2019-06-06 14:21:15 +02:00
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
// @author Yurii Shyrma (iuriish@yahoo.com)
//
#include <ops/declarable/helpers/scatter.h>
#include <numeric>
#include <helpers/ShapeUtils.h>
#include <TAD.h>
#include <helpers/ConstantShapeHelper.h>
#include <helpers/ConstantTadHelper.h>
#include <helpers/PointersManager.h>
namespace nd4j {
namespace ops {
namespace helpers {
2019-11-26 18:29:09 +01:00
///////////////////////////////////////////////////////////////////
// x - indices, y - contains number of bad indices, z - input/output
template<typename X>
__global__ static void checkIndicesCuda(const void *vx, const Nd4jLong *xShapeInfo, Nd4jLong* y, const Nd4jLong *zShapeInfo, const int axis) {
const auto x = reinterpret_cast<const X*>(vx);
__shared__ int xRank, *coords, xLastDim;
__shared__ Nd4jLong xLen, numOfBadIndxPerBlock;
if (threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
coords = reinterpret_cast<int*>(shmem);
xRank = shape::rank(xShapeInfo);
xLen = shape::length(xShapeInfo);
numOfBadIndxPerBlock = 0;
}
__syncthreads();
auto xCoords = coords + threadIdx.x * xRank;
for (Nd4jLong i = blockIdx.x * blockDim.x + threadIdx.x; i < xLen; i += gridDim.x * blockDim.x) {
shape::index2coords(i, xShapeInfo, xCoords);
const Nd4jLong currentInd = x[shape::getOffset(xShapeInfo, xCoords)];
if(currentInd >= shape::sizeAt(zShapeInfo, axis == -1 ? xCoords[xRank-1] : axis)) {
printf("checkIndices cuda: out of range element %lld at index %lld \n", currentInd, i);
nd4j::math::atomics::nd4j_atomicAdd<Nd4jLong>(&numOfBadIndxPerBlock, 1);
}
}
__syncthreads();
if (threadIdx.x == 0 && numOfBadIndxPerBlock != 0)
nd4j::math::atomics::nd4j_atomicAdd<Nd4jLong>(y, numOfBadIndxPerBlock);
}
///////////////////////////////////////////////////////////////////
template<typename X>
static void checkIndicesCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream,
const void *vx, const Nd4jLong *xShapeInfo, Nd4jLong* y, const Nd4jLong *zShapeInfo, const int axis) {
checkIndicesCuda<X><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(vx, xShapeInfo, y, zShapeInfo, axis);
}
///////////////////////////////////////////////////////////////////
Nd4jLong checkIndices(nd4j::LaunchContext *context, const NDArray& indices, const NDArray& output, const int axis) {
const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int blocksPerGrid = (indices.lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
const int sharedMem = threadsPerBlock * sizeof(int) * indices.rankOf() + 256;
const auto xType = indices.dataType();
PointersManager manager(context, "scatterNDcheckIndices");
// scalar, initial value = 0
NDArray numOfBadIndx(nd4j::DataType::INT64, context, true);
NDArray::prepareSpecialUse({&numOfBadIndx}, {&indices});
BUILD_SINGLE_SELECTOR(xType, checkIndicesCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, context->getCudaStream(), indices.getSpecialBuffer(), indices.getSpecialShapeInfo(), reinterpret_cast<Nd4jLong*>(numOfBadIndx.getSpecialBuffer()), output.getSpecialShapeInfo(), axis), INDEXING_TYPES);
NDArray::registerSpecialUse({&numOfBadIndx}, {&indices});
manager.synchronize();
return numOfBadIndx.t<Nd4jLong>(0);
}
2019-06-06 14:21:15 +02:00
///////////////////////////////////////////////////////////////////
// x - indices, y - updates, z - input/output
template<typename X, typename Y>
__global__ static void scatterLockCuda(const int opCode,
2019-11-26 18:29:09 +01:00
const void *vx, const Nd4jLong *xShapeInfo,
const void *vy, const Nd4jLong *yShapeInfo,
void *vz, const Nd4jLong *zShapeInfo) {
2019-06-06 14:21:15 +02:00
const auto x = reinterpret_cast<const X*>(vx);
const auto y = reinterpret_cast<const Y*>(vy);
auto z = reinterpret_cast<Y*>(vz);
2019-11-26 18:29:09 +01:00
__shared__ int xRank, yRank, zRank, xNonUnitDim, yNonUnitDim, zNonUnitDim, *coords;
__shared__ Nd4jLong xLen, zLen;
__shared__ bool is1Dcase, xySameStride;
if (threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
coords = reinterpret_cast<int*>(shmem);
xLen = shape::length(xShapeInfo);
zLen = shape::length(zShapeInfo);
xRank = shape::rank(xShapeInfo);
yRank = shape::rank(yShapeInfo);
zRank = shape::rank(zShapeInfo);
xNonUnitDim = yNonUnitDim = zNonUnitDim = 0;
is1Dcase = (shape::isCommonVector(zShapeInfo, zNonUnitDim) || shape::isScalar(zShapeInfo)) && (shape::isCommonVector(yShapeInfo, yNonUnitDim) || shape::isScalar(yShapeInfo)) && (shape::isCommonVector(xShapeInfo, xNonUnitDim) || shape::isScalar(xShapeInfo));
if(is1Dcase)
xySameStride = shape::stride(xShapeInfo)[xNonUnitDim] = shape::stride(yShapeInfo)[yNonUnitDim];
}
2019-06-06 14:21:15 +02:00
__syncthreads();
2019-11-26 18:29:09 +01:00
Nd4jLong yOffset, zOffset;
int zFirstCoord, *yCoords, *zCoords;
2019-06-06 14:21:15 +02:00
2019-11-26 18:29:09 +01:00
for (Nd4jLong i = blockIdx.x * blockDim.x + threadIdx.x; i < zLen; i += gridDim.x * blockDim.x) {
2019-06-06 14:21:15 +02:00
2019-11-26 18:29:09 +01:00
if(!is1Dcase) {
2019-06-06 14:21:15 +02:00
2019-11-26 18:29:09 +01:00
yCoords = coords + threadIdx.x * (yRank + zRank);
zCoords = yCoords + yRank;
shape::index2coords(i, zShapeInfo, zCoords);
}
2019-06-06 14:21:15 +02:00
2019-11-26 18:29:09 +01:00
for (Nd4jLong j = 0; j < xLen; ++j) {
if(is1Dcase) {
yOffset = j * shape::stride(yShapeInfo)[yNonUnitDim];
zFirstCoord = x[xySameStride ? yOffset : j * shape::stride(xShapeInfo)[xNonUnitDim]];
if(i != zFirstCoord)
continue;
zOffset = i * shape::stride(zShapeInfo)[zNonUnitDim];
}
else {
shape::index2coords(j, xShapeInfo, yCoords); // first xRank coordinates in yCoords are the same for y and x
zFirstCoord = x[shape::getOffset(xShapeInfo, yCoords)];
if(zCoords[0] != zFirstCoord)
continue;
for (uint k = 0; k < yRank - xRank; ++k)
yCoords[xRank + k] = zCoords[k + 1];
yOffset = shape::getOffset(yShapeInfo, yCoords);
zOffset = shape::getOffset(zShapeInfo, zCoords);
}
2019-06-06 14:21:15 +02:00
switch (opCode) {
case pairwise::Add:
z[zOffset] += y[yOffset];
break;
case pairwise::Subtract:
z[zOffset] -= y[yOffset];
break;
case pairwise::Multiply:
z[zOffset] *= y[yOffset];
break;
case pairwise::Divide:
z[zOffset] /= y[yOffset];
break;
case pairwise::ReverseSubtract:
z[zOffset] = y[yOffset] - z[zOffset];
break;
case pairwise::ReverseDivide:
z[zOffset] = y[yOffset] / z[zOffset];
break;
case pairwise::CopyPws:
z[zOffset] = y[yOffset];
break;
case pairwise::MaxPairwise:
if(z[zOffset] < y[yOffset]) z[zOffset] = y[yOffset];
break;
case pairwise::MinPairwise:
if(z[zOffset] > y[yOffset]) z[zOffset] = y[yOffset];
break;
default:
continue;
}
}
}
}
///////////////////////////////////////////////////////////////////
// x - indices, y - updates, z - input/output
template<typename X, typename Y>
__global__ static void scatterCuda(const int opCode,
const void *vx, const Nd4jLong *xShapeInfo,
const void *vy, const Nd4jLong *yShapeInfo,
void *vz, const Nd4jLong *zShapeInfo) {
const auto x = reinterpret_cast<const X*>(vx);
const auto y = reinterpret_cast<const Y*>(vy);
auto z = reinterpret_cast<Y*>(vz);
2019-11-26 18:29:09 +01:00
__shared__ int xRank, yRank, zRank, xNonUnitDim, yNonUnitDim, zNonUnitDim, *coords;
__shared__ Nd4jLong yLen;
__shared__ bool is1Dcase, xySameStride;
2019-06-06 14:21:15 +02:00
if (threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
2019-11-26 18:29:09 +01:00
coords = reinterpret_cast<int*>(shmem);
2019-06-06 14:21:15 +02:00
yLen = shape::length(yShapeInfo);
2019-11-26 18:29:09 +01:00
2019-06-06 14:21:15 +02:00
xRank = shape::rank(xShapeInfo);
yRank = shape::rank(yShapeInfo);
zRank = shape::rank(zShapeInfo);
2019-11-26 18:29:09 +01:00
xNonUnitDim = yNonUnitDim = zNonUnitDim = 0;
is1Dcase = (shape::isCommonVector(zShapeInfo, zNonUnitDim) || shape::isScalar(zShapeInfo)) && (shape::isCommonVector(yShapeInfo, yNonUnitDim) || shape::isScalar(yShapeInfo)) && (shape::isCommonVector(xShapeInfo, xNonUnitDim) || shape::isScalar(xShapeInfo));
if(is1Dcase)
xySameStride = shape::stride(xShapeInfo)[xNonUnitDim] = shape::stride(yShapeInfo)[yNonUnitDim];
2019-06-06 14:21:15 +02:00
}
__syncthreads();
2019-11-26 18:29:09 +01:00
Nd4jLong xOffset, yOffset, zOffset;
int *yCoords, *zCoords;
if(!is1Dcase) {
yCoords = coords + threadIdx.x * (yRank + zRank);
zCoords = yCoords + yRank;
}
for (Nd4jLong i = blockIdx.x * blockDim.x + threadIdx.x; i < yLen; i += gridDim.x * blockDim.x) {
2019-06-06 14:21:15 +02:00
2019-11-26 18:29:09 +01:00
if(is1Dcase) {
2019-06-06 14:21:15 +02:00
2019-11-26 18:29:09 +01:00
yOffset = i * shape::stride(yShapeInfo)[yNonUnitDim];
zOffset = x[xySameStride ? yOffset : i * shape::stride(xShapeInfo)[xNonUnitDim]] * shape::stride(zShapeInfo)[zNonUnitDim];
}
else {
shape::index2coords(i, yShapeInfo, yCoords);
2019-06-06 14:21:15 +02:00
2019-11-26 18:29:09 +01:00
yOffset = shape::getOffset(yShapeInfo, yCoords);
xOffset = shape::getOffset(xShapeInfo, yCoords); // first xRank coordinates in yCoords are the same for y and x -> for (uint j = 0; j < xRank; ++j) xCoords[j] = yCoords[j];
2019-06-06 14:21:15 +02:00
2019-11-26 18:29:09 +01:00
zCoords[0] = x[xOffset];
2019-06-06 14:21:15 +02:00
2019-11-26 18:29:09 +01:00
for (uint j = 0; j < yRank - xRank; ++j)
zCoords[j + 1] = yCoords[xRank + j];
2019-06-06 14:21:15 +02:00
