2019-06-06 14:21:15 +02:00
|
|
|
|
/*******************************************************************************
|
|
|
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
|
|
|
*
|
|
|
|
|
* This program and the accompanying materials are made available under the
|
|
|
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
|
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
|
|
|
*
|
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
|
|
|
* License for the specific language governing permissions and limitations
|
|
|
|
|
* under the License.
|
|
|
|
|
*
|
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
|
|
//
|
|
|
|
|
// @author Yurii Shyrma (iuriish@yahoo.com), created on 15.02.2018, Alex Black
|
|
|
|
|
//
|
|
|
|
|
|
Merge master to upstream (#7945)
* Shugeo strided slice zeros (#14)
* Modified strided_slice op to properly work with empty-like shapes.
* Fixed test for reduce_mean with empty-like input.
* [WIP] Last merge (#15)
* correct logsoftmax looss (#2)
* Small SameDiff listener fix (#4)
* Various fixes (#6)
* #7839 Fix for asXMatrix and tests
* #7866 EmbeddingSequenceLayer dtype fix + test
* #7856 SameDiff save/load stream methods
* #7859 RegressionEvaluation rank 4 fix + tests + axis configuration
* EvaluationBinary 3d/4d
* More evaluation 3d/4d tests
* #7847 Evaluation empty checks
* Small test ifx
* #7848 Fix median edge case
* Improve DL4J samediff layer tests
* [WIP] FastText wrapper implemented (#8)
* FastText implemented
* Some fixes
* Fix shapes for wordsNearest
* Validation of input vectors
* Fixes
* Fixed test
* Thread tagged
* Some tweaks
* setContextClassLoader for DeallocatorServiceThread
* Numpy format tests (#1)
* Various fixes (#11)
* #7852 SameDiff gather fix
* #7892 SameDiff placeholder to constant conversion
* #7890 validate input rank for MLN/CG init methods
* Fix broken permute shape calculation
* Permute and gather fixes
* Tests
* #7850 LogSumExp fix + test
* Handful of test fixes
* Empty arrays with non-scalar shapes (#10)
* minor rearrangements for lambdas
* empty tensors with non-scalar shapes
* numpy empty tensors with non-scalar shapes
* few more empty tweaks
* Small fixes
* conv3d signature update
* micro fix in batchnorm mkldnn
* Import fixes
* Fix
* MKL-DNN update
* Small fill fix
* fill with empty input + test
* Fixes
* Small error improvement
* Fix
* one special test
* couple of fixes for lstm
* Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone
* Fixes
* FP16
* Unsigned
* BFloat16
* Fill op - empty tweaks
* - couple of fixes for empty arrays construction
- stack updated
* strided slice fix
* one transform test
* provide method for reducing shapeInfo in case of input array is empty
* Fixed reduceAlongDimensions to use empty input properly.
* couple of broadcast tests
* couple of tests broadcast tests + tweak to make them pass
* add check of non-empty to methods producing sub-arrays
* Fixed reshapeC with zeros in shape.
* complete empty check in reduce_... legacy ops
* Concat and cumsum/prod
* Tweak to empty shape inference on import
* add empty check to the rest of reduce legacy ops
* one more test
* correct typo in evalReduceShapeInfoEmpty
* Added tests for reduce_* ops to tests with zero shapes.
* few more tests for empty reductions
* Fixed strided_slice op with empty case and tests.
* one more empty reduction test
* Fixed strided_slice test.
* add empty check to NDArray::reshapei
* infOrMax
* empty min/max with infinity tests
* made unstack working correctly with empty arrays
* few IndexReduce tests + tweaks for empty shapes
* add test for empty concat
* few tests fixed
* Validation fix for reductions on empty shapes
* Reverse fix
* Reduction shape calc fixes
* SameDiff.generateOutputVariable: don't use shape function to determine number of outputs
* Range fix
* - NDArray constructor updated for scalars/empty arrays
- few tests fixed
* More fixes
* Empty creator fixes
* concat fix
* concat fix
* TF import tests: allow 'both all NaN' and 'both all inf' to pass
* Slice, zero fraction, and reshape fixes
* transpose, gather
* Zero fraction
* scalar cast fix
* Empty reduction axis support
* few more tests fixed
* Fixed input checks conforming with TF for concat op and tests.
* few tests fixed
* matmul scalar shape fix
* Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats.
* broadcast bool fix
* few more tests
* few more tests
* correct evalReduceShapeInfoEmpty
* argmax/argmin + tests
* one more empty edge case + one more test
* argmax/argmin/realdiv_bp tweaks
* empty reshape test + fix
* Helper fixes
* Small fixes
* Gather test fix
* Gather test fix
* Small fixes
* reduce scalar zero values
* scalar mean workaround
* Remove debug code
* along dim mean workaround
* one more test
* - equalsTo() tweak for empty arrays
- one more test
* broadcast tweaks
* [WIP] Fixing outstanding issues for NLP (#9)
* Avoid using not-inited objects
* Test fixed.
* Redundant method avoided for models like FastText
* KMeans++ implementation
* KMeans++ implementation
* Disable parallel execution
* KMeans++
* Tests
* Dev branch merge (#16)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Fix some issues on master (#17)
* Fix DataVec test issue
* Fix issue with dl4j SameDiff output layer
* Dtype fix for lambda layers
* #7912 BertIterator dtype fix (use float32 not global default)
* [WIP] Next set of CUDA stuff (#7)
New CUDA implementations and improvements
* bad file
* Dev branch master merge (#23)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Compatibility of deserialization (#18)
Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
* SameDiff: add activation gradient checking support for debugging (#19)
* SameDiff gradient checker: first pass on activation gradient checks
* Fixes + tests for activation gradient checking
* Javadoc
* [WIP] Some nd4j data type corrections (#20)
* Adjust data type
* Set correct Data type.
* Size of proper data type.
* fix averaged cpu load (#22)
* SameDiff ops, TF import and fixes (#24)
* CheckNumerics tests + fixes + misc fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fake quant
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fixes
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* FakeQuantWithMinMaxArgs
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* CheckNumerics fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix libnd4j ALL_INTS and ALL_FLOATS declaration (uint and bfloat types)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Small fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Javadoc
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Exception tweak
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix for out of scope stack allocated var use
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Ignores
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Ignore for known failing test (already logged issue)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Merge upstream to fork (#25)
* Add thousand-separator commas to TotalParams (#7915)
* Add thousand-separator commas to TotalParams
The number of parameters can be quite large, and it would help the reading of the summary printout to have the TotalParams column & values at the bottom have thousand-separator-commas in them.
