cavis/libnd4j/include/ops/declarable/helpers/cpu/sg_cb.cpp

626 lines
32 KiB
C++
Raw Normal View History

2019-06-06 14:21:15 +02:00
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include <ops/declarable/helpers/sg_cb.h>
#include <specials.h>
#include <execution/Threads.h>
2019-06-06 14:21:15 +02:00
#define HS_MAX_EXP 6.0f
namespace nd4j {
namespace ops {
namespace helpers {
template <typename T>
void hSoftmax_(void *vsyn0, void *vsyn1, void *vexpTable, void *vneu1e, double alpha, int vectorLength, int code, int expLength, bool isInference) {
auto syn0 = reinterpret_cast<T*>(vsyn0);
auto syn1 = reinterpret_cast<T*>(vsyn1);
auto expTable = reinterpret_cast<T*>(vexpTable);
auto neu1e = reinterpret_cast<T*>(vneu1e);
T dot(0.0f);
T g(0.0f);
T f(0.0f);
// dot
for (int e = 0; e < vectorLength; e++) {
dot += syn0[e] * syn1[e];
}
// gradient
if (dot < (T) - HS_MAX_EXP || dot >= (T) HS_MAX_EXP)
return;
int idx = static_cast<int>((dot + HS_MAX_EXP) * ((float) expLength / HS_MAX_EXP / 2.0f));
if (idx >= expLength || idx < 0)
return;
f = expTable[idx];
g = (static_cast<T>(1.0f) - static_cast<T>(code) - f) * (T) alpha;
// axpy1
for (int e = 0; e < vectorLength; e++) {
neu1e[e] = g * syn1[e] + neu1e[e];
}
// axpy2
if (!isInference) {
for (int e = 0; e < vectorLength; e++) {
syn1[e] = g * syn0[e] + syn1[e];
}
}
}
template <typename T>
void nSampling_(void *vsyn0, void *vsyn1Neg, void *vexpTable, void *vneu1e, double alpha, int vectorLength, int code, int expLength, bool isInference) {
auto syn0 = reinterpret_cast<T*>(vsyn0);
auto syn1Neg = reinterpret_cast<T*>(vsyn1Neg);
auto expTable = reinterpret_cast<T*>(vexpTable);
auto neu1e = reinterpret_cast<T*>(vneu1e);
T dot = (T) 0.0f;
T g = (T) 0.0f;
for (int e = 0; e < vectorLength; e++) {
dot += syn0[e] * syn1Neg[e];
}
if (dot > HS_MAX_EXP)
g = (code - 1) * alpha;
else if (dot < (T) - HS_MAX_EXP)
g = (code - 0) * alpha;
else {
int idx = (int) ((dot + (T) HS_MAX_EXP) * ((T) expLength / HS_MAX_EXP / 2.0));
if (idx >= expLength)
return;
if (idx < 0)
return;
g = ((T) code - expTable[idx]) * alpha;
}
// axpy1
for (int e = 0; e < vectorLength; e++) {
neu1e[e] = g * syn1Neg[e] + neu1e[e];
}
// axpy2
if (!isInference) {
for (int e = 0; e < vectorLength; e++) {
syn1Neg[e] = g * syn0[e] + syn1Neg[e];
}
}
}
template <typename T>
void cbow_(void *vsyn0, void *vsyn1, void *vsyn1Neg, void *vexpTable, void *vnegTable, void *vinfVector, int target, int ngStarter, int *context, int *lockedWords, int *indices, int8_t *codes, double alpha, Nd4jLong randomValue, const int contextWidth, const int hsRounds, const int nsRounds, const int vocabSize, const int vectorLength, const int expLength, const int negLength, const int numLabels, const bool trainWords) {
auto syn0 = reinterpret_cast<T *>(vsyn0);
auto syn1 = reinterpret_cast<T *>(vsyn1);
auto syn1Neg = reinterpret_cast<T *>(vsyn1Neg);
auto expTable = reinterpret_cast<T *>(vexpTable);
auto negTable = reinterpret_cast<T *>(vnegTable);
auto infVector = reinterpret_cast<T *>(vinfVector);
auto neu1 = new T[vectorLength];
auto neu1e = new T[vectorLength];
memset(neu1, 0, vectorLength * sizeof(T));
memset(neu1e, 0, vectorLength * sizeof(T));
// building neu1 for current window
for (int c = 0; c < contextWidth; c++) {
if (context[c] >= vocabSize)
throw std::runtime_error("Bad context 4");
T *syn0word = syn0 + (context[c] * vectorLength);