2019-11-26 18:29:09 +01:00
zOffset = shape::getOffset(zShapeInfo, zCoords);
}
2019-06-06 14:21:15 +02:00
switch (opCode) {
case pairwise::Add:
z[zOffset] += y[yOffset];
break;
case pairwise::Subtract:
z[zOffset] -= y[yOffset];
break;
case pairwise::Multiply:
z[zOffset] *= y[yOffset];
break;
case pairwise::Divide:
z[zOffset] /= y[yOffset];
break;
case pairwise::ReverseSubtract:
z[zOffset] = y[yOffset] - z[zOffset];
break;
case pairwise::ReverseDivide:
z[zOffset] = y[yOffset] / z[zOffset];
break;
case pairwise::CopyPws:
z[zOffset] = y[yOffset];
break;
case pairwise::MaxPairwise:
if(z[zOffset] < y[yOffset]) z[zOffset] = y[yOffset];
break;
case pairwise::MinPairwise:
if(z[zOffset] > y[yOffset]) z[zOffset] = y[yOffset];
break;
default:
continue;
}
}
}
///////////////////////////////////////////////////////////////////
template<typename X, typename Y>
static void scatterCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream,
const int opCode,
const void *vx, const Nd4jLong *xShapeInfo,
const void *vy, const Nd4jLong *yShapeInfo,
2019-11-26 18:29:09 +01:00
void *vz, const Nd4jLong *zShapeInfo,
const bool lock) {
2019-06-06 14:21:15 +02:00
2019-11-26 18:29:09 +01:00
if(lock)
scatterLockCuda<X,Y><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(opCode, vx, xShapeInfo, vy, yShapeInfo, vz, zShapeInfo);
else
scatterCuda<X,Y><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(opCode, vx, xShapeInfo, vy, yShapeInfo, vz, zShapeInfo);
2019-06-06 14:21:15 +02:00
}
///////////////////////////////////////////////////////////////////
void scatter(nd4j::LaunchContext *context, pairwise::Ops op, const NDArray& indices, const NDArray& updates, NDArray& output, const bool lock) {
2019-11-26 18:29:09 +01:00
const auto xType = indices.dataType();
const auto yType = updates.dataType();
2019-06-06 14:21:15 +02:00
2019-11-26 18:29:09 +01:00
const int threadsPerBlock = MAX_NUM_THREADS / 4;
const int blocksPerGrid = ((lock ? output.lengthOf() : updates.lengthOf()) + threadsPerBlock - 1) / threadsPerBlock;
const int sharedMem = sizeof(int) * threadsPerBlock * (updates.rankOf() + output.rankOf()) + 256;
2019-06-06 14:21:15 +02:00
2019-11-26 18:29:09 +01:00
PointersManager manager(context, "scatter");
2019-06-06 14:21:15 +02:00
2019-11-26 18:29:09 +01:00
NDArray::prepareSpecialUse({&output}, {&updates, &indices});
BUILD_DOUBLE_SELECTOR(xType, yType, scatterCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, context->getCudaStream(), op, indices.getSpecialBuffer(), indices.getSpecialShapeInfo(), updates.getSpecialBuffer(), updates.getSpecialShapeInfo(), output.getSpecialBuffer(), output.getSpecialShapeInfo(), lock), INDEXING_TYPES, GENERIC_NUMERIC_TYPES);
2019-06-06 14:21:15 +02:00
NDArray::registerSpecialUse({&output}, {&updates, &indices});
2019-11-26 18:29:09 +01:00
2019-06-06 14:21:15 +02:00
manager.synchronize();
}
///////////////////////////////////////////////////////////////////
// x - indices, y - updates, z - output
template<typename X, typename Y>
__global__ static void scatterNDLockCuda(const int opCode,
2019-11-26 18:29:09 +01:00
const void *vx, const Nd4jLong *xShapeInfo,
const void *vy, const Nd4jLong *yShapeInfo,
void *vz, const Nd4jLong *zShapeInfo) {
2019-06-06 14:21:15 +02:00
const auto x = reinterpret_cast<const X*>(vx);
const auto y = reinterpret_cast<const Y*>(vy);
auto z = reinterpret_cast<Y*>(vz);
2019-11-26 18:29:09 +01:00
__shared__ int xRank, yRank, zRank, biggerXYRank, xLastDim, *coords, xNonUnitDim, yNonUnitDim, zNonUnitDim;
__shared__ Nd4jLong zLen, len;
__shared__ bool is1Dcase;
2019-06-06 14:21:15 +02:00
if (threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
2019-11-26 18:29:09 +01:00
coords = reinterpret_cast<int*>(shmem);
xRank = shape::rank(xShapeInfo);
yRank = shape::rank(yShapeInfo);
zRank = shape::rank(zShapeInfo);
xLastDim = shape::sizeAt(xShapeInfo, -1);
biggerXYRank = xRank > yRank ? xRank : yRank;
xNonUnitDim = yNonUnitDim = zNonUnitDim = 0;
is1Dcase = (shape::isCommonVector(zShapeInfo, zNonUnitDim) || shape::isScalar(zShapeInfo)) && (shape::isCommonVector(yShapeInfo, yNonUnitDim) || shape::isScalar(yShapeInfo)) && (shape::isCommonVector(xShapeInfo, xNonUnitDim) || shape::isScalar(xShapeInfo));
len = is1Dcase ? shape::length(xShapeInfo) : shape::length(xShapeInfo) / xLastDim;
zLen = shape::length(zShapeInfo);
2019-06-06 14:21:15 +02:00
}
__syncthreads();
2019-11-26 18:29:09 +01:00
Nd4jLong yOffset, zOffset, xOffset;
int *yCoords, *zCoords;
2019-06-06 14:21:15 +02:00
2019-11-26 18:29:09 +01:00
if(!is1Dcase) {
yCoords = coords + threadIdx.x * (biggerXYRank + zRank);
zCoords = yCoords + biggerXYRank;
}
2019-06-06 14:21:15 +02:00
2019-11-26 18:29:09 +01:00
for (Nd4jLong i = blockIdx.x * blockDim.x + threadIdx.x; i < zLen; i += gridDim.x * blockDim.x) {
2019-06-06 14:21:15 +02:00
2019-11-26 18:29:09 +01:00
if(!is1Dcase)
shape::index2coords(i, zShapeInfo, zCoords);
2019-06-06 14:21:15 +02:00
2019-11-26 18:29:09 +01:00
for (Nd4jLong j = 0; j < len; ++j) { // if !is1Dcase then we loop through first xRank-1 dimensions of x, that is we exclude last x dimension
2019-06-06 14:21:15 +02:00
2019-11-26 18:29:09 +01:00
if(is1Dcase) {
2019-06-06 14:21:15 +02:00
2019-11-26 18:29:09 +01:00
if(x[j * shape::stride(xShapeInfo)[xNonUnitDim]] != i)
continue;
2019-06-06 14:21:15 +02:00
2019-11-26 18:29:09 +01:00
yOffset = j * shape::stride(yShapeInfo)[yNonUnitDim];
zOffset = i * shape::stride(zShapeInfo)[zNonUnitDim];
}
else {
2019-06-06 14:21:15 +02:00
2019-11-26 18:29:09 +01:00
shape::index2coords(j, xRank-1, shape::shapeOf(const_cast<Nd4jLong*>(xShapeInfo)), yCoords); // first xRank-1 coordinates in yCoords are the same for y and x
2019-06-06 14:21:15 +02:00
2019-11-26 18:29:09 +01:00
// first iteration
yCoords[xRank - 1] = 0;
xOffset = shape::getOffset(xShapeInfo, yCoords);
if(zCoords[0] != x[xOffset])
continue;
// rest iterations
bool matched = true;
for (uint k = 1; k < xLastDim; ++k) {
yCoords[xRank - 1] = k;
xOffset += shape::stride(xShapeInfo)[xRank-1];
if(zCoords[k] != x[xOffset]) {
matched = false;
break;
}
}
if(!matched)
continue;
for (uint k = xLastDim; k < zRank; ++k)
yCoords[yRank - zRank + k] = zCoords[k];
yOffset = shape::getOffset(yShapeInfo, yCoords);
zOffset = shape::getOffset(zShapeInfo, zCoords);
}
2019-06-06 14:21:15 +02:00
switch (opCode) {
case pairwise::Add:
z[zOffset] += y[yOffset];
break;
case pairwise::Subtract:
z[zOffset] -= y[yOffset];
break;
case pairwise::Multiply:
z[zOffset] *= y[yOffset];
break;
case pairwise::Divide:
z[zOffset] /= y[yOffset];
break;
case pairwise::ReverseSubtract:
z[zOffset] = y[yOffset] - z[zOffset];
break;
case pairwise::ReverseDivide:
z[zOffset] = y[yOffset] / z[zOffset];
break;
case pairwise::CopyPws:
z[zOffset] = y[yOffset];
break;
case pairwise::MaxPairwise:
if(z[zOffset] < y[yOffset]) z[zOffset] = y[yOffset];
break;
case pairwise::MinPairwise:
if(z[zOffset] > y[yOffset]) z[zOffset] = y[yOffset];
break;
default:
continue;
}
}
2019-11-26 18:29:09 +01:00
}
}
2019-06-06 14:21:15 +02:00
2019-11-26 18:29:09 +01:00
///////////////////////////////////////////////////////////////////
// x - indices, y - updates, z - output
template<typename X, typename Y>
__global__ static void scatterNDCuda(const int opCode,
const void *vx, const Nd4jLong *xShapeInfo,
const void *vy, const Nd4jLong *yShapeInfo,
void *vz, const Nd4jLong *zShapeInfo) {
2019-06-06 14:21:15 +02:00
2019-11-26 18:29:09 +01:00
const auto x = reinterpret_cast<const X*>(vx);
const auto y = reinterpret_cast<const Y*>(vy);
auto z = reinterpret_cast<Y*>(vz);
2019-06-06 14:21:15 +02:00
2019-11-26 18:29:09 +01:00
__shared__ int xRank, yRank, zRank, biggerXYRank, xLastDim, *coords, xNonUnitDim, yNonUnitDim, zNonUnitDim;
__shared__ Nd4jLong yLen;
__shared__ bool is1Dcase;
2019-06-06 14:21:15 +02:00
if (threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
2019-11-26 18:29:09 +01:00
coords = reinterpret_cast<int*>(shmem);
yLen = shape::length(yShapeInfo);
2019-06-06 14:21:15 +02:00
xRank = shape::rank(xShapeInfo);
yRank = shape::rank(yShapeInfo);
zRank = shape::rank(zShapeInfo);
2019-11-26 18:29:09 +01:00
xLastDim = shape::sizeAt(xShapeInfo, -1);
biggerXYRank = xRank > yRank ? xRank : yRank;
xNonUnitDim = yNonUnitDim = zNonUnitDim = 0;
is1Dcase = (shape::isCommonVector(zShapeInfo, zNonUnitDim) || shape::isScalar(zShapeInfo)) && (shape::isCommonVector(yShapeInfo, yNonUnitDim) || shape::isScalar(yShapeInfo)) && (shape::isCommonVector(xShapeInfo, xNonUnitDim) || shape::isScalar(xShapeInfo));
2019-06-06 14:21:15 +02:00
}
__syncthreads();
2019-11-26 18:29:09 +01:00
Nd4jLong yOffset, zOffset;
int *yCoords, *zCoords;
2019-06-06 14:21:15 +02:00
2019-11-26 18:29:09 +01:00
if(!is1Dcase) {
yCoords = coords + threadIdx.x * (biggerXYRank + zRank);
zCoords = yCoords + biggerXYRank;
}
2019-06-06 14:21:15 +02:00
2019-11-26 18:29:09 +01:00
for (Nd4jLong i = blockIdx.x * blockDim.x + threadIdx.x; i < yLen; i += gridDim.x * blockDim.x) {
2019-06-06 14:21:15 +02:00
2019-11-26 18:29:09 +01:00
if(is1Dcase) {
2019-06-06 14:21:15 +02:00
2019-11-26 18:29:09 +01:00
yOffset = i * shape::stride(yShapeInfo)[zNonUnitDim];
zOffset = x[i * shape::stride(xShapeInfo)[xNonUnitDim]] * shape::stride(zShapeInfo)[zNonUnitDim];