* Add thousand-separator commas to MultiLayerNetwork
Corresponding change to MultiLayerNetwork
Signed-off-by: Jxtps Jxtps <jxtps435@gmail.com>
* Update contributing and issue/PR templates (#7934)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Fix link to AdaDelta paper (#7942)
Fix link to AdaDelta paper hosted on matthewzeiler.com
Signed-off-by: Jxtps
* Fixes, and ignores for known/logged failing issues (#7943)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* SameDiff + DL4J/SameDiff: Multiple fixes (#28)
* #7919 HDF5 attribute buffer length fix
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7909 Arbiter constructor exception ux improvements
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7925 RNN output layer length checks
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7939 Add listener for validating inputs are not incorrectly modified
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* #7939 Integrate NonInplaceValidationListener into tests
* #7844 DL4J SameDiff fixes for variable minibatch size
* DL4J SameDiff fixes - ensure gradient for input placeholder is available
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* Tweaks to ExternalErrorsFunction - use placeholders, make more robust
* Another fix
* More fixes
* More SameDiff/DL4J fixes
* Scope out scalar array creation in BaseScalarOp
* Remove debug code
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] Final dev branch merge (#29)
* SameDiff: convertDataType and gradient check util improvements (#12)
* GradCheck util improvements
* StopGradient constructor + test
* SameDiff: Add datatype conversion
* Javadoc and add DataType.isNumerical()
* Small fix
* Fix SameDiff TF import test cases intermediate naming (workaround for bad default)
* TFGraphTestAllHelper: check intermediates in execution order
* Add missing debug listener
* [WIP] lstmBlock fix + other changes (#13)
- fixes lstmBlock issue
- changes NDArray method reshape(), permute(), transpose() by making them return instance instead of pointer
- CheckNumerics op
- fixes for ReduceBool IsInfOrNan & IsFinite
* Small test fix
* CheckNumerics op wrapper
* Compatibility of deserialization (#18)
Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com>
* SameDiff: add activation gradient checking support for debugging (#19)
* SameDiff gradient checker: first pass on activation gradient checks
* Fixes + tests for activation gradient checking
* Javadoc
* [WIP] Some nd4j data type corrections (#20)
* Adjust data type
* Set correct Data type.
* Size of proper data type.
* fix averaged cpu load (#22)
* [WIP] Multiple dataset iterators (#27)
* Splitting dataset into arbitrary number
* Fixes
* Multiple split of iterator
* Test
* Test
* Some fixes
* signature change
* one more tweak
Signed-off-by: raver119 <raver119@gmail.com>
* one more test for sequential use of DataSetIteratorSplitter
Signed-off-by: raver119 <raver119@gmail.com>
* Fixes
* Fixes
* one more test for Alexander
Signed-off-by: raver119 <raver119@gmail.com>
* Some fixes
* Some fixes
* one more test for Alexander
Signed-off-by: raver119 <raver119@gmail.com>
* minor test fix
Signed-off-by: raver119 <raver119@gmail.com>
* Some fixes
* Some fixes
* couple of assertions tweaked
Signed-off-by: raver119 <raver119@gmail.com>
* MDS splitter test :/
Signed-off-by: raver119 <raver119@gmail.com>
* Minor refactoring
* Multi dataset
* Some fixes
* More tests
* Small number of test fixes/improvements (failures on CI) (#31)
Signed-off-by: AlexDBlack <blacka101@gmail.com>
* [WIP] More CUDA stuff (#26)
* initial commit
Signed-off-by: raver119 <raver119@gmail.com>
* LRN BP CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* less memory
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed bug with crop_and_resize op helper.
* get rid of unnecessary index-calculation dunction
Signed-off-by: Yurii <yurii@skymind.io>
* Fixed sort with nth_element cuda-based helper.
* Refactored nth_element.
* Refactored nth_element op and tests.
* Modified usage of dim array with sortTad routine.
* Refactored main routine of helper for non_max_image_suppression op.
* non_max_image_suppression op helper with cuda kernel implementation. Initial revision.
* fix vol2col cuda kernel
* meh
Signed-off-by: raver119 <raver119@gmail.com>
* topK concept
Signed-off-by: raver119 <raver119@gmail.com>
* unsorted topK with scanWitdh of 1
Signed-off-by: raver119 <raver119@gmail.com>
* correct vol2col tests
* sorted/unsorted topK
Signed-off-by: raver119 <raver119@gmail.com>
* implementation and fixing col2im/col2vol
* Corrected usage flags with input/output with reverse op.
* dup is const now
Signed-off-by: raver119 <raver119@gmail.com>
* percentile op
Signed-off-by: raver119 <raver119@gmail.com>
* group tests for mapool2d
Signed-off-by: Yurii <yurii@skymind.io>
* special test for george
Signed-off-by: raver119 <raver119@gmail.com>
* less threads for sortTad
Signed-off-by: raver119 <raver119@gmail.com>
* provide conv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* remove auther in sort tad kernel code
Signed-off-by: Yurii <yurii@skymind.io>
* provide depthwise_conv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* - max_pooling_with_argmax
- null check for special use
Signed-off-by: raver119 <raver119@gmail.com>
* dts cuda
Signed-off-by: raver119 <raver119@gmail.com>
* provide sconv2d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* std cuda
Signed-off-by: raver119 <raver119@gmail.com>
* Refactored non_max_suppression op to conform TF implementation.
* Improved suppression helper.
* provide pooling3d for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* minor lstm rearrangements
Signed-off-by: raver119 <raver119@gmail.com>
* more of minor lstm rearrangements
Signed-off-by: raver119 <raver119@gmail.com>
* (bi)dynamic_rnn
Signed-off-by: raver119 <raver119@gmail.com>
* templates init order
Signed-off-by: raver119 <raver119@gmail.com>
* Refactored non_max_suppression op.
* Added cuda kernel for non_max_suppression.
