cavis/libnd4j/include/ops/declarable/helpers/cuda/weights.cu

119 lines
6.0 KiB
Plaintext
Raw Normal View History

2019-06-06 14:21:15 +02:00
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author sgazeos@gmail.com
//
#include <ops/declarable/helpers/weights.h>
namespace nd4j {
namespace ops {
namespace helpers {
template <typename T>
static __device__ void adjustWeightsKernelD(void* inputBuffer, Nd4jLong* inputShape,
void* weightsBuffer, Nd4jLong* weightsShape,
void* outputBuffer, Nd4jLong inputLength,
2019-06-06 14:21:15 +02:00
Nd4jLong outputLength, int val) {
// typedef Nd4jLong T;
auto tid = threadIdx.x;
//int threadCount = gridDim.x * blockDim.x;
__shared__ T* outputPart;
__shared__ Nd4jLong offset;
//for (int e = 0; e < inputLength; e++) {
for (Nd4jLong e = tid; e < inputLength; e += blockDim.x) {
Nd4jLong xOffset = shape::getIndexOffset(e, inputShape);
2019-06-06 14:21:15 +02:00
int current = *(reinterpret_cast<int*>(inputBuffer) + xOffset);
if (current == val) {
//printf("%lld\n", xOffset);
//Nd4jLong zOffset = shape::getIndexOffset(val, outputShape);
2019-06-06 14:21:15 +02:00
if (weightsBuffer != nullptr) {
Nd4jLong yOffset = shape::getIndexOffset(e, weightsShape);
2019-06-06 14:21:15 +02:00
//atomicAdd();
//*reinterpret_cast<int *>(outputBuffer) += reinterpret_cast<int *>(weightsBuffer)[yOffset];
nd4j::math::atomics::nd4j_atomicAdd(reinterpret_cast<T *>(outputBuffer), reinterpret_cast<T *>(weightsBuffer)[yOffset]); //output->p(val, output->e<T>(val) + 1);
// atomicAdd(reinterpret_cast<int *>(outputBuffer), reinterpret_cast<int *>(weightsBuffer)[yOffset]); //output->p(val, output->e<T>(val) + 1);
}
else {
//*reinterpret_cast<int *>(outputBuffer) += int(1);
//printf("outputBuffer[0] = %d\n", static_cast<int>(*(reinterpret_cast<T *>(outputBuffer))));
nd4j::math::atomics::nd4j_atomicAdd(reinterpret_cast<T *>(outputBuffer), T(1)); //output->p(val, output->e<T>(val) + 1);
// atomicAdd(reinterpret_cast<int *>(outputBuffer), int(1)); //output->p(val, output->e<T>(val) + 1);
// printf("outputBuffer[%ld] = %d\n", zOffset, static_cast<int>(*(reinterpret_cast<T *>(outputBuffer) + zOffset)));
}
//printf("xOffset is %ld, zOffset is %ld\n", xOffset, zOffset);
}
}
// if (threadIdx.x + offset < outputLength)
// reinterpret_cast<T *>(outputBuffer)[threadIdx.x + offset] = outputPart[threadIdx.x];
}
template <typename T>
static __global__ void adjustWeightsKernel(void* inputBuffer, Nd4jLong* inputShape,
void* weightsBuffer, Nd4jLong* weightsShape,
void* outputBuffer, Nd4jLong* outputShape,
int minLength, int maxLength) {
//auto tid = blockIdx.x * blockDim.x + threadIdx.x; // * blockDim.x; // + threadIdx.x;
int threadCount = gridDim.x * blockDim.x;
Nd4jLong inputLength = shape::length(inputShape);
Nd4jLong outputLength = shape::length(outputShape);
Nd4jLong borderLen = 1;
2019-06-06 14:21:15 +02:00
for (Nd4jLong e = blockIdx.x; e < outputLength; e += threadCount) {
//if (blockIdx.x < outputLength) {
//if (e + threadCount < outputLength) {
Nd4jLong zOffset = shape::getIndexOffset(e, outputShape);
2019-06-06 14:21:15 +02:00
//printf("%d %d %d\n", blockIdx.x, blockDim.x, threadIdx.x);
//Nd4jLong borderLen = 1;
T* outputBufferZ = reinterpret_cast<T*>(outputBuffer) + zOffset;
adjustWeightsKernelD<T>(inputBuffer, inputShape, weightsBuffer, weightsShape, (void*)outputBufferZ,
inputLength, outputLength, (int)zOffset);
2019-06-06 14:21:15 +02:00
}
}
template <typename T>
static void adjustWeights_(nd4j::LaunchContext * context, NDArray* input, NDArray* weights, NDArray* output, int minLength, int maxLength) {
// for (int e = 0; e < input->lengthOf(); e++) {
// int val = input->e<int>(e);
// if (val < maxLength) {
// if (weights != nullptr)
// output->p(val, output->e<T>(val) + weights->e<T>(e));
// else
// output->p(val, output->e<T>(val) + 1);
// }
// }
dim3 launchDims(256, 512, 8192);
auto stream = context->getCudaStream();
adjustWeightsKernel<T><<<launchDims.x, launchDims.y, launchDims.z, *stream>>>(input->specialBuffer(),
input->getSpecialShapeInfo(), weights?weights->specialBuffer():nullptr, weights?weights->getSpecialShapeInfo():nullptr,
output->specialBuffer(), output->specialShapeInfo(), minLength, maxLength);
}
void adjustWeights(nd4j::LaunchContext * context, NDArray* input, NDArray* weights, NDArray* output, int minLength, int maxLength) {
BUILD_SINGLE_SELECTOR(output->dataType(), adjustWeights_, (context, input, weights, output, minLength, maxLength), GENERIC_NUMERIC_TYPES);
}
BUILD_SINGLE_TEMPLATE(template void adjustWeights_, (nd4j::LaunchContext * context, NDArray* input, NDArray* weights, NDArray* output, int minLength, int maxLength), GENERIC_NUMERIC_TYPES);
}
}
}