2019-06-06 14:21:15 +02:00
}
2019-11-26 18:29:09 +01:00
else {
shape::index2coords(i, yShapeInfo, yCoords);
2019-06-06 14:21:15 +02:00
2019-11-26 18:29:09 +01:00
yOffset = shape::getOffset(yShapeInfo, yCoords);
2019-06-06 14:21:15 +02:00
2019-11-26 18:29:09 +01:00
if(yRank >= xRank)
zCoords[xLastDim] = yCoords[xRank - 1]; // saving y coordinate, since it might be changed in next instructions
for (uint j = 0; j < xLastDim; ++j) { // first xRank-1 coordinates in yCoords are the same for y and x
yCoords[xRank - 1] = j;
zCoords[j] = x[shape::getOffset(xShapeInfo, yCoords)];
}
for (uint j = xLastDim + 1; j < zRank; ++j)
zCoords[j] = yCoords[yRank - zRank + j];
zOffset = shape::getOffset(zShapeInfo, zCoords);
}
2019-06-06 14:21:15 +02:00
switch (opCode) {
case pairwise::Add:
z[zOffset] += y[yOffset];
break;
case pairwise::Subtract:
z[zOffset] -= y[yOffset];
break;
case pairwise::Multiply:
z[zOffset] *= y[yOffset];
break;
case pairwise::Divide:
z[zOffset] /= y[yOffset];
break;
case pairwise::ReverseSubtract:
z[zOffset] = y[yOffset] - z[zOffset];
break;
case pairwise::ReverseDivide:
z[zOffset] = y[yOffset] / z[zOffset];
break;
case pairwise::CopyPws:
z[zOffset] = y[yOffset];
break;
case pairwise::MaxPairwise:
if(z[zOffset] < y[yOffset]) z[zOffset] = y[yOffset];
break;
case pairwise::MinPairwise:
if(z[zOffset] > y[yOffset]) z[zOffset] = y[yOffset];
break;
default:
continue;
}
}
}
///////////////////////////////////////////////////////////////////
template<typename X, typename Y>
static void scatterNDCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream,
const int opCode,
const void *vx, const Nd4jLong *xShapeInfo,
const void *vy, const Nd4jLong *yShapeInfo,
2019-11-26 18:29:09 +01:00
void *vz, const Nd4jLong *zShapeInfo,
const bool lock) {
2019-06-06 14:21:15 +02:00
2019-11-26 18:29:09 +01:00
if(lock)
scatterNDLockCuda<X,Y><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(opCode, vx, xShapeInfo, vy, yShapeInfo, vz, zShapeInfo);
else
scatterNDCuda<X,Y><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(opCode, vx, xShapeInfo, vy, yShapeInfo, vz, zShapeInfo);
2019-06-06 14:21:15 +02:00
}
///////////////////////////////////////////////////////////////////
void scatterND(nd4j::LaunchContext *context, pairwise::Ops op, const NDArray& indices, const NDArray& updates, NDArray& output, const bool lock) {
const int xRank = indices.rankOf();
const int yRank = updates.rankOf();
const int zRank = output.rankOf();
2019-11-26 18:29:09 +01:00
const int threadsPerBlock = MAX_NUM_THREADS / 4;
const int blocksPerGrid = ((lock ? output.lengthOf() : updates.lengthOf()) + threadsPerBlock - 1) / threadsPerBlock;
const int sharedMem = threadsPerBlock * sizeof(int) * ((yRank > xRank ? yRank : xRank) + zRank) + 256;
2019-06-06 14:21:15 +02:00
2019-11-26 18:29:09 +01:00
const auto xType = indices.dataType();
const auto yType = updates.dataType();
2019-06-06 14:21:15 +02:00
2019-11-26 18:29:09 +01:00
PointersManager manager(context, "scatterND");
2019-06-06 14:21:15 +02:00
2019-11-26 18:29:09 +01:00
NDArray::prepareSpecialUse({&output}, {&updates, &indices});
BUILD_DOUBLE_SELECTOR(xType, yType, scatterNDCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, context->getCudaStream(), op, indices.getSpecialBuffer(), indices.getSpecialShapeInfo(), updates.getSpecialBuffer(), updates.getSpecialShapeInfo(), output.getSpecialBuffer(), output.getSpecialShapeInfo(), lock), INDEXING_TYPES, GENERIC_NUMERIC_TYPES);
2019-06-06 14:21:15 +02:00
NDArray::registerSpecialUse({&output}, {&updates, &indices});
2019-11-26 18:29:09 +01:00
2019-06-06 14:21:15 +02:00
manager.synchronize();
}
2019-07-12 10:51:51 +02:00
///////////////////////////////////////////////////////////////////
template<typename X, typename Z>
__global__ void scatterForLossCuda(const void *vx, const Nd4jLong *xShapeInfo,
void *vy, const Nd4jLong *yShapeInfo,
void *vz, const Nd4jLong *zShapeInfo) {
const auto x = reinterpret_cast<const X*>(vx);
auto y = reinterpret_cast<Z*>(vy);
auto z = reinterpret_cast<Z*>(vz);
__shared__ Nd4jLong xLen, *sharedMem;
__shared__ int xRank; // xRank = zRank, yRank = xRank + 1
if (threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
sharedMem = reinterpret_cast<Nd4jLong*>(shmem);
xLen = shape::length(xShapeInfo);
xRank = shape::rank(xShapeInfo);
}
__syncthreads();
const auto xInd = threadIdx.x + blockIdx.x * blockDim.x;
2019-06-06 14:21:15 +02:00
2019-07-12 10:51:51 +02:00
if(xInd >= xLen)
return;
2019-06-06 14:21:15 +02:00
2019-07-12 10:51:51 +02:00
auto coords = sharedMem + threadIdx.x * (xRank + 1);
2019-06-06 14:21:15 +02:00
2019-09-11 19:12:09 +02:00
shape::index2coords(xInd, xShapeInfo, coords);
2019-07-12 10:51:51 +02:00
// y last coordinate
2019-09-11 19:12:09 +02:00
coords[xRank] = x[shape::getOffset(xShapeInfo, coords)];
2019-07-12 10:51:51 +02:00
2019-09-11 19:12:09 +02:00
const auto yOffset = shape::getOffset(yShapeInfo, coords);
2019-07-12 10:51:51 +02:00
if(z == nullptr) { // gradient calculation
y[yOffset] -= 1.f;
}
else {
2019-09-11 19:12:09 +02:00
z[shape::getOffset(zShapeInfo, coords)] = y[yOffset];
2019-07-12 10:51:51 +02:00
}
}
///////////////////////////////////////////////////////////////////
template<typename X, typename Z>
static void scatterForLossCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, const void *vx, const Nd4jLong* xShapeInfo, void *vy, const Nd4jLong* yShapeInfo, void *vz, const Nd4jLong* zShapeInfo) {
scatterForLossCuda<X, Z><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(vx, xShapeInfo, vy, yShapeInfo, vz, zShapeInfo);
}
///////////////////////////////////////////////////////////////////
void scatterForLoss(nd4j::LaunchContext* context, const NDArray& indices, NDArray& updates, NDArray& output, const bool calcGrad) {
// shapes of indices and output must be the same
// shape of indices should be the same as updates shape with last dimension excluded, for example if updates is {a,b,c} then indices should be {a,b}
PointersManager manager(context, "scatterForLoss");
const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int blocksPerGrid = (indices.lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
const int sharedMem = updates.rankOf() * sizeof(Nd4jLong) * threadsPerBlock + 128;
if(calcGrad) {
NDArray::prepareSpecialUse({&updates}, {&indices});
[WIP] multi-device support (#80)
* fix pad javadoc and @see links. (#72)
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* [WIP] More fixes (#73)
* special tests for ConstantTadHelper/ConstantShapeHelper
Signed-off-by: raver119 <raver119@gmail.com>
* release methods for data buffers
Signed-off-by: raver119 <raver119@gmail.com>
* delete temporary buffer Java side
Signed-off-by: raver119 <raver119@gmail.com>
* delete temporary buffer Java side
Signed-off-by: raver119 <raver119@gmail.com>
* delete temporary TadPack C++/Java side (#74)
Signed-off-by: raver119 <raver119@gmail.com>
* Zoo model TF import test updates (#75)
* argLine fix, update compression_gru comment
* updated comment for xception
* undid but commented argLine change
* updated xlnet comment
* copyright headers
* - new NDArray methods like()/ulike() (#77)
- fix for depthwise_conv2d_bp + special test
Signed-off-by: raver119 <raver119@gmail.com>
* upsampling2d fix CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* DL4J trace logging (#79)
* MLN/CG trace logging for debugging
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Tiny tweak
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* strided_slice_bp shape fn leak fix
Signed-off-by: raver119 <raver119@gmail.com>
* SameDiff fixes and naming (#78)
* remove SDVariable inplace methods
* import methods
* npe fix in OpVal
* removed SameDiff inplace ops from tests
* Naming updates, moved to centralized methods in SameDiff, should use op_#:# for everything
* quick fixes
* javadoc
* SDVariable eval with placeholders
* use regex match
* better matching
* initial commit
Signed-off-by: raver119 <raver119@gmail.com>
* initial commit
Signed-off-by: raver119 <raver119@gmail.com>
* fix javadoc. (#76)
* fix javadoc.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* replace most @see with @link s.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* 4 additional tests
Signed-off-by: raver119 <raver119@gmail.com>
* launch context reorganization
Signed-off-by: raver119 <raver119@gmail.com>
* LaunchContext reorganization
Signed-off-by: raver119 <raver119@gmail.com>
* per-device LaunchContext
Signed-off-by: raver119 <raver119@gmail.com>
* Various DL4J/ND4J fixes (#81)
* #7954 Force refresh of UI when switching tabs on overview page
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8017 Concurrent modification exception (synchronize) fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8033 Don't initialize updater in middle of writing memory crash dump
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8208 Fix shape checks for ND4J int[] creator methods
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #6385 #7992 Keras import naming fixes + cleanup
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8016 Upsampling3D - add NDHWC format support
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* ContextBuffers as separate entity