for (int i = 0; i < vectorLength; i++) {
neu1[i] += syn0word[i];
}
}
// for inference we add additional inference vector
if (infVector != nullptr) {
for (int i = 0; i < vectorLength; i++) {
neu1[i] += infVector[i];
}
}
// average neu1
if (contextWidth > 0) {
for (int i = 0; i < vectorLength; i++) {
neu1[i] /= contextWidth + (infVector != nullptr ? 1 : 0);
}
}
// softmax round
if (hsRounds > 0) {
for (int i = 0; i < hsRounds; i++) {
if (indices[i] < 0 || indices[i] >= vocabSize)
throw std::runtime_error("Bad context 5");
hSoftmax_<T>(neu1, syn1 + (indices[i] * vectorLength), expTable, neu1e, alpha, vectorLength, codes[i], expLength, infVector != nullptr);
}
}
auto nsStarter = ngStarter;
auto irow = nsStarter;
if (nsRounds > 0) {
for (int r = 0; r < nsRounds + 1; r++) {
if (r == 0) {
// target is known in advance
} else {
randomValue = randomValue * (unsigned long long) 25214903917 + 11;
auto idx = nd4j::math::nd4j_abs<Nd4jLong >((randomValue >> 16) % negLength);
irow = idx >= negLength ? -1 : static_cast<int>(negTable[idx]);
if (irow < 0 || irow >= vocabSize) irow = randomValue % (vocabSize - 1) + 1;
if (irow == nsStarter)
continue;
}
nSampling_<T>(neu1, syn1Neg + (irow * vectorLength), expTable, neu1e, alpha, vectorLength, r == 0 ? 1 : 0, expLength, infVector != nullptr);
}
}
// if we don't train words - we skip start of idxSyn0
int starter = trainWords == 1 ? 0 : contextWidth - numLabels;
// propagate neu1e -> syn0
if (infVector == nullptr) {
for (int c = starter; c < contextWidth; c++) {
if (lockedWords[c] == 1)
continue;
T *syn0word = syn0 + (context[c] * vectorLength);
for (int i = 0; i < vectorLength; i++) {
syn0word[i] += neu1e[i];
}
}
} else {
for (int i = 0; i < vectorLength; i++) {
infVector[i] += neu1e[i];
}
}
delete[] neu1;
delete[] neu1e;
}
BUILD_SINGLE_TEMPLATE(template void cbow_, (void *syn0, void *syn1, void *syn1Neg, void *expTable, void *vnegTable, void *vinfVector, int target, int ngStarter, int *context, int *lockedWords, int *indices, int8_t *codes, double alpha, Nd4jLong randomValue, const int contextWidth, const int hsRounds, const int nsRounds, const int vocabSize, const int vectorLength, const int expLength, const int negLength, const int numLabels, const bool trainWords), FLOAT_TYPES);
template <typename T>
void skipgram_(void *vsyn0, void *vsyn1, void *vsyn1Neg, void *vexpTable, void *vnegTable, void *vinfVector, int target, int ngStarter, int *indices, int8_t *codes, double alpha, Nd4jLong randomValue, const int hsRounds, const int nsRounds, const int vocabSize, const int vectorLength, const int expLength, const int negLength) {
auto syn0 = reinterpret_cast<T*>(vsyn0);
auto syn1 = reinterpret_cast<T*>(vsyn1);
auto syn1Neg = reinterpret_cast<T*>(vsyn1Neg);
auto expTable = reinterpret_cast<T*>(vexpTable);
auto negTable = reinterpret_cast<T*>(vnegTable);
auto infVector = reinterpret_cast<T*>(vinfVector);
auto neu1e = new T[vectorLength];
memset(neu1e, 0, vectorLength * sizeof(T));
// hierarchic softmax goes first (if enabled)
auto syn0row = infVector != nullptr ? infVector : syn0 + (target * vectorLength);
auto irow = 0;
if (hsRounds > 0) {
for (int r = 0; r < hsRounds; r++) {
irow = indices[r];
if (irow < 0 || irow >= vocabSize)
break;
hSoftmax_<T>(syn0row, syn1 + (irow * vectorLength), expTable, neu1e, alpha, vectorLength, codes[r], expLength, infVector != nullptr);
