
|
NDArray exp('c', {2,2}, {30,40,10,20}, nd4j::DataType::INT32);
|
|
|
|
|
|
|
|
nd4j::ops::scatter_update op;
|
|
|
|
auto results = op.execute({&x, &updates}, {}, {6, 1,1, 2,1,0});
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
// x.printBuffer();
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-07-20 07:58:44 +02:00
|
|
|
ASSERT_TRUE(exp.isSameShape(x));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(x));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-07-20 07:58:44 +02:00
|
|
|
delete results;
|
|
|
|
}
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-07-20 07:58:44 +02:00
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(ParityOpsTests, scatter_update_2) {
|
|
|
|
|
|
|
|
NDArray x('c', {2,2}, {1,2,3,4}, nd4j::DataType::INT32);
|
|
|
|
NDArray updates('c', {2,2}, {10,20,30,40}, nd4j::DataType::INT32);
|
|
|
|
|
|
|
|
NDArray exp('c', {2,2}, {20,10,40,30}, nd4j::DataType::INT32);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
nd4j::ops::scatter_update op;
|
2019-07-20 07:58:44 +02:00
|
|
|
auto results = op.execute({&x, &updates}, {}, {6, 1,0, 2,1,0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-07-20 07:58:44 +02:00
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-07-20 07:58:44 +02:00
|
|
|
ASSERT_TRUE(exp.isSameShape(x));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(x));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-07-20 07:58:44 +02:00
|
|
|
delete results;
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
2019-07-20 07:58:44 +02:00
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(ParityOpsTests, scatter_update_3) {
|
|
|
|
|
|
|
|
NDArray x('c', {2,2,2}, {1,2,3,4,5,6,7,8}, nd4j::DataType::INT32);
|
|
|
|
NDArray updates('c', {2,2,2}, {10,20,30,40,50,60,70,80}, nd4j::DataType::INT32);
|
|
|
|
|
|
|
|
NDArray exp('c', {2,2,2}, {50,60,70,80,10,20,30,40}, nd4j::DataType::INT32);
|
|
|
|
|
|
|
|
nd4j::ops::scatter_update op;
|
|
|
|
auto results = op.execute({&x, &updates}, {}, {6, 2,1,2, 2,1,0});
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(x));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(x));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(ParityOpsTests, scatter_update_4) {
|
|
|
|
|
|
|
|
NDArray x('c', {2,2,2}, {1,2,3,4,5,6,7,8}, nd4j::DataType::INT32);
|
|
|
|
NDArray updates('c', {2,2,2}, {10,20,30,40,50,60,70,80}, nd4j::DataType::INT32);
|
|
|
|
|
|
|
|
NDArray exp('c', {2,2,2}, {20,2,3,10,60,6,7,50}, nd4j::DataType::INT32);
|
|
|
|
|
|
|
|
nd4j::ops::scatter_update op;
|
|
|
|
auto results = op.execute({&x, &updates}, {}, {6, 1,0, 2,3,0});
|
|
|
|
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, results->status());
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(x));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(x));
|
|
|
|
|
|
|
|
delete results;
|
|
|
|
}
|