Signed-off-by: raver119 <raver119@gmail.com>
* Refactor NativeOps.h to export C functions
* Actually export functions from NativeOps.h
* Adapt the Java wrappers in ND4J generated with JavaCPP
* Create C wrappers for some of the C++ classes currently used by ND4J
* ContextBuffers as separate entity
Signed-off-by: raver119 <raver119@gmail.com>
* remove duplicate code in createBufferDetached. (#83)
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* Keras model import - updater lr fix (#84)
* Keras model import - updater lr fix
Signed-off-by: eraly <susan.eraly@gmail.com>
* Keras model import - updater lr fix, cleanup
Signed-off-by: eraly <susan.eraly@gmail.com>
* ContextBuffers as separate entity
Signed-off-by: raver119 <raver119@gmail.com>
* ContextBuffers as separate entity
Signed-off-by: raver119 <raver119@gmail.com>
* Fix functions of OpaqueVariablesSet
* thread-local buffers/affinity
Signed-off-by: raver119 <raver119@gmail.com>
* thread safety for LaunchContext
Signed-off-by: raver119 <raver119@gmail.com>
* more of thread safety
Signed-off-by: raver119 <raver119@gmail.com>
* one more multi threaded test
Signed-off-by: raver119 <raver119@gmail.com>
* SameDiff Convolution Config validation, better output methods (#82)
* Conv Config validation & tests
Signed-off-by: Ryan Nett <rnett@skymind.io>
* stackOutputs utility method
Signed-off-by: Ryan Nett <rnett@skymind.io>
* use constructor for validation, support negative kernel sizes (infered from weights)
Signed-off-by: Ryan Nett <rnett@skymind.io>
* better output methods
Signed-off-by: Ryan Nett <rnett@skymind.io>
* move output to be with fit and evaluate
Signed-off-by: Ryan Nett <rnett@skymind.io>
* fixes
Signed-off-by: Ryan Nett <rnett@skymind.io>
* more fixes
Signed-off-by: Ryan Nett <rnett@skymind.io>
* refactor duplicate code from pad methods. (#86)
* refactor duplicate code from pad methods.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* replace switch with if.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* Various ND4J/DL4J fixes and improvements (#87)
* Reshape and reallocate - small fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Reshape and reallocate - small fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #6488 ElementWiseVertex broadcast support
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Constructors and broadcast supported it Transforms.max/min
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8054 ElementWiseVertex now supports broadcast inputs
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8057 Nd4j.create overload dtype fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7551 ND4J Shape validation fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] Numpy boolean import (#91)
* numpy bool type
Signed-off-by: raver119 <raver119@gmail.com>
* numpy bool java side
Signed-off-by: raver119 <raver119@gmail.com>
* remove create method with unused parameter. (#89)
* remove create method with unused parameter.
* removed more unused methods.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* removing more unused code.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* last removal of unused code.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* remove createSparse methods. (#92)
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* Various ND4J/DL4J fixes (#90)
* Deprecate Old*Op instances
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8063 #8054 Broadcast exceptions + cleanup inplace ops
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Small fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Remove bad test condition
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7993 Fix shape function issue in crop_and_resize op
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* DL4J SameDiff lambda layer fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8029 Fix for pnorm backprop math
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8038 Fix Op profiler NaN/Inf triggering + add tests (#93)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* createUninitializedDetached refactoring. (#94)
* wip
* update interface, add null implementations.
* Breaking one test in a weird way.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* createUninitializedDetached refactored.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* cuda build fix for issues introduced by recent refactoring
Signed-off-by: raver119 <raver119@gmail.com>
* [WIP] More of CUDA (#95)
* initial commit
Signed-off-by: raver119 <raver119@gmail.com>
* Implementation of hashcode cuda helper. Working edition.
* Fixed parallel test input arangements.
* Fixed tests for hashcode op.
* Fixed shape calculation for image:crop_and_resize op and test.
* NativeOps tests. Initial test suite.
* Added tests for indexReduce methods.
* Added test on execBroadcast with NDArray as dimensions.
* Added test on execBroadcastBool with NDArray as dimensions.
* Added tests on execPairwiseTransform and execPairwiseTransofrmBool.
* Added tests for execReduce with scalar results.
* Added reduce tests for non-empty dims array.
* Added tests for reduce3.
* Added tests for execScalar.
* Added tests for execSummaryStats.
* - provide cpu/cuda code for batch_to_space
- testing it
Signed-off-by: Yurii <yurii@skymind.io>
* - remove old test for batch_to_space (had wrong format and numbers were not checked)
Signed-off-by: Yurii <yurii@skymind.io>
* Fixed complilation errors with test.
* Added test for execTransformFloat.
* Added test for execTransformSame.
* Added test for execTransformBool.
* Added test for execTransformStrict.
* Added tests for execScalar/execScalarBool with TADs.
* Added test for flatten.
* - provide cpu/cuda code for space_to_Batch operaion
Signed-off-by: Yurii <yurii@skymind.io>
* Added test for concat.
* comment unnecessary stuff in s_t_b
Signed-off-by: Yurii <yurii@skymind.io>
* Added test for specialConcat.
* Added tests for memcpy/set routines.
* Fixed pullRow cuda test.
* Added pullRow test.
* Added average test.
* - correct typo in NDArray::applyPairwiseTransform(nd4j::pairwise::BoolOps op...)
Signed-off-by: Yurii <yurii@skymind.io>
* - debugging and fixing cuda tests in JavaInteropTests file
Signed-off-by: Yurii <yurii@skymind.io>
* - correct some tests
Signed-off-by: Yurii <yurii@skymind.io>
* Added test for shuffle.
* Fixed ops declarations.
* Restored omp and added shuffle test.
* Added convertTypes test.
* Added tests for execRandom. Eliminated usage of RandomBuffer with NativeOps.
* Added sort tests.
* Added tests for execCustomOp.
* - further debuging and fixing tests terminated with crash
Signed-off-by: Yurii <yurii@skymind.io>
* Added tests for calculateOutputShapes.
* Addded Benchmarks test.
* Commented benchmark tests.
* change assertion
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for apply_sgd op. Added cpu helper for that op.
* Implement cuda helper for aplly_sgd op. Fixed tests for NativeOps.
* Added test for assign broadcastable.
* Added tests for assign_bp op.
* Added tests for axpy op.
* - assign/execScalar/execTransformAny signature change
- minor test fix
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed axpy op.
* meh
Signed-off-by: raver119 <raver119@gmail.com>
* - fix tests for nativeOps::concat
Signed-off-by: Yurii <yurii@skymind.io>
* sequential transform/scalar
Signed-off-by: raver119 <raver119@gmail.com>
* allow nested parallelism
Signed-off-by: raver119 <raver119@gmail.com>
* assign_bp leak fix
Signed-off-by: raver119 <raver119@gmail.com>
* block setRNG fix
Signed-off-by: raver119 <raver119@gmail.com>
* enable parallelism by default
Signed-off-by: raver119 <raver119@gmail.com>
* enable nested parallelism by default
Signed-off-by: raver119 <raver119@gmail.com>
* Added cuda implementation for row_count helper.
* Added implementation for tnse gains op helper.
* - take into account possible situations when input arrays are empty in reduce_ cuda stuff
Signed-off-by: Yurii <yurii@skymind.io>
* Implemented tsne/edge_forces op cuda-based helper. Parallelized cpu-based helper for edge_forces.
* Added kernel for tsne/symmetrized op heleper.
* Implementation of tsne/symmetrized op cuda helper. Working edition.
* Eliminated waste printfs.
* Added test for broadcastgradientargs op.
* host-only fallback for empty reduce float
Signed-off-by: raver119 <raver119@gmail.com>
* - some tests fixes
Signed-off-by: Yurii <yurii@skymind.io>
* - correct the rest of reduce_ stuff
Signed-off-by: Yurii <yurii@skymind.io>
* - further correction of reduce_ stuff
Signed-off-by: Yurii <yurii@skymind.io>
* Added test for Cbow op. Also added cuda implementation for cbow helpers.
* - improve code of stack operation for scalar case
Signed-off-by: Yurii <yurii@skymind.io>
* - provide cuda kernel for gatherND operation
Signed-off-by: Yurii <yurii@skymind.io>
* Implementation of cbow helpers with cuda kernels.
* minor tests tweaks
Signed-off-by: raver119 <raver119@gmail.com>
* minor tests tweaks
Signed-off-by: raver119 <raver119@gmail.com>
* - further correction of cuda stuff
Signed-off-by: Yurii <yurii@skymind.io>
* Implementatation of cbow op helper with cuda kernels. Working edition.