* CPU sort by key/value
Signed-off-by: raver119 <raver119@gmail.com>
* CPU sort TAD by key/value
Signed-off-by: raver119 <raver119@gmail.com>
* CPU sort TAD by key/value tests
Signed-off-by: raver119 <raver119@gmail.com>
* Eliminate compiler error with cuda implementation.
* - repaired gradCheck in cuda
- provide conv2d_bp for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* missed signature
Signed-off-by: raver119 <raver119@gmail.com>
* provide depthwise_conv2d_bp for cuda
Signed-off-by: Yurii <yurii@skymind.io>
* Implementation of lup helper with cuda kernel. Initial commit.
* further work on backprops for convolutions
Signed-off-by: Yurii <yurii@skymind.io>
* CUDA linear sort by key/val
Signed-off-by: raver119 <raver119@gmail.com>
* CUDA tad sort by key/val
Signed-off-by: raver119 <raver119@gmail.com>
* start providing of backprop for pooling2d/3d
Signed-off-by: Yurii <yurii@skymind.io>
* Added atomicAdd for bool datatype.
* dynamic partition concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic partition concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic partition scalar CUDA
Signed-off-by: raver119 <raver119@gmail.com>
* important comment
Signed-off-by: raver119 <raver119@gmail.com>
* fix pooling2d/3d backprop helpers
Signed-off-by: Yurii <yurii@skymind.io>
* Added non-linear test with dynamic_partition.
* Improved test for dynamic_partition.
* dynamic_partition TAD concept
Signed-off-by: raver119 <raver119@gmail.com>
* - dynamic_partition TAD CUDA impl
- dynamic_partition TAD CPU fix
Signed-off-by: raver119 <raver119@gmail.com>
* - rewrite cpu code for usampling2d/3d
- write cuda code for usampling2d/3d
Signed-off-by: Yurii <yurii@skymind.io>
* dynamic_stitch CUDA vector case
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic_stitch CUDA TAD case concept
Signed-off-by: raver119 <raver119@gmail.com>
* dynamic_stitch CUDA TAD case impl
Signed-off-by: raver119 <raver119@gmail.com>
* Added tests for dynamic_stitch 3D-4D cases.
* minor tests tweaks
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed type check for dynamic stitch.
* min/max bp
Signed-off-by: raver119 <raver119@gmail.com>
* rewrite code for upsampling2d/3d cpu
Signed-off-by: Yurii <yurii@skymind.io>
* reduce min/max/norm_max bp
Signed-off-by: raver119 <raver119@gmail.com>
* lup implementation. Additional enhancements.
* provide code for upsamling2d/3d backprop
Signed-off-by: Yurii <yurii@skymind.io>
* weightedCrossEntropyWithLogits
Signed-off-by: raver119 <raver119@gmail.com>
* Fixed template math atomicMul for 64bit ints.
* Refactored dynamic_partition_bp op.
* inverseBroadcast fix
Signed-off-by: raver119 <raver119@gmail.com>
* DynamicPartitionBP test datatype fixed.
* - nd4j_atomicMul Windows fix
- cpu/NDArrayLambda.hpp excluded from CUDA
Signed-off-by: raver119 <raver119@gmail.com>
2019-06-27 17:37:04 +02:00
|
|
|
|
// implementation of gated Recurrent Unit cell
|
2019-11-14 09:38:20 +01:00
|
|
|
|
// (cf. https://arxiv.org/abs/1406.1078).
|
2019-06-06 14:21:15 +02:00
|
|
|
|
// Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, Yoshua Bengio
|
|
|
|
|
// "Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include<ops/declarable/helpers/gru.h>
|
|
|
|
|
#include <ops/declarable/CustomOperations.h>
|
|
|
|
|
#include<ops/declarable/helpers/transforms.h>
|
|
|
|
|
#include <MmulHelper.h>
|
|
|
|
|
|
|
|
|
|
namespace nd4j {
|
|
|
|
|
namespace ops {
|
|
|
|
|
namespace helpers {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
2019-07-20 07:58:44 +02:00
|
|
|
|
void gruCell(nd4j::LaunchContext * context, const NDArray* x, const NDArray* hLast, const NDArray* W, const NDArray* Wc,
|
|
|
|
|
const NDArray* b, const NDArray* bc,
|
2019-06-06 14:21:15 +02:00
|
|
|
|
NDArray* r, NDArray* u, NDArray* c, NDArray* h) {
|
|
|
|
|
|
|
|
|
|
//Inputs:
|
2019-07-20 07:58:44 +02:00
|
|
|
|
// x input [bS, iS], iS - input size
|
|
|
|
|
// hLast previous cell output [bS, nU], that is at previous time step t-1, nU - number of units
|
|
|
|
|
// W RU weights - [iS+nU, 2*nU] - reset and update gates
|
|
|
|
|
// Wc C weights - [iS+nU, nU] - cell gate
|
|
|
|
|
// b r and u biases, [2*nU] - reset and update gates
|
|
|
|
|
// bc c biases, [nU] - cell gate
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
|
|
//Outputs:
|
2019-07-20 07:58:44 +02:00
|
|
|
|
// r Reset gate output [bS, nU]
|
|
|
|
|
// u Update gate output [bS, nU]
|
|
|
|
|
// c Cell gate output [bS, nU]
|
|
|
|
|
// h current cell output [bS, nU]
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
2019-07-12 10:51:51 +02:00
|
|
|
|
