157 lines
6.6 KiB
Java
Raw Normal View History

2021-02-01 14:31:20 +09:00
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
2021-02-01 17:47:29 +09:00
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
2021-02-01 14:31:20 +09:00
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
2019-06-06 15:21:15 +03:00
package org.deeplearning4j.nn.multilayer;
import org.deeplearning4j.BaseDL4JTest;
import org.deeplearning4j.nn.conf.MultiLayerConfiguration;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.distribution.NormalDistribution;
import org.deeplearning4j.nn.conf.layers.*;
import org.junit.Test;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.lossfunctions.LossFunctions.LossFunction;
import java.util.Map;
import static org.junit.Assert.*;
public class TestSetGetParameters extends BaseDL4JTest {
@Test
public void testSetParameters() {
//Set up a MLN, then do set(get) on parameters. Results should be identical compared to before doing this.
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder().list()
.layer(0, new DenseLayer.Builder().nIn(9).nOut(10)
.dist(new NormalDistribution(0, 1)).build())
.layer(1, new DenseLayer.Builder().nIn(10).nOut(11)
.dist(new NormalDistribution(0, 1)).build())
.layer(2, new AutoEncoder.Builder().corruptionLevel(0.5).nIn(11).nOut(12)
.dist(new NormalDistribution(0, 1)).build())
.layer(3, new OutputLayer.Builder(LossFunction.MSE).nIn(12).nOut(12)
.dist(new NormalDistribution(0, 1)).build())
.build();
MultiLayerNetwork net = new MultiLayerNetwork(conf);
net.init();
INDArray initParams = net.params().dup();
Map<String, INDArray> initParams2 = net.paramTable();
net.setParams(net.params());
INDArray initParamsAfter = net.params();
Map<String, INDArray> initParams2After = net.paramTable();
for (String s : initParams2.keySet()) {
assertTrue("Params differ: " + s, initParams2.get(s).equals(initParams2After.get(s)));
}
assertEquals(initParams, initParamsAfter);
//Now, try the other way: get(set(random))
INDArray randomParams = Nd4j.rand(initParams.dataType(), initParams.shape());
net.setParams(randomParams.dup());
assertEquals(net.params(), randomParams);
}
@Test
public void testSetParametersRNN() {
//Set up a MLN, then do set(get) on parameters. Results should be identical compared to before doing this.
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder().list()
.layer(0, new GravesLSTM.Builder().nIn(9).nOut(10)
.dist(new NormalDistribution(0, 1)).build())
.layer(1, new GravesLSTM.Builder().nIn(10).nOut(11)
.dist(new NormalDistribution(0, 1)).build())
.layer(2, new RnnOutputLayer.Builder(LossFunction.MSE)
.dist(new NormalDistribution(0, 1)).nIn(11).nOut(12).build())
.build();
MultiLayerNetwork net = new MultiLayerNetwork(conf);
net.init();
INDArray initParams = net.params().dup();
Map<String, INDArray> initParams2 = net.paramTable();
net.setParams(net.params());
INDArray initParamsAfter = net.params();
Map<String, INDArray> initParams2After = net.paramTable();
for (String s : initParams2.keySet()) {
assertTrue("Params differ: " + s, initParams2.get(s).equals(initParams2After.get(s)));
}
assertEquals(initParams, initParamsAfter);
//Now, try the other way: get(set(random))
INDArray randomParams = Nd4j.rand(initParams.dataType(), initParams.shape());
net.setParams(randomParams.dup());
assertEquals(net.params(), randomParams);
}
@Test
public void testInitWithParams() {
Nd4j.getRandom().setSeed(12345);
//Create configuration. Doesn't matter if this doesn't actually work for forward/backward pass here
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder().seed(12345).list()
.layer(0, new ConvolutionLayer.Builder().nIn(10).nOut(10).kernelSize(2, 2).stride(2, 2)
.padding(2, 2).build())
.layer(1, new DenseLayer.Builder().nIn(10).nOut(10).build())
.layer(2, new GravesLSTM.Builder().nIn(10).nOut(10).build())
.layer(3, new GravesBidirectionalLSTM.Builder().nIn(10).nOut(10).build())
.layer(4, new OutputLayer.Builder(LossFunction.MCXENT).activation(Activation.SOFTMAX).nIn(10).nOut(10).build())
.build();
MultiLayerNetwork net = new MultiLayerNetwork(conf);
net.init();
INDArray params = net.params();
MultiLayerNetwork net2 = new MultiLayerNetwork(conf);
net2.init(params, true);
MultiLayerNetwork net3 = new MultiLayerNetwork(conf);
net3.init(params, false);
assertEquals(params, net2.params());
assertEquals(params, net3.params());
assertFalse(params == net2.params()); //Different objects due to clone
assertTrue(params == net3.params()); //Same object due to clone
Map<String, INDArray> paramsMap = net.paramTable();
Map<String, INDArray> paramsMap2 = net2.paramTable();
Map<String, INDArray> paramsMap3 = net3.paramTable();
for (String s : paramsMap.keySet()) {
assertEquals(paramsMap.get(s), paramsMap2.get(s));
assertEquals(paramsMap.get(s), paramsMap3.get(s));
}
}
}