}
}
// negative sampling goes second (if enabled)
auto nsStarter = ngStarter;
irow = nsStarter;
if (nsRounds > 0) {
for (int r = 0; r < nsRounds + 1; r++) {
if (r == 0) {
// target is known in advance
} else {
randomValue = randomValue * (unsigned long long) 25214903917 + 11;
auto idx = nd4j::math::nd4j_abs<Nd4jLong >((randomValue >> 16) % negLength);
irow = idx >= negLength ? -1 : static_cast<int>(negTable[idx]);
if (irow < 0 || irow >= vocabSize) irow = randomValue % (vocabSize - 1) + 1;
if (irow == nsStarter)
continue;
}
nSampling_<T>(syn0row, syn1Neg + (irow * vectorLength), expTable, neu1e, alpha, vectorLength, r == 0 ? 1 : 0, expLength, infVector != nullptr);
}
}
if (infVector == nullptr) {
for (int e = 0; e < vectorLength; e++) {
syn0row[e] += neu1e[e];
}
} else {
for (int e = 0; e < vectorLength; e++) {
infVector[e] += neu1e[e];
}
}
delete[] neu1e;
}
BUILD_SINGLE_TEMPLATE(template void skipgram_, (void *syn0, void *syn1, void *syn1Neg, void *expTable, void *vnegTable, void *vinfVector, int target, int ngStarter, int *indices, int8_t *codes, double alpha, Nd4jLong randomValue, const int hsRounds, const int nsRounds, const int vocabSize, const int vectorLength, const int expLength, const int negLength), FLOAT_TYPES);
int binarySearch(const int *haystack, const int needle, const int totalElements) {
int firstIndex = 0;
int lastIndex = totalElements - 1;
int halfIndex = nd4j::math::nd4j_floor<float, int>((lastIndex + firstIndex) / (float) 2);
while(haystack[halfIndex] != needle && firstIndex < lastIndex) {
if (needle < haystack[halfIndex]) {
lastIndex = halfIndex - 1;
} else if (needle > haystack[halfIndex]) {
firstIndex = halfIndex + 1;
}
halfIndex = nd4j::math::nd4j_floor<float, int>((lastIndex + firstIndex) / (float) 2);
}
return (haystack[halfIndex] == needle) ? halfIndex : -1;
}
template <typename T>
static void do_update(const int target, const int rowIndex, const int count, T *syn0, T *neu1t, const int vectorLength) {
auto syn0row = syn0 + (target * vectorLength);
auto neu1e = neu1t + (rowIndex * vectorLength);
for (int e = 0; e< vectorLength; e++)
syn0row[e] += neu1e[e] / count;
}
template <typename T>
static void do_positive(const int target, const int postive, T* syn0, T* syn1Neg, T* expTable, T* neu1e, const double alpha, const int vectorLength, const int expLength) {
//nd4j_printf("Target: [%i]; Positive: [%i]; TID: [%i];\n", target, postive, omp_get_thread_num());
nSampling_<T>(syn0, syn1Neg, expTable, neu1e, alpha, vectorLength, 1, expLength, false);
}
template <typename T>
static void do_negative(int target, int positive, T* syn0, T* syn1Neg, T* expTable, T* negTable, T* neu1e, int *sStarters, const double alpha, const unsigned long long rv, const int vocabSize, const int vectorLength, const int expLength, const int negLength, const int nsRounds, const int numThreads, const int numTargets) {
int irow = 0;
unsigned long long randomValue = rv;
for (int r = 0; r < nsRounds; r++) {
randomValue = nd4j::math::nd4j_abs<Nd4jLong>(randomValue * (unsigned long long) 25214903917 + 11);
auto idx = nd4j::math::nd4j_abs<Nd4jLong>((randomValue >> 16) % negLength);
irow = idx >= negLength ? -1 : static_cast<int>(negTable[idx]);
if (irow < 0 || irow >= vocabSize)
irow = randomValue % (vocabSize - 1) + 1;
if (irow == positive)
continue;
// we shift irow here to guarantee independence