/***************************************************************************************/
|
|
|
|
|
/************************ THIS IS NOT OPTIMAZED CODE ***********************************/
|
|
|
|
|
/** however it is more math-friendly and convenient for backprop formulas derivation) **/
|
|
|
|
|
|
|
|
|
|
const int bS = x->sizeAt(0);
|
2019-07-20 07:58:44 +02:00
|
|
|
|
const int iS = x->sizeAt(1);
|
|
|
|
|
const int nU = hLast->sizeAt(1);
|
2019-07-12 10:51:51 +02:00
|
|
|
|
|
2019-07-20 07:58:44 +02:00
|
|
|
|
NDArray Wrx = (*W)({0,iS, 0,nU}); // [iS, nU]
|
|
|
|
|
NDArray Wux = (*W)({0,iS, nU,2*nU}); // [iS, nU]
|
|
|
|
|
NDArray Wrh = (*W)({iS,iS+nU, 0,nU}); // [nU, nU]
|
|
|
|
|
NDArray Wuh = (*W)({iS,iS+nU, nU,2*nU}); // [nU, nU]
|
2019-07-12 10:51:51 +02:00
|
|
|
|
|
2019-07-20 07:58:44 +02:00
|
|
|
|
NDArray Wcx = (*Wc)({0,iS, 0,0}); // reset cell weights [iS, nU]
|
|
|
|
|
NDArray Wch = (*Wc)({iS,iS+nU, 0,0}); // updates cell weights [nU, nU]
|
2019-07-12 10:51:51 +02:00
|
|
|
|
|
2019-07-20 07:58:44 +02:00
|
|
|
|
NDArray br = (*b)({0, nU}); // [nU]
|
|
|
|
|
NDArray bu = (*b)({nU, 2*nU}); // [nU]
|
|
|
|
|
|
|
|
|
|
// × means matrix multipication
|
|
|
|
|
// * means element-wise product or so called Hadamard product
|
2019-07-12 10:51:51 +02:00
|
|
|
|
|
|
|
|
|
// reset gate
|
2019-07-20 07:58:44 +02:00
|
|
|
|
r->assign(mmul(*x, Wrx) + mmul(*hLast, Wrh) + br); // [bS, iS] × [iS, nU] + [bS, nU] × [nU, nU] + [nU] = [bS, nU]
|
2019-12-20 20:35:39 +01:00
|
|
|
|
r->applyTransform(transform::Sigmoid, *r);
|
2019-07-12 10:51:51 +02:00
|
|
|
|
|
|
|
|
|
// update gate
|
2019-07-20 07:58:44 +02:00
|
|
|
|
u->assign(mmul(*x, Wux) + mmul(*hLast, Wuh) + bu); // [bS, iS] × [iS, nU] + [bS, nU] × [nU, nU] + [nU] = [bS, nU]
|
2019-12-20 20:35:39 +01:00
|
|
|
|
u->applyTransform(transform::Sigmoid, *u);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
2019-07-20 07:58:44 +02:00
|
|
|
|
// cell gate c = activation(x × Wcx + (r * hlast) × Wch + bc)
|
|
|
|
|
c->assign(mmul(*x, Wcx) + mmul(*r * *hLast, Wch) + *bc); // [bS, iS] × [iS, nU] + [bS, nU] × [nU, nU] + [nU] = [bS, nU]
|
2019-12-20 20:35:39 +01:00
|
|
|
|
c->applyTransform(transform::Tanh, *c);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
2019-07-20 07:58:44 +02:00
|
|
|
|
NDArray temp = 1.f - *c * *c;
|
|
|
|
|
|
2019-07-12 10:51:51 +02:00
|
|
|
|
// cell output
|
|
|
|
|
h->assign(*u * *hLast + (1.f - *u) * *c);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
2019-07-12 10:51:51 +02:00
|
|
|
|
|
|
|
|
|
/***************************************************************************************/
|
2019-07-20 07:58:44 +02:00
|
|
|
|
/*************** THIS IS MORE OPTIMAZED CODE (should think about concat) ***************/
|
2019-07-12 10:51:51 +02:00
|
|
|
|
/***************************************************************************************/
|
|
|
|
|
/*
|
2019-07-20 07:58:44 +02:00
|
|
|
|
//Concat inputs: x + hLast : [bs, iS + nU]
|
|
|
|
|
NDArray xhConcat(x->ordering(), {bS, iS + nU}, x->dataType(), context); // concat([bs, iS], [bs, nU]) -> [bs, iS + nU]
|
2019-07-12 10:51:51 +02:00
|
|
|
|
helpers::concat(context, {const_cast<NDArray*>(x), const_cast<NDArray*>(hLast)}, xhConcat, {1});
|
|
|
|
|
|
2019-07-20 07:58:44 +02:00
|
|
|
|
//mmul for reset and update gates: (x × weight_ux + hLast × weight_xr + b_u)
|
|
|
|
|
auto m = mmul(xhConcat, *W) + *b ; // [bs, iS+nU] * [iS+nU, 2*nU] = [bs, 2*nU]
|
2019-07-12 10:51:51 +02:00
|
|
|
|
// m += *bru;
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
2019-07-20 07:58:44 +02:00
|
|
|
|
m.applyTransform(transform::Sigmoid); //sigmoid(rz) and sigmoid(uz)
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
2019-07-20 07:58:44 +02:00
|
|
|
|
r->assign(m({0,0, 0, nU}));
|
|
|
|
|
u->assign(m({0,0, nU, 2*nU}));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
2019-07-12 10:51:51 +02:00
|
|
|
|
// hLast = hLast * r
|
2019-07-20 07:58:44 +02:00
|
|
|
|
xhConcat({0,0, iS, iS+nU}) *= *r;
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
2019-07-20 07:58:44 +02:00
|
|
|
|
//c = tanh(x × weight_cx + (hLast * r) × weight_cr + b_c)
|
2019-07-12 10:51:51 +02:00
|
|
|
|
MmulHelper::mmul(&xhConcat, Wc, c, 1.0, 0.0); //c = 1.0 * xhConcat * Wc + 0.0 * c
|
2019-06-06 14:21:15 +02:00
|
|
|
|
*c += *bc;
|
2019-07-20 07:58:44 +02:00
|
|
|
|
c->applyTransform(transform::Tanh);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
|
|
//Output: h = (1-u).*c + u .* hPrev
|
|
|
|
|
//auto hResult = (*u) * (*hLast) + (1.0f - *u) * (*c); const_cast<NDArray*>(h)->assign(&hResult);
|
|
|
|
|
u->applyPairwiseTransform(pairwise::Multiply, hLast, h, nullptr); //h = u * hLast