* Skip random testing for cudablas case.
* lstmBlockCell context fix
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for ELU and ELU_BP ops.
* Added tests for eq_scalar, gt_scalar, gte_scalar and lte_scalar ops.
* Added tests for neq_scalar.
* Added test for noop.
* - further work on clipbynorm_bp
Signed-off-by: Yurii <yurii@skymind.io>
* - get rid of concat op call, use instead direct concat helper call
Signed-off-by: Yurii <yurii@skymind.io>
* lstmBlockCell context fix
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for lrelu and lrelu_bp.
* Added tests for selu and selu_bp.
* Fixed lrelu derivative helpers.
* - some corrections in lstm
Signed-off-by: Yurii <yurii@skymind.io>
* operator * result shape fix
Signed-off-by: raver119 <raver119@gmail.com>
* - correct typo in lstmCell
Signed-off-by: Yurii <yurii@skymind.io>
* few tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* CUDA inverse broadcast bool fix
Signed-off-by: raver119 <raver119@gmail.com>
* disable MMAP test for CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* BooleanOp syncToDevice
Signed-off-by: raver119 <raver119@gmail.com>
* meh
Signed-off-by: raver119 <raver119@gmail.com>
* additional data types for im2col/col2im
Signed-off-by: raver119 <raver119@gmail.com>
* Added test for firas_sparse op.
* one more RandomBuffer test excluded
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for flatten op.
* Added test for Floor op.
* bunch of tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* mmulDot tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* more tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* Implemented floordiv_bp op and tests.
* Fixed scalar case with cuda implementation for bds.
* - work on cuda kernel for clip_by_norm backprop op is completed
Signed-off-by: Yurii <yurii@skymind.io>
* Eliminate cbow crach.
* more tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* more tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* Eliminated abortion with batched nlp test.
* more tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed shared flag initializing.
* disabled bunch of cpu workspaces tests
Signed-off-by: raver119 <raver119@gmail.com>
* scalar operators fix: missing registerSpecialUse call
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed logdet for cuda and tests.
* - correct clipBynorm_bp
Signed-off-by: Yurii <yurii@skymind.io>
* Fixed crop_and_resize shape datatype.
* - correct some mmul tests
Signed-off-by: Yurii <yurii@skymind.io>
* build fix
Signed-off-by: raver119 <raver119@gmail.com>
* exclude two methods for JNI
Signed-off-by: raver119 <raver119@gmail.com>
* exclude two methods for JNI
Signed-off-by: raver119 <raver119@gmail.com>
* exclude two methods for JNI (#97)
Signed-off-by: raver119 <raver119@gmail.com>
* temporary stack fix
Signed-off-by: raver119 <raver119@gmail.com>
* round robin affinity test
Signed-off-by: raver119 <raver119@gmail.com>
* get rid of legacy CudaContext methods
Signed-off-by: raver119 <raver119@gmail.com>
* get rid of legacy ContextPool classes/methods
Signed-off-by: raver119 <raver119@gmail.com>
* one legacy test removed
Signed-off-by: raver119 <raver119@gmail.com>
* few more fields rearranged
Signed-off-by: raver119 <raver119@gmail.com>
* OpaqueLaunchContext
Signed-off-by: raver119 <raver119@gmail.com>
* OpaqueLaunchContext++
Signed-off-by: raver119 <raver119@gmail.com>
* more of OpaqueLaunchContext methods
Signed-off-by: raver119 <raver119@gmail.com>
* LaunchContext -> CudaContext
Signed-off-by: raver119 <raver119@gmail.com>
* AffinityManger changes
Signed-off-by: raver119 <raver119@gmail.com>
* AffinityManger changes
Signed-off-by: raver119 <raver119@gmail.com>
* cusolver handles
Signed-off-by: raver119 <raver119@gmail.com>
* typo
Signed-off-by: raver119 <raver119@gmail.com>
* cusolver method
Signed-off-by: raver119 <raver119@gmail.com>
* cusolver handle propagated
Signed-off-by: raver119 <raver119@gmail.com>
* blas/solver handles
Signed-off-by: raver119 <raver119@gmail.com>
* one more test
Signed-off-by: raver119 <raver119@gmail.com>
* legacy concat implementations replaced with new CustomOp
Signed-off-by: raver119 <raver119@gmail.com>
* one more test
Signed-off-by: raver119 <raver119@gmail.com>
* concat now uses way more blocks
Signed-off-by: raver119 <raver119@gmail.com>
* print
Signed-off-by: raver119 <raver119@gmail.com>
* no more triple template mmul
Signed-off-by: raver119 <raver119@gmail.com>
* bunch of kernels have dtypes reconsidered
Signed-off-by: raver119 <raver119@gmail.com>
* bunch of kernels have dtypes reconsidered
Signed-off-by: raver119 <raver119@gmail.com>
* bitonic sort reorganized
Signed-off-by: raver119 <raver119@gmail.com>
* bunch of cpu stuff removed from cuda scope
Signed-off-by: raver119 <raver119@gmail.com>
* bunch of cpu stuff removed from cuda scope
Signed-off-by: raver119 <raver119@gmail.com>
* type conversions moved to generic impl
Signed-off-by: raver119 <raver119@gmail.com>
* cpu data types pass
Signed-off-by: raver119 <raver119@gmail.com>
* non_max_suppression
Signed-off-by: raver119 <raver119@gmail.com>
* sortByValue fix
Signed-off-by: raver119 <raver119@gmail.com>
* ignore all mixed datatype tests for mmul
Signed-off-by: raver119 <raver119@gmail.com>
* special handling of OpProfiler exceptions
Signed-off-by: raver119 <raver119@gmail.com>
* - one failing concat test in cpp
- Nd4j.tile now uses op internally
Signed-off-by: raver119 <raver119@gmail.com>
* get back dtype exception for legacy arrays deserialization
Signed-off-by: raver119 <raver119@gmail.com>
2019-08-14 15:52:34 +02:00
BUILD_DOUBLE_SELECTOR(indices.dataType(), updates.dataType(), scatterForLossCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, context->getCudaStream(), indices.getSpecialBuffer(), indices.getSpecialShapeInfo(), updates.specialBuffer(), updates.specialShapeInfo(), nullptr, nullptr), INDEXING_TYPES, FLOAT_TYPES);
2019-07-12 10:51:51 +02:00
NDArray::registerSpecialUse({&updates}, {&indices});
}
else {
NDArray::prepareSpecialUse({&output}, {&indices, &updates});
[WIP] multi-device support (#80)
* fix pad javadoc and @see links. (#72)
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* [WIP] More fixes (#73)
* special tests for ConstantTadHelper/ConstantShapeHelper
Signed-off-by: raver119 <raver119@gmail.com>
* release methods for data buffers
Signed-off-by: raver119 <raver119@gmail.com>
* delete temporary buffer Java side
Signed-off-by: raver119 <raver119@gmail.com>
* delete temporary buffer Java side
Signed-off-by: raver119 <raver119@gmail.com>
* delete temporary TadPack C++/Java side (#74)
Signed-off-by: raver119 <raver119@gmail.com>
* Zoo model TF import test updates (#75)
* argLine fix, update compression_gru comment
* updated comment for xception
* undid but commented argLine change
* updated xlnet comment
* copyright headers
* - new NDArray methods like()/ulike() (#77)
- fix for depthwise_conv2d_bp + special test
Signed-off-by: raver119 <raver119@gmail.com>
* upsampling2d fix CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* DL4J trace logging (#79)
* MLN/CG trace logging for debugging
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Tiny tweak
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* strided_slice_bp shape fn leak fix
Signed-off-by: raver119 <raver119@gmail.com>
* SameDiff fixes and naming (#78)
* remove SDVariable inplace methods
* import methods
* npe fix in OpVal
* removed SameDiff inplace ops from tests
* Naming updates, moved to centralized methods in SameDiff, should use op_#:# for everything
* quick fixes
* javadoc
* SDVariable eval with placeholders
* use regex match
* better matching
* initial commit
Signed-off-by: raver119 <raver119@gmail.com>
* initial commit
Signed-off-by: raver119 <raver119@gmail.com>
* fix javadoc. (#76)
* fix javadoc.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* replace most @see with @link s.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* 4 additional tests
Signed-off-by: raver119 <raver119@gmail.com>
* launch context reorganization
Signed-off-by: raver119 <raver119@gmail.com>
* LaunchContext reorganization
Signed-off-by: raver119 <raver119@gmail.com>
* per-device LaunchContext
Signed-off-by: raver119 <raver119@gmail.com>
* Various DL4J/ND4J fixes (#81)
* #7954 Force refresh of UI when switching tabs on overview page
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8017 Concurrent modification exception (synchronize) fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8033 Don't initialize updater in middle of writing memory crash dump
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8208 Fix shape checks for ND4J int[] creator methods
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #6385 #7992 Keras import naming fixes + cleanup
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8016 Upsampling3D - add NDHWC format support
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* ContextBuffers as separate entity
Signed-off-by: raver119 <raver119@gmail.com>
* Refactor NativeOps.h to export C functions
* Actually export functions from NativeOps.h
* Adapt the Java wrappers in ND4J generated with JavaCPP
* Create C wrappers for some of the C++ classes currently used by ND4J
* ContextBuffers as separate entity
Signed-off-by: raver119 <raver119@gmail.com>
* remove duplicate code in createBufferDetached. (#83)
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* Keras model import - updater lr fix (#84)
* Keras model import - updater lr fix
Signed-off-by: eraly <susan.eraly@gmail.com>
* Keras model import - updater lr fix, cleanup
Signed-off-by: eraly <susan.eraly@gmail.com>
* ContextBuffers as separate entity
Signed-off-by: raver119 <raver119@gmail.com>
* ContextBuffers as separate entity
Signed-off-by: raver119 <raver119@gmail.com>
* Fix functions of OpaqueVariablesSet
* thread-local buffers/affinity
Signed-off-by: raver119 <raver119@gmail.com>
* thread safety for LaunchContext
Signed-off-by: raver119 <raver119@gmail.com>
* more of thread safety
Signed-off-by: raver119 <raver119@gmail.com>
* one more multi threaded test
Signed-off-by: raver119 <raver119@gmail.com>
* SameDiff Convolution Config validation, better output methods (#82)
* Conv Config validation & tests
Signed-off-by: Ryan Nett <rnett@skymind.io>
* stackOutputs utility method
Signed-off-by: Ryan Nett <rnett@skymind.io>
* use constructor for validation, support negative kernel sizes (infered from weights)
Signed-off-by: Ryan Nett <rnett@skymind.io>
* better output methods
Signed-off-by: Ryan Nett <rnett@skymind.io>
* move output to be with fit and evaluate
Signed-off-by: Ryan Nett <rnett@skymind.io>
* fixes
Signed-off-by: Ryan Nett <rnett@skymind.io>
* more fixes
Signed-off-by: Ryan Nett <rnett@skymind.io>
* refactor duplicate code from pad methods. (#86)
* refactor duplicate code from pad methods.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* replace switch with if.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* Various ND4J/DL4J fixes and improvements (#87)
* Reshape and reallocate - small fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Reshape and reallocate - small fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #6488 ElementWiseVertex broadcast support
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Constructors and broadcast supported it Transforms.max/min
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8054 ElementWiseVertex now supports broadcast inputs
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8057 Nd4j.create overload dtype fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7551 ND4J Shape validation fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] Numpy boolean import (#91)
* numpy bool type
Signed-off-by: raver119 <raver119@gmail.com>
* numpy bool java side
Signed-off-by: raver119 <raver119@gmail.com>
* remove create method with unused parameter. (#89)
* remove create method with unused parameter.