int dim = irow % numThreads;
if (dim != omp_get_thread_num()) {
irow += (numThreads - dim + omp_get_thread_num());
// roll back to nearest affilated word
while (irow >= vocabSize)
irow -= numThreads;
// if this row was processed as first step somewhere - skip it
if (binarySearch(sStarters, irow, numTargets) > 0) {
r--;
continue;
}
}
nSampling_<T>(syn0, syn1Neg + (irow * vectorLength), expTable, neu1e, alpha, vectorLength, 0, expLength, false);
}
}
template <typename T>
void skipgramBatchExec_(NDArray &s0, NDArray &s1, NDArray &s1n, void *vexpTable, void *vnegTable, void *vinfVector, NDArray &targets, NDArray &negStarters, NDArray &indices, NDArray &codes, NDArray &lr, NDArray &nextRandom, const int nsRounds, const int vocabSize, const int vectorLength, const int expLength, const int negLength, const bool preciseMode, const int numThreads) {
//auto syn0 = reinterpret_cast<T*>(vsyn0);
//auto syn1 = reinterpret_cast<T*>(vsyn1);
//auto syn1Neg = reinterpret_cast<T*>(vsyn1Neg);
const auto expTable = reinterpret_cast<T*>(vexpTable);
const auto negTable = reinterpret_cast<T*>(vnegTable);
const auto infVector = reinterpret_cast<T*>(vinfVector);
//const auto numThreads = omp_get_max_threads();
const auto idxShift = indices.isEmpty() ? 0 : indices.sizeAt(1);
const auto hsRounds = codes.isEmpty() ? 0 : codes.sizeAt(1);
// regular mode provides 0 guarantees for reproducibility
auto numTargets = targets.lengthOf();
auto bTarget = targets.bufferAsT<int>();
auto bIndices = indices.bufferAsT<int>();
auto bCodes = codes.bufferAsT<int8_t>();
auto func = PRAGMA_THREADS_FOR {
T sneu1e[600];
2019-06-06 14:21:15 +02:00
for (auto t = start; t < stop; t += increment) {
T *neu1e = vectorLength <= 600 ? sneu1e : new T[vectorLength];
memset(neu1e, 0, vectorLength * sizeof(T));
2019-06-06 14:21:15 +02:00
auto target = bTarget[t];
auto alpha = lr.e<double>(t);
unsigned long long randomValue = nextRandom.e<Nd4jLong>(t);
2019-06-06 14:21:15 +02:00
auto syn0row = reinterpret_cast<T *>(s0.bufferWithOffset(target * vectorLength));
2019-06-06 14:21:15 +02:00
if (hsRounds > 0) {
int irow = 0;
auto cShift = t * idxShift;
for (int e = 0; e < hsRounds; e++) {
irow = bIndices[e + cShift];
if (irow < 0 || irow >= vocabSize)
continue;
2019-06-06 14:21:15 +02:00
auto syn1row = s1.bufferWithOffset(irow * vectorLength);
auto code = bCodes[e + cShift];
2019-06-06 14:21:15 +02:00
//nd4j_printf("syn0: [%i]; syn1: [%i]; code: [%i]\n", target, irow, code);
hSoftmax_<T>(syn0row, syn1row, expTable, neu1e, alpha, vectorLength, code,
expLength, false);
}
2019-06-06 14:21:15 +02:00
}
if (nsRounds > 0) {
int irow = negStarters.e<int>(t);
int nsStarter = irow;
for (int r = 0; r < nsRounds + 1; r++) {
if (r == 0) {
// target is known in advance
} else {
randomValue = randomValue * (unsigned long long) 25214903917 + 11;
auto idx = nd4j::math::nd4j_abs<Nd4jLong>((randomValue >> 16) % negLength);
irow = idx >= negLength ? -1 : static_cast<int>(negTable[idx]);
2019-06-06 14:21:15 +02:00
if (irow < 0 || irow >= vocabSize)
irow = randomValue % (vocabSize - 1) + 1;
2019-06-06 14:21:15 +02:00
if (irow == nsStarter)
continue;
}
2019-06-06 14:21:15 +02:00
nSampling_<T>(syn0row, s1n.bufferWithOffset(irow * vectorLength), expTable, neu1e,
alpha, vectorLength, r == 0 ? 1 : 0, expLength, infVector != nullptr);
}
2019-06-06 14:21:15 +02:00
}
for (int e = 0; e < vectorLength; e++)