|
|
|
|
|
auto temp = (1.0f - *u);
|
|
|
|
|
temp *= (*c);
|
|
|
|
|
(*h) += temp;
|
2019-07-12 10:51:51 +02:00
|
|
|
|
*/
|
2019-06-06 14:21:15 +02:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
2019-07-20 07:58:44 +02:00
|
|
|
|
void gruTimeLoop(nd4j::LaunchContext * context, const NDArray* x, const NDArray* hLast, const NDArray* Wx, const NDArray* Wh, const NDArray* b, NDArray* h) {
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
2019-07-12 10:51:51 +02:00
|
|
|
|
// x input [time, bS, iS]
|
2019-07-20 07:58:44 +02:00
|
|
|
|
// hLast initial cell output (at time step = 0) [bS, nU]
|
|
|
|
|
// Wx input-to-hidden weights, [iS, 3*nU]
|
|
|
|
|
// Wh hidden-to-hidden weights, [nU, 3*nU]
|
|
|
|
|
// b biases, [3*nU]
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
2019-07-20 07:58:44 +02:00
|
|
|
|
// h is cell outputs at each time step [time, bS, nU]
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
2019-07-12 10:51:51 +02:00
|
|
|
|
const int time = x->sizeAt(0);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
2019-07-20 07:58:44 +02:00
|
|
|
|
NDArray ht_1(*hLast);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
2019-07-12 10:51:51 +02:00
|
|
|
|
// loop through time steps
|
|
|
|
|
for (int t = 0; t < time; ++t) {
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
2019-07-12 10:51:51 +02:00
|
|
|
|
auto xt = (*x)({t,t+1, 0,0, 0,0});
|
|
|
|
|
auto ht = (*h)({t,t+1, 0,0, 0,0});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
2019-07-20 07:58:44 +02:00
|
|
|
|
// helpers::gruCell(&xt, &ht_1, Wx, Wh, b, &ht);
|
|
|
|
|
// ht_1.assign(ht);
|
2019-07-12 10:51:51 +02:00
|
|
|
|
}
|
2019-06-06 14:21:15 +02:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
2019-07-20 07:58:44 +02:00
|
|
|
|
void gruCellBP(nd4j::LaunchContext* context,
|
|
|
|
|
const NDArray* x, const NDArray* hLast,
|
|
|
|
|
const NDArray* W, const NDArray* Wc, const NDArray* b, const NDArray* bc,
|
|
|
|
|
const NDArray* dLdr, const NDArray* dLdu, const NDArray* dLdc, const NDArray* dLdh,
|
|
|
|
|
NDArray* dLdx, NDArray* dLdhLast,
|
|
|
|
|
NDArray* dLdW, NDArray* dLdWc,
|
|
|
|
|
NDArray* dLdb, NDArray* dLdbc) {
|
|
|
|
|
|
|
|
|
|
//Inputs:
|
|
|
|
|
// x input [bS, iS]
|
|
|
|
|
// hLast previous cell output [bS, nU], that is at previous time step t-1
|
|
|
|
|
// W weights - [iS+nU, 2*nU] - reset and update gates
|
|
|
|
|
// Wc C weights - [iS+nU, nU] - cell gate
|
|
|
|
|
// b r and u biases, [2*nU] - reset and update gates
|
|
|
|
|
// bc c biases, [nU] - cell gate
|
|
|
|
|
// dLdr gradient wrt reset gate, [bS, nU]
|
|
|
|
|
// dLdu gradient wrt update gate, [bS, nU]
|
|
|
|
|
// dLdc gradient wrt cell state, [bS, nU]
|
|
|
|
|
// dLdh gradient wrt current cell output, [bS, nU]
|
|
|
|
|
|
|
|
|
|
//Outputs:
|
|
|
|
|
// dLdx gradient wrt x, [bS, iS],
|
|
|
|
|
// dLdhLast gradient wrt hLast, [bS, nU]
|
|
|
|
|
// dLdW gradient wrt W, [iS+nU, 2*nU]
|
|
|
|
|
// dLdWc gradient wrt Wc, [iS+nU, nU]
|
|
|
|
|
// dLdb gradient wrt bru [2*nU]
|
|
|
|
|
// dLdbc gradient wrt bc [nU]
|
|
|
|
|
|
|
|
|
|
// * means element-wise product or so called Hadamard product
|
|
|
|
|
// × means matrix multiplication
|
|
|
|
|
|
|
|
|
|
/************************************************************************************************/
|
|
|
|
|
/******************************* THIS IS NOT OPTIMAZED CODE *************************************/
|
|
|
|
|
/*** aim is to have math-readable code in order to keep track of backprop formulas derivation ***/
|
|
|
|
|
|
|
|
|
|
const int bS = x->sizeAt(0);
|
|
|
|
|
const int iS = x->sizeAt(1);
|
|
|
|
|
const int nU = hLast->sizeAt(1);
|
|
|
|
|
|
|
|
|
|
NDArray xT = x->transpose(); // [iS, bS]
|
|
|
|
|
NDArray hLastT = hLast->transpose(); // [nU, bS]
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
2019-07-20 07:58:44 +02:00
|
|
|
|
NDArray Wrx = (*W)({0,iS, 0,nU}); // [iS, nU]
|
|
|
|
|
NDArray Wux = (*W)({0,iS, nU,2*nU}); // [iS, nU]
|
|
|
|
|
NDArray Wrh = (*W)({iS,iS+nU, 0,nU}); // [nU, nU]
|
|
|
|
|
NDArray Wuh = (*W)({iS,iS+nU, nU,2*nU}); // [nU, nU]
|
2019-07-12 10:51:51 +02:00
|
|
|
|
|
2019-07-20 07:58:44 +02:00
|
|
|
|
NDArray Wcx = (*Wc)({0,iS, 0,0}); // reset cell weights [iS, nU]
|
|
|
|
|
NDArray Wch = (*Wc)({iS,iS+nU, 0,0}); // updates cell weights [nU, nU]
|
2019-07-12 10:51:51 +02:00
|
|
|
|
|
2019-07-20 07:58:44 +02:00
|
|
|
|
NDArray br = (*b)({0, nU}); // [nU]
|
|
|
|
|
NDArray bu = (*b)({nU, 2*nU}); // [nU]
|
|
|
|
|
|
|
|
|
|
NDArray WrxT = Wrx.transpose(); // [nU, iS]
|
|
|
|
|
NDArray WuxT = Wux.transpose(); // [nU, iS]