* removed more unused methods.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* removing more unused code.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* last removal of unused code.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* remove createSparse methods. (#92)
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* Various ND4J/DL4J fixes (#90)
* Deprecate Old*Op instances
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8063 #8054 Broadcast exceptions + cleanup inplace ops
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Small fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Remove bad test condition
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7993 Fix shape function issue in crop_and_resize op
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* DL4J SameDiff lambda layer fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8029 Fix for pnorm backprop math
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #8038 Fix Op profiler NaN/Inf triggering + add tests (#93)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* createUninitializedDetached refactoring. (#94)
* wip
* update interface, add null implementations.
* Breaking one test in a weird way.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* createUninitializedDetached refactored.
Signed-off-by: Robert Altena <Rob@Ra-ai.com>
* cuda build fix for issues introduced by recent refactoring
Signed-off-by: raver119 <raver119@gmail.com>
* [WIP] More of CUDA (#95)
* initial commit
Signed-off-by: raver119 <raver119@gmail.com>
* Implementation of hashcode cuda helper. Working edition.
* Fixed parallel test input arangements.
* Fixed tests for hashcode op.
* Fixed shape calculation for image:crop_and_resize op and test.
* NativeOps tests. Initial test suite.
* Added tests for indexReduce methods.
* Added test on execBroadcast with NDArray as dimensions.
* Added test on execBroadcastBool with NDArray as dimensions.
* Added tests on execPairwiseTransform and execPairwiseTransofrmBool.
* Added tests for execReduce with scalar results.
* Added reduce tests for non-empty dims array.
* Added tests for reduce3.
* Added tests for execScalar.
* Added tests for execSummaryStats.
* - provide cpu/cuda code for batch_to_space
- testing it
Signed-off-by: Yurii <yurii@skymind.io>
* - remove old test for batch_to_space (had wrong format and numbers were not checked)
Signed-off-by: Yurii <yurii@skymind.io>
* Fixed complilation errors with test.
* Added test for execTransformFloat.
* Added test for execTransformSame.
* Added test for execTransformBool.
* Added test for execTransformStrict.
* Added tests for execScalar/execScalarBool with TADs.
* Added test for flatten.
* - provide cpu/cuda code for space_to_Batch operaion
Signed-off-by: Yurii <yurii@skymind.io>
* Added test for concat.
* comment unnecessary stuff in s_t_b
Signed-off-by: Yurii <yurii@skymind.io>
* Added test for specialConcat.
* Added tests for memcpy/set routines.
* Fixed pullRow cuda test.
* Added pullRow test.
* Added average test.
* - correct typo in NDArray::applyPairwiseTransform(nd4j::pairwise::BoolOps op...)
Signed-off-by: Yurii <yurii@skymind.io>
* - debugging and fixing cuda tests in JavaInteropTests file
Signed-off-by: Yurii <yurii@skymind.io>
* - correct some tests
Signed-off-by: Yurii <yurii@skymind.io>
* Added test for shuffle.
* Fixed ops declarations.
* Restored omp and added shuffle test.
* Added convertTypes test.
* Added tests for execRandom. Eliminated usage of RandomBuffer with NativeOps.
* Added sort tests.
* Added tests for execCustomOp.
* - further debuging and fixing tests terminated with crash
Signed-off-by: Yurii <yurii@skymind.io>
* Added tests for calculateOutputShapes.
* Addded Benchmarks test.
* Commented benchmark tests.
* change assertion
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for apply_sgd op. Added cpu helper for that op.
* Implement cuda helper for aplly_sgd op. Fixed tests for NativeOps.
* Added test for assign broadcastable.
* Added tests for assign_bp op.
* Added tests for axpy op.
* - assign/execScalar/execTransformAny signature change
- minor test fix
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed axpy op.
* meh
Signed-off-by: raver119 <raver119@gmail.com>
* - fix tests for nativeOps::concat
Signed-off-by: Yurii <yurii@skymind.io>
* sequential transform/scalar
Signed-off-by: raver119 <raver119@gmail.com>
* allow nested parallelism
Signed-off-by: raver119 <raver119@gmail.com>
* assign_bp leak fix
Signed-off-by: raver119 <raver119@gmail.com>
* block setRNG fix
Signed-off-by: raver119 <raver119@gmail.com>
* enable parallelism by default
Signed-off-by: raver119 <raver119@gmail.com>
* enable nested parallelism by default
Signed-off-by: raver119 <raver119@gmail.com>
* Added cuda implementation for row_count helper.
* Added implementation for tnse gains op helper.
* - take into account possible situations when input arrays are empty in reduce_ cuda stuff
Signed-off-by: Yurii <yurii@skymind.io>
* Implemented tsne/edge_forces op cuda-based helper. Parallelized cpu-based helper for edge_forces.
* Added kernel for tsne/symmetrized op heleper.
* Implementation of tsne/symmetrized op cuda helper. Working edition.
* Eliminated waste printfs.
* Added test for broadcastgradientargs op.
* host-only fallback for empty reduce float
Signed-off-by: raver119 <raver119@gmail.com>
* - some tests fixes
Signed-off-by: Yurii <yurii@skymind.io>
* - correct the rest of reduce_ stuff
Signed-off-by: Yurii <yurii@skymind.io>
* - further correction of reduce_ stuff
Signed-off-by: Yurii <yurii@skymind.io>
* Added test for Cbow op. Also added cuda implementation for cbow helpers.
* - improve code of stack operation for scalar case
Signed-off-by: Yurii <yurii@skymind.io>
* - provide cuda kernel for gatherND operation
Signed-off-by: Yurii <yurii@skymind.io>
* Implementation of cbow helpers with cuda kernels.
* minor tests tweaks
Signed-off-by: raver119 <raver119@gmail.com>
* minor tests tweaks
Signed-off-by: raver119 <raver119@gmail.com>
* - further correction of cuda stuff
Signed-off-by: Yurii <yurii@skymind.io>
* Implementatation of cbow op helper with cuda kernels. Working edition.
* Skip random testing for cudablas case.
* lstmBlockCell context fix
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for ELU and ELU_BP ops.
* Added tests for eq_scalar, gt_scalar, gte_scalar and lte_scalar ops.
* Added tests for neq_scalar.
* Added test for noop.
* - further work on clipbynorm_bp
Signed-off-by: Yurii <yurii@skymind.io>
* - get rid of concat op call, use instead direct concat helper call
Signed-off-by: Yurii <yurii@skymind.io>
* lstmBlockCell context fix
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for lrelu and lrelu_bp.
* Added tests for selu and selu_bp.
* Fixed lrelu derivative helpers.
* - some corrections in lstm
Signed-off-by: Yurii <yurii@skymind.io>
* operator * result shape fix
Signed-off-by: raver119 <raver119@gmail.com>
* - correct typo in lstmCell
Signed-off-by: Yurii <yurii@skymind.io>
* few tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* CUDA inverse broadcast bool fix
Signed-off-by: raver119 <raver119@gmail.com>
* disable MMAP test for CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* BooleanOp syncToDevice
Signed-off-by: raver119 <raver119@gmail.com>
* meh
Signed-off-by: raver119 <raver119@gmail.com>
* additional data types for im2col/col2im
Signed-off-by: raver119 <raver119@gmail.com>
* Added test for firas_sparse op.
* one more RandomBuffer test excluded
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for flatten op.
* Added test for Floor op.
* bunch of tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* mmulDot tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* more tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* Implemented floordiv_bp op and tests.
* Fixed scalar case with cuda implementation for bds.
* - work on cuda kernel for clip_by_norm backprop op is completed
Signed-off-by: Yurii <yurii@skymind.io>
* Eliminate cbow crach.
* more tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* more tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* Eliminated abortion with batched nlp test.
* more tests fixed
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed shared flag initializing.
* disabled bunch of cpu workspaces tests
Signed-off-by: raver119 <raver119@gmail.com>
* scalar operators fix: missing registerSpecialUse call
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed logdet for cuda and tests.
* - correct clipBynorm_bp
Signed-off-by: Yurii <yurii@skymind.io>
* Fixed crop_and_resize shape datatype.