syn0row[e] += neu1e[e];
2019-06-06 14:21:15 +02:00
// optionally release temp arrays
if (vectorLength > 600)
delete[] neu1e;
}
};
samediff::Threads::parallel_tad(func, 0, numTargets, 1, numThreads);
2019-06-06 14:21:15 +02:00
}
BUILD_SINGLE_TEMPLATE(template void skipgramBatchExec_, (NDArray &s0, NDArray &s1, NDArray &s1n, void *vexpTable, void *vnegTable, void *vinfVector, NDArray &targets, NDArray &negStarters, NDArray &indices, NDArray &codes, NDArray &lr, NDArray &nextRandom, const int nsRounds, const int vocabSize, const int vectorLength, const int expLength, const int negLength, const bool preciseMode, const int numThreads), FLOAT_TYPES);
template <typename T>
void cbowBatchExec_(NDArray &s0, NDArray &s1, NDArray &s1n, void *vexpTable, void *vnegTable, void *vinfVector, NDArray &context, NDArray &lockedWords, NDArray &targets, NDArray &negStarters, NDArray &indices, NDArray &codes, NDArray &lr, NDArray &nextRandom, NDArray &nLabels, const int nsRounds, const int vocabSize, const int vectorLength, const int expLength, const int negLength, const bool trainWords, const int numThreads) {
const auto syn0 = s0.bufferAsT<T>();
const auto syn1 = s1.bufferAsT<T>();
const auto syn1Neg = s1n.bufferAsT<T>();
const auto expTable = reinterpret_cast<T*>(vexpTable);
const auto negTable = reinterpret_cast<T*>(vnegTable);
const auto infVector = reinterpret_cast<T*>(vinfVector);
//const auto numThreads = omp_get_max_threads();
const auto idxShift = indices.isEmpty() ? 0 : indices.sizeAt(1);
const auto hsRounds = codes.isEmpty() ? 0 : codes.sizeAt(1);
const auto numTargets = context.sizeAt(0);
const int contextWidth = context.sizeAt(1);
const auto bContext = context.bufferAsT<int>();
const auto bLocker = lockedWords.bufferAsT<int>();
const auto bIndices = indices.bufferAsT<int>();
const auto bCodes = codes.bufferAsT<int8_t>();
const auto bStarters = negStarters.bufferAsT<int>();
const auto numIndices = indices.isEmpty() ? 0 : indices.sizeAt(1);
auto func = PRAGMA_THREADS_FOR {
T sneu1[600];
T sneu1e[600];
2019-06-06 14:21:15 +02:00
for (int e = start; e < stop; e += increment) {
T *neu1 = vectorLength <= 600 ? sneu1 : new T[vectorLength];
T *neu1e = vectorLength <= 600 ? sneu1e : new T[vectorLength];
2019-06-06 14:21:15 +02:00
// optionally we nullify temp arrays after successful (and on first) cycle
memset(neu1, 0, sizeof(T) * vectorLength);
memset(neu1e, 0, sizeof(T) * vectorLength);
2019-06-06 14:21:15 +02:00
auto alpha = lr.e<double>(e);
auto numLabels = nLabels.isEmpty() ? 0 : nLabels.e<int>(e);
2019-06-06 14:21:15 +02:00
int actualContext = 0;
2019-06-06 14:21:15 +02:00
// building neu1 for current window
for (int c = 0; c < contextWidth; c++) {
// getting next context word
auto cContext = bContext[c + (e * contextWidth)];
2019-06-06 14:21:15 +02:00
// skipping padded values
if (cContext < 0)
continue;
2019-06-06 14:21:15 +02:00
if (cContext >= vocabSize)
throw std::runtime_error("ContextID can't be >= vocab size");
2019-06-06 14:21:15 +02:00
T *syn0word = syn0 + (cContext * vectorLength);
2019-06-06 14:21:15 +02:00
for (int i = 0; i < vectorLength; i++)
neu1[i] += syn0word[i];
2019-06-06 14:21:15 +02:00
actualContext++;
}
2019-06-06 14:21:15 +02:00
if (infVector != nullptr)
actualContext++;
if (actualContext > 1) {
for (int i = 0; i < vectorLength; i++)
neu1[i] /= actualContext;
}