|
|
|
|
|
NDArray WrhT = Wrh.transpose(); // [nU, nU]
|
|
|
|
|
NDArray WuhT = Wuh.transpose(); // [nU, nU]
|
|
|
|
|
|
|
|
|
|
NDArray WcxT = Wcx.transpose(); // [nU, iS]
|
|
|
|
|
NDArray WchT = Wch.transpose(); // [nU, nU]
|
|
|
|
|
|
|
|
|
|
NDArray dLdWrx = (*dLdW)({0,iS, 0,nU}); // [iS, nU]
|
|
|
|
|
NDArray dLdWux = (*dLdW)({0,iS, nU,2*nU}); // [iS, nU]
|
|
|
|
|
NDArray dLdWrh = (*dLdW)({iS,iS+nU, 0,nU}); // [nU, nU]
|
|
|
|
|
NDArray dLdWuh = (*dLdW)({iS,iS+nU, nU,2*nU}); // [nU, nU]
|
|
|
|
|
|
|
|
|
|
NDArray dLdWcx = (*dLdWc)({0,iS, 0,0}); // [iS, nU]
|
|
|
|
|
NDArray dLdWch = (*dLdWc)({iS,iS+nU, 0,0}); // [nU, nU]
|
|
|
|
|
|
|
|
|
|
NDArray dLdbr = (*dLdb)({0, nU}); // [nU]
|
|
|
|
|
NDArray dLdbu = (*dLdb)({nU, 2*nU}); // [nU]
|
2019-07-12 10:51:51 +02:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// ***** feed forward step ***** //
|
2019-07-20 07:58:44 +02:00
|
|
|
|
|
2019-07-12 10:51:51 +02:00
|
|
|
|
// reset gate
|
2019-07-20 07:58:44 +02:00
|
|
|
|
NDArray r = mmul(*x, Wrx) + mmul(*hLast, Wrh) + br; // [bS, iS] × [iS, nU] + [bS, nU] × [nU, nU] + [nU] = [bS, nU]
|
2019-12-20 20:35:39 +01:00
|
|
|
|
r.applyTransform(transform::Sigmoid, r);
|
2019-07-20 07:58:44 +02:00
|
|
|
|
|
2019-07-12 10:51:51 +02:00
|
|
|
|
// update gate
|
2019-07-20 07:58:44 +02:00
|
|
|
|
NDArray u = mmul(*x, Wux) + mmul(*hLast, Wuh) + bu; // [bS, iS] × [iS, nU] + [bS, nU] × [nU, nU] + [nU] = [bS, nU]
|
2019-12-20 20:35:39 +01:00
|
|
|
|
u.applyTransform(transform::Sigmoid, u);
|
2019-07-20 07:58:44 +02:00
|
|
|
|
|
|
|
|
|
// cell gate c = activation(x×Wcx + (r*hlast)×Wcu + bc)
|
|
|
|
|
NDArray c = mmul(*x, Wcx) + mmul(r * *hLast, Wch) + *bc; // [bS, iS] × [iS, nU] + [bS, nU] × [nU, nU] + [nU] = [bS, nU]
|
2019-12-20 20:35:39 +01:00
|
|
|
|
c.applyTransform(transform::Tanh, c);
|
2019-07-20 07:58:44 +02:00
|
|
|
|
|
|
|
|
|
// h = (1 - u) * c + u * hPrev
|
|
|
|
|
|
2019-07-12 10:51:51 +02:00
|
|
|
|
|
|
|
|
|
// ***** back prop step ***** //
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
2019-07-20 07:58:44 +02:00
|
|
|
|
// notations:
|
|
|
|
|
// Zr = x × Wrx + hLast × Wrh + br
|
|
|
|
|
// Zu = x × Wux + hLast × Wuh + bu
|
|
|
|
|
// Sr = sigmoid(Zr)
|
|
|
|
|
// Su = sigmoid(Zu)
|
|
|
|
|
// Zc = x × Wcx + (r * hlast) × Wch + bc
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// dLdx = dLdh * dhdx = dLdh * (dhdu * dudx + dhdc * dcdx) = (dLdh * dhdu) * dudx + (dLdh * dhdc) * dcdx = dLdu * dudx + dLdc * dcdx
|
|
|
|
|
// = dLdx_u + dLdx_c
|
|
|
|
|
// dLdx_u = dLdu * dudx = dLdu * dudZu * dZudx = |dZudx = ... × WuxT| = (dLdu * dudZu) × WuxT
|
|
|
|
|
// dLdx_c = dLdc * dcdx = dLdc * dcdZc * (dZcdx + dZcdr * drdx) = dLdc * dcdZc * dZcdx + dLdc * dcdZc * dZcdr * drdx = dLdx_c0 + dLdx_c1
|
|
|
|
|
// dLdx_c0 = dLdc * dcdZc * dZcdx = |dZcdx = ... × WcxT| = (dLdc * dcdZc) × WcxT
|
|
|
|
|
// dZcdr = (... * hLast) × WchT
|
|
|
|
|
// dLdc * dcdZc * dZcdr = dLdr = (dLdc * dcdZc * hLast) × WchT
|
|
|
|
|
// drdx = drdZr * dZrdx
|
|
|
|
|
// dZrdx = ... × WrxT
|
|
|
|
|
// dLdx_c1 = dLdc * dcdZc * dZcdr * drdx = dLdr * drdx = (dLdr * drdZr) × WrxT
|
|
|
|
|
// finally dLdx = dLdx_u + dLdx_c0 + dLdx_c1 = (dLdu * dudZu) × WuxT + (dLdc * dcdZc) × WcxT + (dLdr * drdZr) × WrxT
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// dLdhLast = dLdh * (dhdhLast + dhdu * dudhLast + dhdc * dcdhLast) = dLdh * dhdhLast + dLdu * dudhLast + dLdc * dcdhLast
|
|
|
|
|
// = dLdhLast_h + dLdhLast_u + dLdhLast_c
|
|
|
|
|
// dLdhLast_h = dLdh * dhdhLas = dLdh * u
|
|
|
|
|
// dLdhLast_u = dLdu * dudhLast = |dudhLast = dudZu * dZudhLast , dZudhLast = ... × WuhT| = (dLdu * dudZu) × WuhT
|
|
|
|
|
// dLdhLast_c = dLdc * dcdhLast = dLdc * (dcdZc * dZcdhLast + dcdZc * dZcdr * drdhLast) =
|
|
|
|
|
// = dLdc * dcdZc * dZcdhLast + dLdc * dcdZc * dZcdr * drdhLast =
|
|
|
|
|
// = dLdc * dcdZc * dZcdhLast + dLdr * drdhLast = dLdhLast_c0 + dLdhLast_c1
|
|
|
|
|
// dLdhLast_c0 = dLdc * dcdZc * dZcdhLast = |dZcdhLast = (... * r) × WchT| = (dLdc * dcdZc * r) × WchT
|
|
|
|
|
// dLdhLast_c1 = dLdr * drdhLast = |drdhLast = drdZr * dZrdhLast, dZrdhLast = ... × WrhT| = (dLdr * drdZr) × WrhT
|
|
|
|
|
// finally dLdhLast = dLdhLast_h + dLdhLast_u + dLdhLast_c0 + dLdhLast_c1 =
|
|
|
|
|
// = dLdh * u + (dLdu * dudZu) × WuhT + (dLdc * dcdZc * r) × WchT + (dLdr * drdZr) × WrhT
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// dLdWrx = dLdh * dhdWrx = (dLdh * dhdc) * dcdWrx = dLdc * dcdZc * dZcdWrx = dLdc * dcdZc * dZcdr * drdWrx =
|
|
|
|
|
// = dLdc * dcdZc * dZcdr * drdZr * dZrdWrx = dLdr * drdZr * dZrdWrx
|
|
|
|
|
// dZrdWrx = xT × ...