* - correct some mmul tests
Signed-off-by: Yurii <yurii@skymind.io>
* build fix
Signed-off-by: raver119 <raver119@gmail.com>
* exclude two methods for JNI
Signed-off-by: raver119 <raver119@gmail.com>
* exclude two methods for JNI
Signed-off-by: raver119 <raver119@gmail.com>
* exclude two methods for JNI (#97)
Signed-off-by: raver119 <raver119@gmail.com>
* temporary stack fix
Signed-off-by: raver119 <raver119@gmail.com>
* round robin affinity test
Signed-off-by: raver119 <raver119@gmail.com>
* get rid of legacy CudaContext methods
Signed-off-by: raver119 <raver119@gmail.com>
* get rid of legacy ContextPool classes/methods
Signed-off-by: raver119 <raver119@gmail.com>
* one legacy test removed
Signed-off-by: raver119 <raver119@gmail.com>
* few more fields rearranged
Signed-off-by: raver119 <raver119@gmail.com>
* OpaqueLaunchContext
Signed-off-by: raver119 <raver119@gmail.com>
* OpaqueLaunchContext++
Signed-off-by: raver119 <raver119@gmail.com>
* more of OpaqueLaunchContext methods
Signed-off-by: raver119 <raver119@gmail.com>
* LaunchContext -> CudaContext
Signed-off-by: raver119 <raver119@gmail.com>
* AffinityManger changes
Signed-off-by: raver119 <raver119@gmail.com>
* AffinityManger changes
Signed-off-by: raver119 <raver119@gmail.com>
* cusolver handles
Signed-off-by: raver119 <raver119@gmail.com>
* typo
Signed-off-by: raver119 <raver119@gmail.com>
* cusolver method
Signed-off-by: raver119 <raver119@gmail.com>
* cusolver handle propagated
Signed-off-by: raver119 <raver119@gmail.com>
* blas/solver handles
Signed-off-by: raver119 <raver119@gmail.com>
* one more test
Signed-off-by: raver119 <raver119@gmail.com>
* legacy concat implementations replaced with new CustomOp
Signed-off-by: raver119 <raver119@gmail.com>
* one more test
Signed-off-by: raver119 <raver119@gmail.com>
* concat now uses way more blocks
Signed-off-by: raver119 <raver119@gmail.com>
* print
Signed-off-by: raver119 <raver119@gmail.com>
* no more triple template mmul
Signed-off-by: raver119 <raver119@gmail.com>
* bunch of kernels have dtypes reconsidered
Signed-off-by: raver119 <raver119@gmail.com>
* bunch of kernels have dtypes reconsidered
Signed-off-by: raver119 <raver119@gmail.com>
* bitonic sort reorganized
Signed-off-by: raver119 <raver119@gmail.com>
* bunch of cpu stuff removed from cuda scope
Signed-off-by: raver119 <raver119@gmail.com>
* bunch of cpu stuff removed from cuda scope
Signed-off-by: raver119 <raver119@gmail.com>
* type conversions moved to generic impl
Signed-off-by: raver119 <raver119@gmail.com>
* cpu data types pass
Signed-off-by: raver119 <raver119@gmail.com>
* non_max_suppression
Signed-off-by: raver119 <raver119@gmail.com>
* sortByValue fix
Signed-off-by: raver119 <raver119@gmail.com>
* ignore all mixed datatype tests for mmul
Signed-off-by: raver119 <raver119@gmail.com>
* special handling of OpProfiler exceptions
Signed-off-by: raver119 <raver119@gmail.com>
* - one failing concat test in cpp
- Nd4j.tile now uses op internally
Signed-off-by: raver119 <raver119@gmail.com>
* get back dtype exception for legacy arrays deserialization
Signed-off-by: raver119 <raver119@gmail.com>
2019-08-14 15:52:34 +02:00
BUILD_DOUBLE_SELECTOR(indices.dataType(), updates.dataType(), scatterForLossCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, context->getCudaStream(), indices.getSpecialBuffer(), indices.getSpecialShapeInfo(), updates.getSpecialBuffer(), updates.getSpecialShapeInfo(), output.specialBuffer(), output.specialShapeInfo()), INDEXING_TYPES, FLOAT_TYPES);
2019-07-12 10:51:51 +02:00
NDArray::registerSpecialUse({&output}, {&indices, &updates});
}
manager.synchronize();
2019-06-06 14:21:15 +02:00
}
}
}
}
2019-11-26 18:29:09 +01:00
/*
///////////////////////////////////////////////////////////////////
template<typename X, typename Y>
static void scatterLockCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream,
const int opCode,
const void* vx, const Nd4jLong *xShapeInfo,
const void* vy, const Nd4jLong *yTadShapeInfo, const Nd4jLong *yOffsets,
void* vz, const Nd4jLong *zTadShapeInfo, const Nd4jLong *zOffsets,
const Nd4jLong xLen, const Nd4jLong yTadLen, const Nd4jLong zTadLen) {
scatterLockCuda<X,Y><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(opCode, vx, xShapeInfo, vy, yTadShapeInfo, yOffsets, vz, zTadShapeInfo, zOffsets, xLen, yTadLen, zTadLen);
}
///////////////////////////////////////////////////////////////////
// x - indices, y - updates, z - input/output
template<typename X, typename Y>
__global__ static void scatterLockCuda(const int opCode,
const void* vx, const Nd4jLong *xShapeInfo,
const void* vy, const Nd4jLong *yTadShapeInfo, const Nd4jLong *yOffsets,
void* vz, const Nd4jLong *zTadShapeInfo, const Nd4jLong *zOffsets,
const Nd4jLong xLen, const Nd4jLong yTadLen, const Nd4jLong zTadLen) {
const int xRank = indices.rankOf();
std::vector<int> zTadDims = ShapeUtils::evalDimsToExclude(output.rankOf(), {0});
int sizeOfUpdDims = xRank;
if(output.rankOf() == updates.rankOf() && indices.isVector())
sizeOfUpdDims = 1;
std::vector<int> yTadDims(sizeOfUpdDims);
std::iota(yTadDims.begin(), yTadDims.end(), 0);
auto packY = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(updates.getShapeInfo(), ShapeUtils::evalDimsToExclude(updates.rankOf(), yTadDims));
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output.getShapeInfo(), zTadDims);
const Nd4jLong zTadLen = shape::length(packZ.primaryShapeInfo());
const Nd4jLong yTadLen = shape::length(packY.primaryShapeInfo());
const auto threadsPerBlock = nd4j::math::nd4j_max<int>(32, nd4j::math::nd4j_min<int>(zTadLen, 1024));
const auto blocksPerGrid = indices.lengthOf();
const auto xType = indices.dataType();
const auto yType = updates.dataType();
BUILD_DOUBLE_SELECTOR(xType, yType, scatterLockCudaLauncher, (blocksPerGrid, threadsPerBlock, 1024, context->getCudaStream(), op, indices.getSpecialBuffer(), indices.getSpecialShapeInfo(), updates.getSpecialBuffer(), packY.specialShapeInfo(), packY.specialOffsets(), output.getSpecialBuffer(), packZ.specialShapeInfo(), packZ.specialOffsets(), indices.lengthOf(), yTadLen, zTadLen), INDEXING_TYPES, GENERIC_NUMERIC_TYPES);
const auto x = reinterpret_cast<const X*>(vx);
const auto y = reinterpret_cast<const Y*>(vy);
auto z = reinterpret_cast<Y*>(vz);
__shared__ bool vectorCase;
if(threadIdx.x == 0)
vectorCase = yTadLen == xLen && shape::rank(xShapeInfo) <= 1;
__syncthreads();
for (int e = 0; e < xLen; e++) {
const Nd4jLong zIndex = x[shape::getIndexOffset(e, xShapeInfo)];
const bool isOwner = zIndex < gridDim.x ? blockIdx.x == zIndex : blockIdx.x == zIndex % gridDim.x;
if (!isOwner)
continue;
if(vectorCase) { // means z_rank = 1 and might be yTadLen != zTadLen in this case
if(threadIdx.x != 0)
continue;
const auto yOffset = shape::getIndexOffset(e, yTadShapeInfo);
const auto zOffset = shape::getIndexOffset(zIndex, zTadShapeInfo);
switch (opCode) {
case pairwise::Add:
z[zOffset] += y[yOffset];
break;
case pairwise::Subtract:
z[zOffset] -= y[yOffset];
break;
case pairwise::Multiply:
z[zOffset] *= y[yOffset];
break;
case pairwise::Divide:
z[zOffset] /= y[yOffset];
break;
case pairwise::ReverseSubtract:
z[zOffset] = y[yOffset] - z[zOffset];
break;
case pairwise::ReverseDivide:
z[zOffset] = y[yOffset] / z[zOffset];
break;
case pairwise::CopyPws:
z[zOffset] = y[yOffset];
break;
case pairwise::MaxPairwise:
if(z[zOffset] < y[yOffset]) z[zOffset] = y[yOffset];
break;
case pairwise::MinPairwise:
if(z[zOffset] > y[yOffset]) z[zOffset] = y[yOffset];
break;
default:
continue;
}
}
else { // yTadLen == zTadLen in this case
const Y* yTad = y + yOffsets[e];
Y* zTad = z + zOffsets[zIndex];
for (Nd4jLong i = threadIdx.x; i < zTadLen; i += blockDim.x) {
const auto yOffset = shape::getIndexOffset(i, yTadShapeInfo);
const auto zOffset = shape::getIndexOffset(i, zTadShapeInfo);
switch (opCode) {
case pairwise::Add:
zTad[zOffset] += yTad[yOffset];
break;
case pairwise::Subtract:
zTad[zOffset] -= yTad[yOffset];
break;
case pairwise::Multiply:
zTad[zOffset] *= yTad[yOffset];
break;
case pairwise::Divide:
zTad[zOffset] /= yTad[yOffset];
break;
case pairwise::ReverseSubtract:
zTad[zOffset] = yTad[yOffset] - zTad[zOffset];
break;
case pairwise::ReverseDivide:
zTad[zOffset] = yTad[yOffset] / zTad[zOffset];
break;
case pairwise::CopyPws:
zTad[zOffset] = yTad[yOffset];
break;
case pairwise::MaxPairwise:
if(zTad[zOffset] < yTad[yOffset]) zTad[zOffset] = yTad[yOffset];
break;
case pairwise::MinPairwise:
if(zTad[zOffset] > yTad[yOffset]) zTad[zOffset] = yTad[yOffset];
break;
default:
continue;
}
}
}
}
}
template<typename T, bool locking>
__global__ static void scatterCuda(const int opCode, const int numOfSubArrs,
void* vx, const Nd4jLong *xShapeInfo, const Nd4jLong *xOffsets,
void* vy, const Nd4jLong *yShapeInfo, const Nd4jLong *yOffsets,
const int* indexes, unsigned int arrLenX, unsigned int arrLenY) {
__shared__ T *x, *y;
if (locking) {
for (int e = 0; e < numOfSubArrs; e++) {
const auto xIndex = indexes[e];
const bool isOwner = xIndex < gridDim.x ? blockIdx.x == xIndex : blockIdx.x == xIndex % gridDim.x;
if (!isOwner)
continue;
if (threadIdx.x == 0) {
x = reinterpret_cast<T *>(vx) + xOffsets[xIndex];
y = reinterpret_cast<T *>(vy) + yOffsets[e];