2019-06-06 14:21:15 +02:00
// hierarchic softmax step
if (!indices.isEmpty()) {
for (int i = 0; i < numIndices; i++) {
const int cIndex = bIndices[(e * numIndices) + i];
const int cCode = bCodes[(e * numIndices) + i];
2019-06-06 14:21:15 +02:00
// we're skipping padded values
if (cIndex < 0)
continue;
2019-06-06 14:21:15 +02:00
if (cIndex >= vocabSize)
throw std::runtime_error("Index can't be > vocab size");
2019-06-06 14:21:15 +02:00
hSoftmax_<T>(neu1, syn1 + (cIndex * vectorLength), expTable, neu1e, alpha, vectorLength,
cCode, expLength, false);
}
2019-06-06 14:21:15 +02:00
}
// negative sampling step
if (!negStarters.isEmpty() && nsRounds > 0) {
int irow = bStarters[e];
const int nsStarter = irow;
unsigned long long randomValue = nextRandom.e<Nd4jLong>(e);
2019-06-06 14:21:15 +02:00
for (int r = 0; r < nsRounds + 1; r++) {
// we're skipping rng on 0 step
if (r != 0) {
randomValue = randomValue * (unsigned long long) 25214903917 + 11;
auto idx = nd4j::math::nd4j_abs<Nd4jLong>((randomValue >> 16) % negLength);
irow = idx >= negLength ? -1 : static_cast<int>(negTable[idx]);
2019-06-06 14:21:15 +02:00
if (irow < 0 || irow >= vocabSize) irow = randomValue % (vocabSize - 1) + 1;
if (irow == nsStarter)
continue;
nSampling_<T>(neu1, s1n.bufferWithOffset(irow * vectorLength), expTable, neu1e,
alpha, vectorLength, r == 0 ? 1 : 0, expLength, infVector != nullptr);
} else {
nSampling_<T>(neu1, s1n.bufferWithOffset(irow * vectorLength), expTable, neu1e,
alpha, vectorLength, r == 0 ? 1 : 0, expLength, infVector != nullptr);
}
//nd4j_printf("Thread <%i>: syn0: [%i]; s1n: [%i];\n", omp_get_thread_num(), 0, irow);
}
2019-06-06 14:21:15 +02:00
}
// if we're skipping labels
int starter = trainWords == 1 ? 0 : contextWidth - numLabels;
2019-06-06 14:21:15 +02:00
// applying previously averaged results
for (int c = starter; c < contextWidth; c++) {
// getting context
auto cContext = bContext[c + (e * contextWidth)];
auto cLock = bLocker[c + (e * contextWidth)];
2019-06-06 14:21:15 +02:00
// skipping padded values
if (cContext < 0 || cLock == 1)
continue;
2019-06-06 14:21:15 +02:00
if (cContext >= vocabSize)
throw std::runtime_error("ContextID can't be > vocab size");
2019-06-06 14:21:15 +02:00
// one word from context
T *syn0word = syn0 + (cContext * vectorLength);
2019-06-06 14:21:15 +02:00
for (int i = 0; i < vectorLength; i++)
syn0word[i] += neu1e[i];
2019-06-06 14:21:15 +02:00
}
2019-06-06 14:21:15 +02:00
// optionally release temp arrays
if (vectorLength > 600) {
delete[] neu1;
delete[] neu1e;
}
2019-06-06 14:21:15 +02:00
}
};
samediff::Threads::parallel_tad(func, 0, numTargets, 1, numThreads);
2019-06-06 14:21:15 +02:00
}
BUILD_SINGLE_TEMPLATE(template void cbowBatchExec_, (NDArray &s0, NDArray &s1, NDArray &s1n, void *vexpTable, void *vnegTable, void *vinfVector, NDArray &context, NDArray &lockedWords, NDArray &targets, NDArray &negStarters, NDArray &indices, NDArray &codes, NDArray &lr, NDArray &nextRandom, NDArray &nLabels, const int nsRounds, const int vocabSize, const int vectorLength, const int expLength, const int negLength, const bool trainWords, const int numThreads), FLOAT_TYPES);
void skipgram(NDArray &syn0, NDArray &syn1, NDArray &syn1Neg, NDArray &expTable, NDArray &negTable, NDArray &target, NDArray &ngStarter, int nsRounds, NDArray &indices, NDArray &codes, NDArray &alpha, NDArray &randomValue, NDArray &inferenceVector, const bool preciseMode, const int numWorkers) {