|
|
|
|
|
// finally dLdWrx = xT × (dLdr * drdZr)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// dLdWrh = dLdh * dhdWrh = (dLdh * dhdc) * dcdWrh = dLdc * dcdZc * dZcdWrh = dLdc * dcdZc * dZcdr * drdWrh =
|
|
|
|
|
// = dLdc * dcdZc * dZcdr * drdZr * dZrdWrh = dLdr * drdZr * dZrdWrh
|
|
|
|
|
// dZrdWrh = hLastT × ...
|
|
|
|
|
// finally dLdWrh = hLastT × (dLdr * drdZr)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// dLdWux = dLdh * dhdWux = (dLdh * dhdu) * dudWux = dLdu * dudZu * dZudWux
|
|
|
|
|
// dZudWux = xT × ...
|
|
|
|
|
// dLdu * dudZu * dZudWux = xT × (dLdu * dudZu)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// dLdWuh = dLdh * dhdWuh = (dLdh * dhdu) * dudWuh = dLdh * dhdu * dudZu * dZudWuh = dLdu * dudZu * dZudWuh
|
|
|
|
|
// dZudWuh = hLastT × ...
|
|
|
|
|
// finally dLdWuh = hLastT × (dLdu * dudZu)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// dLdWcx = dLdh * dhdWcx = dLdh * dhdc * dcdWcx = (dLdh * dhdc) * dcdZc * dZcdWcx = dLdc * dcdZc * dZcdWcx
|
|
|
|
|
// dZcdWcx = xT × ...
|
|
|
|
|
// finally dLdWcx = xT × (dLdc * dcdZc)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// dLdWch = dLdh * dhdWch = dLdh * dhdc * dcdWch = (dLdh * dhdc) * dcdZc * dZcdWch = dLdc * dcdZc * dZcdWch
|
|
|
|
|
// dZcdWch = (r*hLast)^T × ...
|
|
|
|
|
// finally dLdWch = (r*hLast)^T × (dLdc * dcdZc)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// dLdbr = dLdh * dhdbr = (dLdh * dhdc) * dcdbr = dLdc * dcdbr = dLdc * dcdZc * dZcdbr = dLdc * dcdZc * dZcdr * drdbr =
|
|
|
|
|
// = dLdr * drdZr * dZrdbr
|
|
|
|
|
// dZrdbr = 1
|
|
|
|
|
// finally dLdbr = dLdr * drdZr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// dLdbu = dLdh * dhdbu = (dLdh * dhdu) * dudbu = dLdu * dudZu * dZudbu
|
|
|
|
|
// dZudbu = 1
|
|
|
|
|
// finally dLdbu = dLdu * dudZu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// dLdbc = dLdh * dhdbc = (dLdh * dhdc) * dcdbc = dLdc * dcdZc * dZcdbc
|
|
|
|
|
// dZcdbc = 1
|
|
|
|
|
// finally dLdbc = dLdc * dcdZc
|
|
|
|
|
|
|
|
|
|
NDArray dhdc = 1.f - u; // [bS, nU]
|
|
|
|
|
NDArray dhdu = *hLast - c; // [bS, nU]
|
|
|
|
|
NDArray dudZu = u * dhdc; // [bS, nU]
|
|
|
|
|
NDArray drdZr = r * (1.f - r); // [bS, nU]
|
|
|
|
|
NDArray dcdZc = 1.f - c * c; // [bS, nU]
|
|
|
|
|
NDArray dLdZc = *dLdc * dcdZc; // [bS, nU]
|
|
|
|
|
NDArray dLdZu = *dLdu * dudZu; // [bS, nU]
|
|
|
|
|
NDArray dLdZr = *dLdr * drdZr; // [bS, nU]
|
|
|
|
|
|
|
|
|
|
// NDArray dLdc = *dLdh * dhdc; // [bS, nU]
|
|
|
|
|
// NDArray dLdu = *dLdh * dhdu; // [bS, nU]
|
|
|
|
|
// NDArray dLdr = mmul(dLdc * dcdZc * *hLast, WchT); // [bS, nU]
|
|
|
|
|
|
|
|
|
|
dLdx->assign(mmul(dLdZu, WuxT) + mmul(dLdZc, WcxT) + mmul(dLdZr, WrxT)); // [bS, iS]
|
|
|
|
|
|
|
|
|
|
dLdhLast->assign(*dLdh * u + mmul(dLdZu, WuhT) + mmul(dLdZc * r, WchT) + mmul(dLdZr, WrhT)); // [bS, nU]
|
|
|
|
|
|
|
|
|
|
dLdWrx.assign(mmul(xT, dLdZr)); // [iS, bS] × [bS, nU] = [iS, nU]
|
|
|
|
|
dLdWrh.assign(mmul(hLastT, dLdZr)); // [nU, bS] × [bS, nU] = [nU, nU]
|
|
|
|
|
dLdWux.assign(mmul(xT, dLdZu)); // [iS, bS] × [bS, nU] = [iS, nU]
|
|
|
|
|
dLdWuh.assign(mmul(hLastT, dLdZu)); // [nU, bS] × [bS, nU] = [nU, nU]
|
|
|
|
|
|
|
|
|
|
dLdWcx.assign(mmul(xT, dLdZc)); // [iS, bS] × [bS, nU] = [iS, nU]
|
|
|
|
|
dLdWch.assign(mmul((r * *hLast).transpose(), dLdZc)); // [nU, bS] × [bS, nU] = [nU, nU]
|
|
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
|
dLdbr.assign(dLdZr.reduceAlongDimension(reduce::Sum, {0})); // [nU]
|
|
|
|
|
dLdbu.assign(dLdZu.reduceAlongDimension(reduce::Sum, {0})); // [nU]
|
2019-07-20 07:58:44 +02:00
|