}
__syncthreads();
for (Nd4jLong i = threadIdx.x; i < arrLenX; i += blockDim.x) {
const auto xOffset = shape::getIndexOffset(i, xShapeInfo);
const auto yOffset = shape::getIndexOffset(i, yShapeInfo);
switch (opCode) {
case pairwise::Add:
x[xOffset] += y[yOffset];
break;
case pairwise::Subtract:
x[xOffset] -= y[yOffset];
break;
case pairwise::Multiply:
x[xOffset] *= y[yOffset];
break;
case pairwise::Divide:
x[xOffset] /= y[yOffset];
break;
case pairwise::ReverseSubtract:
x[xOffset] = y[yOffset] - x[xOffset];
break;
case pairwise::ReverseDivide:
x[xOffset] = y[yOffset] / x[xOffset];
break;
case pairwise::CopyPws:
x[xOffset] = y[yOffset];
break;
default:
continue;
}
}
__syncthreads();
}
} else {
for (int e = blockIdx.x; e < numOfSubArrs; e+= gridDim.x) {
if (threadIdx.x == 0) {
const auto xIndex = indexes[e];
x = reinterpret_cast<T *>(vx) + xOffsets[xIndex];
y = reinterpret_cast<T *>(vy) + yOffsets[e];
}
__syncthreads();
for (Nd4jLong i = threadIdx.x; i < arrLenX; i += blockDim.x) {
const auto xOffset = shape::getIndexOffset(i, xShapeInfo);
const auto yOffset = shape::getIndexOffset(i, yShapeInfo);
switch (opCode) {
case pairwise::Add:
x[xOffset] += y[yOffset];
break;
case pairwise::Subtract:
x[xOffset] -= y[yOffset];
break;
case pairwise::Multiply:
x[xOffset] *= y[yOffset];
break;
case pairwise::Divide:
x[xOffset] /= y[yOffset];
break;
case pairwise::ReverseSubtract:
x[xOffset] = y[yOffset] - x[xOffset];
break;
case pairwise::ReverseDivide:
x[xOffset] = y[yOffset] / x[xOffset];
break;
case pairwise::CopyPws:
x[xOffset] = y[yOffset];
break;
default:
continue;
}
}
__syncthreads();
}
}
}
template <typename T>
void scatter_(nd4j::LaunchContext *context, pairwise::Ops op, const NDArray& indices, const NDArray& updates, NDArray& output, const bool lock) {
std::vector<int> dims = {0};
auto inverted = ShapeUtils::evalDimsToExclude(output.rankOf(), dims);
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output.getShapeInfo(), inverted);
auto packY = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(updates.getShapeInfo(), inverted);
auto psX = packX.specialShapeInfo();
auto psY = packY.specialShapeInfo();
PointersManager manager(context, "scatter");
auto poX = packX.specialOffsets();
auto poY = packY.specialOffsets();
NDArray::prepareSpecialUse({&output}, {&updates, &indices});
unsigned int tadLengthX = shape::length(packX.primaryShapeInfo());
unsigned int tadLengthY = shape::length(packY.primaryShapeInfo());
if (tadLengthX != tadLengthY)
throw std::runtime_error("scatter: Lengths of TADs must be equal");
auto blockSize = nd4j::math::nd4j_max<int>(32, nd4j::math::nd4j_min<int>(tadLengthX, 1024));
if (lock)
scatterCuda<T, true><<<512, blockSize, 1024, *context->getCudaStream()>>>(op, indices.lengthOf(), output.getSpecialBuffer(), psX, poX, updates.getSpecialBuffer(), psY, poY, reinterpret_cast<int *>(indices.getSpecialBuffer()), tadLengthX, tadLengthY);
else
scatterCuda<T, false><<<512, blockSize, 1024, *context->getCudaStream()>>>(op, indices.lengthOf(), output.getSpecialBuffer(), psX, poX, updates.getSpecialBuffer(), psY, poY, reinterpret_cast<int *>(indices.getSpecialBuffer()), tadLengthX, tadLengthY);
NDArray::registerSpecialUse({&output}, {&updates, &indices});
manager.synchronize();
}
///////////////////////////////////////////////////////////////////
// x - indices, y - updates, z - output
template<typename X, typename Y>
__global__ static void scatterNDLockCuda(const int opCode,
const void* vx, const Nd4jLong *xTadShapeInfo, const Nd4jLong *xOffsets,
const void* vy, const Nd4jLong *yTadShapeInfo, const Nd4jLong *yOffsets,
void* vz, const Nd4jLong *zTadShapeInfo, const Nd4jLong *zOffsets,
const Nd4jLong *zShapeInfo,
const Nd4jLong numOfXTads, const Nd4jLong numOfZTads, const Nd4jLong yTadLen) {
---------------------------------------------------------------------------
const int xLastDim = indices.sizeAt(-1);
// y_tad and z_tad have the same shape
std::vector<int> yTadDims(zRank - xLastDim), zTadDims(zRank - xLastDim);
for (int j = 0, i = zTadDims.size() - 1; i >=0 ; --i, ++j) {
yTadDims[i] = yRank - 1 - j;
zTadDims[i] = zRank - 1 - j;
}
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(indices.getShapeInfo(), {xRank - 1});
auto packY = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(updates.getShapeInfo(), yTadDims);
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output.getShapeInfo(), zTadDims);
const int threadsPerBlock = MAX_NUM_THREADS / 4;
const int blocksPerGrid = packZ.numberOfTads();
const int sharedMem = 8 * threadsPerBlock * xLastDim + 128;
---------------------------------------------------------------------------
// zTadLen == yTadLen if numOfZTads > 1, in opposite case z and y are vectors
// numOfXTads == numOfYTads if numOfZTads > 1, in opposite case z and y are vectors
const auto x = reinterpret_cast<const X*>(vx);
const auto y = reinterpret_cast<const Y*>(vy);
auto z = reinterpret_cast<Y*>(vz);
__shared__ Nd4jLong *zTadCoords;
__shared__ int xLastDim;
if (threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
zTadCoords = reinterpret_cast<Nd4jLong*>(shmem);
xLastDim = xTadShapeInfo[1]; // xTad has rank = 1 always
}
__syncthreads();
Nd4jLong* zTadCoordsPerThread = zTadCoords + threadIdx.x * xLastDim;
for (Nd4jLong i = 0; i < numOfXTads; ++i) {
const X* xTad = x + xOffsets[i];
for (uint k = 0; k < xLastDim; ++k)
zTadCoordsPerThread[k] = xTad[shape::getIndexOffset(k, xTadShapeInfo)];
const auto zTadIndex = shape::coords2index(xLastDim, zShapeInfo + 1, zTadCoordsPerThread);
const bool isOwner = zTadIndex < gridDim.x ? blockIdx.x == zTadIndex : blockIdx.x == zTadIndex % gridDim.x;
if(!isOwner)
continue;
if(numOfZTads == 1) { // yTadLen == numOfXTads in this case
if(threadIdx.x != 0)
continue;
const auto yOffset = shape::getIndexOffset(i, yTadShapeInfo);
const auto zOffset = shape::getIndexOffset(zTadIndex, zTadShapeInfo);
switch (opCode) {
case pairwise::Add:
z[zOffset] += y[yOffset];
break;
case pairwise::Subtract:
z[zOffset] -= y[yOffset];
break;
case pairwise::Multiply:
z[zOffset] *= y[yOffset];
break;
case pairwise::Divide:
z[zOffset] /= y[yOffset];
break;
case pairwise::ReverseSubtract:
z[zOffset] = y[yOffset] - z[zOffset];
break;
case pairwise::ReverseDivide:
z[zOffset] = y[yOffset] / z[zOffset];
break;
case pairwise::CopyPws:
z[zOffset] = y[yOffset];
break;
case pairwise::MaxPairwise:
if(z[zOffset] < y[yOffset]) z[zOffset] = y[yOffset];
break;
case pairwise::MinPairwise:
if(z[zOffset] > y[yOffset]) z[zOffset] = y[yOffset];
break;
default:
continue;
}
}
else {
const auto yTad = y + yOffsets[i];
const auto zTad = z + zOffsets[zTadIndex];
for (Nd4jLong j = threadIdx.x; j < yTadLen; j += blockDim.x) {
const auto yOffset = shape::getIndexOffset(j, yTadShapeInfo);
const auto zOffset = shape::getIndexOffset(j, zTadShapeInfo);
switch (opCode) {
case pairwise::Add:
zTad[zOffset] += yTad[yOffset];
break;
case pairwise::Subtract:
zTad[zOffset] -= yTad[yOffset];
break;
case pairwise::Multiply:
zTad[zOffset] *= yTad[yOffset];
break;
case pairwise::Divide:
zTad[zOffset] /= yTad[yOffset];
break;
case pairwise::ReverseSubtract:
zTad[zOffset] = yTad[yOffset] - zTad[zOffset];
break;
case pairwise::ReverseDivide:
zTad[zOffset] = yTad[yOffset] / zTad[zOffset];
break;
case pairwise::CopyPws:
zTad[zOffset] = yTad[yOffset];
break;
case pairwise::MaxPairwise:
if(zTad[zOffset] < yTad[yOffset]) zTad[zOffset] = yTad[yOffset];
break;
case pairwise::MinPairwise:
if(zTad[zOffset] > yTad[yOffset]) zTad[zOffset] = yTad[yOffset];
break;
default:
continue;
}
}
}
}
}
*/
2019-06-06 14:21:15 +02:00
// PointersManager manager(&context, "NativeOps::concat");
// PointersManager::printDevContentOnDev<int>(vx, 2);
// PointersManager::printDevContentOnDev<Nd4jLong>(xShapeInfo, 8);
// PointersManager::printDevContentOnDev<float>(vy, 8);
// PointersManager::printDevContentOnDev<Nd4jLong>(yShapeInfo, 8);
// PointersManager::printDevContentOnDev<Nd4jLong>(zShapeInfo, 8);
// manager.printDevContentOnHost<int>(indices.getSpecialBuffer(), indices.lengthOf());
// manager.printDevContentOnHost<Nd4jLong>(indices.getSpecialShapeInfo(), shape::shapeInfoLength(indices.rankOf()));
// manager.printDevContentOnHost<float>(updates.getSpecialBuffer(), updates.lengthOf());
// manager.printDevContentOnHost<Nd4jLong>(updates.getSpecialShapeInfo(), shape::shapeInfoLength(updates.rankOf()));
// manager.printDevContentOnHost<Nd4jLong>(output.getSpecialShapeInfo(), shape::shapeInfoLength(output.rankOf()));
// printf("!!!!!!!\n");
// manager.printDevContentOnHost<Nd4jLong>(packX.specialShapeInfo(), 2*shape::rank(packX.primaryShapeInfo()) + 4);
// manager.printDevContentOnHost<Nd4jLong>(packX.specialOffsets(), packX.numberOfTads());
// manager.printDevContentOnHost<Nd4jLong>(packY.specialShapeInfo(), 2*shape::rank(packY.primaryShapeInfo()) + 4);
// manager.printDevContentOnHost<Nd4jLong>(packY.specialOffsets(), packY.numberOfTads());
// manager.printDevContentOnHost<Nd4jLong>(packZ.specialShapeInfo(), 2*shape::rank(packZ.primaryShapeInfo()) + 4);
// manager.printDevContentOnHost<Nd4jLong>(packZ.specialOffsets(), packZ.numberOfTads());
// printf("dddddddd\n");
// shape::printShapeInfoLinear(packY.primaryShapeInfo());