auto xType = syn0.dataType();
// single round case
if ((ngStarter.isScalar() && !ngStarter.isEmpty())|| (target.isScalar() && !target.isEmpty())) {
auto hsRounds = codes.lengthOf();
BUILD_SINGLE_SELECTOR(xType, skipgram_, (syn0.buffer(), syn1.buffer(), syn1Neg.buffer(), expTable.buffer(), negTable.buffer(), inferenceVector.buffer(), target.isEmpty() ? -1 : target.e<int>(0), ngStarter.isEmpty() ? -1 : ngStarter.e<int>(0), reinterpret_cast<int *>(indices.buffer()), reinterpret_cast<int8_t *>(codes.buffer()), alpha.e<double>(0), randomValue.e<Nd4jLong>(0), hsRounds, nsRounds, (int) syn0.sizeAt(0), (int) syn0.sizeAt(1), (int) expTable.lengthOf(), (int) negTable.lengthOf()), FLOAT_TYPES);
} else if (ngStarter.isVector() || target.isVector()){
// batch mode
BUILD_SINGLE_SELECTOR(xType, skipgramBatchExec_, (syn0, syn1, syn1Neg, expTable.buffer(), negTable.buffer(), nullptr, target, ngStarter, indices, codes, alpha, randomValue, nsRounds, syn0.sizeAt(0), syn0.sizeAt(1), expTable.lengthOf(), negTable.lengthOf(), preciseMode, numWorkers), FLOAT_TYPES);
} else
throw std::runtime_error("SkipGram: target must have rank 0 or 1");
}
void cbow(NDArray &syn0, NDArray &syn1, NDArray &syn1Neg, NDArray &expTable, NDArray &negTable, NDArray &target, NDArray &ngStarter, int nsRounds, NDArray &context, NDArray &lockedWords, NDArray &indices, NDArray &codes, NDArray &alpha, NDArray &randomValue, NDArray &numLabels, NDArray &inferenceVector, const bool trainWords, int numWorkers) {
auto xType = syn0.dataType();
if ((context.rankOf() == 0 || context.rankOf() == 1) && (indices.rankOf() == 1 || indices.rankOf() == 0)) {
// single round case
/*nd4j_printf("Row exec; ContextWidth: %i; LockedWords: %i; numLabels: %i; Train words: %i\n", (int) context.lengthOf(), (int) lockedWords.lengthOf(), numLabels.isEmpty() ? 0 : numLabels.e<int>(0), (int) trainWords);
if (context.lengthOf() == 2) {
context.printBuffer("context");
lockedWords.printBuffer("locked");
codes.printBuffer("codes");
indices.printBuffer("indices");
}*/
auto hsRounds = codes.lengthOf();
BUILD_SINGLE_SELECTOR(xType, cbow_, (syn0.buffer(), syn1.buffer(), syn1Neg.buffer(), expTable.buffer(), negTable.buffer(), inferenceVector.buffer(), target.isEmpty() ? -1 : target.e<int>(0), ngStarter.isEmpty() ? -1 : ngStarter.e<int>(0), reinterpret_cast<int *>(context.buffer()), reinterpret_cast<int *>(lockedWords.buffer()),reinterpret_cast<int *>(indices.buffer()), reinterpret_cast<int8_t *>(codes.buffer()), alpha.e<double>( 0), randomValue.e<Nd4jLong>(0), (int) context.lengthOf(), hsRounds, nsRounds, (int) syn0.sizeAt(0), (int) syn0.sizeAt(1), (int) expTable.lengthOf(), (int) negTable.lengthOf(), numLabels.isEmpty() ? 0 : numLabels.e<int>(0), trainWords), FLOAT_TYPES);
} else if (context.rankOf() == 2 && indices.rankOf() == 2) {
// batch mode
//nd4j_printf("Batch exec\n","");
BUILD_SINGLE_SELECTOR(xType, cbowBatchExec_, (syn0, syn1, syn1Neg, expTable.buffer(), negTable.buffer(), nullptr, context, lockedWords, target, ngStarter, indices, codes, alpha, randomValue, numLabels, nsRounds, syn0.sizeAt(0), syn0.sizeAt(1), expTable.lengthOf(), negTable.isEmpty() ? 0 : negTable.lengthOf(), trainWords, numWorkers), FLOAT_TYPES);
} else
throw std::runtime_error("CBOW: context must have rank 0/1 or 2");
}
}
}
}