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
|
dLdbc->assign(dLdZc.reduceAlongDimension(reduce::Sum, {0})); // [nU]
|
2019-06-06 14:21:15 +02:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// //////////////////////////////////////////////////////////////////////////
|
|
|
|
|
// FIXME - gruTimeLoopBP is not correct
|
|
|
|
|
// template <typename T>
|
|
|
|
|
// void gruTimeLoopBP(const std::vector<NDArray<T>*>& inArrs, const std::vector<NDArray<T>*>& outArrs) {
|
|
|
|
|
|
|
|
|
|
// NDArray<T>* x = inArrs[0]; // input [time, bS, iS]
|
2019-07-20 07:58:44 +02:00
|
|
|
|
// NDArray<T>* hi = inArrs[1]; // previous/initial cell output [bS, nU], that is at previous time step t-1
|
|
|
|
|
// NDArray<T>* Wx = inArrs[2]; // input-to-hidden weights, [iS, 3*nU]
|
|
|
|
|
// NDArray<T>* Wh = inArrs[3]; // hidden-to-hidden weights, [nU, 3*nU]
|
|
|
|
|
// NDArray<T>* b = inArrs[4]; // biases, [3*nU]
|
|
|
|
|
// NDArray<T>* dLdh = inArrs[5]; // gradient wrt output, [time, bS, nU], that is epsilon_next
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
|
|
// NDArray<T>* dLdx = outArrs[0]; // gradient wrt x, [time, bS, iS], that is epsilon
|
2019-07-20 07:58:44 +02:00
|
|
|
|
// NDArray<T>* dLdhi = outArrs[1]; // gradient wrt hi, [bS, nU]
|
|
|
|
|
// NDArray<T>* dLdWx = outArrs[2]; // gradient wrt Wx, [iS, 3*nU]
|
|
|
|
|
// NDArray<T>* dLdWh = outArrs[3]; // gradient wrt Wh, [nU, 3*nU]
|
|
|
|
|
// NDArray<T>* dLdb = outArrs[4]; // gradient wrt b, [3*nU]
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
|
|
// const Nd4jLong time = x->sizeAt(0);
|
|
|
|
|
// const Nd4jLong bS = x->sizeAt(1);
|
|
|
|
|
// const Nd4jLong iS = x->sizeAt(2);
|
2019-07-20 07:58:44 +02:00
|
|
|
|
// const Nd4jLong nU = hi->sizeAt(1);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
2019-07-20 07:58:44 +02:00
|
|
|
|
// NDArray<T> h(hi->ordering(), {time, bS, nU}); // feed forward output
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
|
|
// // first step, time = 0, feed forward
|
|
|
|
|
// NDArray<T> x0 = (*x)({{0,1}, {}, {}});
|
2019-07-20 07:58:44 +02:00
|
|
|
|
// NDArray<T> hLast = h({{0,1}, {}, {}});
|
|
|
|
|
// helpers::gruCell<T>({&x0, hi, Wx, Wh, b}, &hLast);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
|
|
// // first step, time = 0, back prop
|
|
|
|
|
// NDArray<T> dLdx0 = (*dLdx)({{0,1}, {}, {}});
|
2019-07-20 07:58:44 +02:00
|
|
|
|
// NDArray<T> dLdhLast = (*dLdh)({{0,1}, {}, {}});
|
|
|
|
|
// helpers::gruCellBP<T>({&x0, hi, Wx, Wh, b, &dLdhLast, nullptr, nullptr, nullptr}, {&dLdx0, dLdhi, dLdWx, dLdWh, dLdb});
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
|
|
// // loop through the rest time steps
|
|
|
|
|
// for (Nd4jLong t = time-1; t > 0; --t) {
|
|
|
|
|
// for (Nd4jLong t = 1; t < time; ++t) {
|
|
|
|
|
|
|
|
|
|
// NDArray<T> xt = (*x)({{t,t+1}, {}, {}});
|
|
|
|
|
// NDArray<T> ht = h({{t,t+1}, {}, {}});
|
|
|
|
|
// NDArray<T> ht_1 = h({{t-1,t}, {}, {}});
|
|
|
|
|
// NDArray<T> dLdxt = (*dLdx)({{t,t+1}, {}, {}});
|
|
|
|
|
// NDArray<T> dLdht = (*dLdh)({{t,t+1}, {}, {}});
|
|
|
|
|
|
|
|
|
|
// NDArray<T> dLdWxt_1 = dLdWx;
|
|
|
|
|
// NDArray<T> dLdWht_1 = dLdWh;
|
|
|
|
|
// NDArray<T> dLdbt_1 = dLdb;
|
|
|
|
|
|
|
|
|
|
// // feed forward, calculation of ht
|
|
|
|
|
// helpers::gruCell<T>({&xt, &ht_1, Wx, Wh, b}, &ht);
|
|
|
|
|
|
|
|
|
|
// // back prop
|
|
|
|
|
// helpers::gruCellBP<T>({&xt, &ht_1, Wx, Wh, b, &dLdht, &dLdWxt_1, &dLdWht_1, &dLdbt_1}, {&dLdxt, nullptr, dLdWx, dLdWh, dLdb});
|
|
|
|
|
// }
|
|
|
|
|
// }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|