2021-02-01 13:31:45 +01:00
|
|
|
|
/* ******************************************************************************
|
|
|
|
|
*
|
2020-05-14 17:06:13 +02:00
|
|
|
|
*
|
|
|
|
|
* This program and the accompanying materials are made available under the
|
|
|
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
|
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
|
|
|
*
|
2021-02-01 13:31:45 +01:00
|
|
|
|
* See the NOTICE file distributed with this work for additional
|
|
|
|
|
* information regarding copyright ownership.
|
2020-05-14 17:06:13 +02:00
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
|
|
|
* License for the specific language governing permissions and limitations
|
|
|
|
|
* under the License.
|
|
|
|
|
*
|
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
|
|
//
|
|
|
|
|
// @author Yurii Shyrma (iuriish@yahoo.com)
|
|
|
|
|
//
|
|
|
|
|
|
|
|
|
|
#ifndef LIBND4J_HESSENBERGANDSCHUR_H
|
|
|
|
|
#define LIBND4J_HESSENBERGANDSCHUR_H
|
|
|
|
|
|
|
|
|
|
#include <array/NDArray.h>
|
|
|
|
|
|
|
|
|
|
namespace sd {
|
|
|
|
|
namespace ops {
|
|
|
|
|
namespace helpers {
|
|
|
|
|
|
|
|
|
|
// this class implements Hessenberg decomposition of square matrix using orthogonal similarity transformation
|
|
|
|
|
// A = Q H Q^T
|
|
|
|
|
// Q - orthogonal matrix
|
|
|
|
|
// H - Hessenberg matrix
|
|
|
|
|
template <typename T>
|
|
|
|
|
class Hessenberg {
|
|
|
|
|
// suppose we got input square NxN matrix
|
|
|
|
|
|
|
|
|
|
public:
|
|
|
|
|
|
|
|
|
|
NDArray _Q; // {N,N}
|
|
|
|
|
NDArray _H; // {N,N}
|
|
|
|
|
|
|
|
|
|
explicit Hessenberg(const NDArray& matrix);
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
void evalData();
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// this class implements real Schur decomposition of square matrix using orthogonal similarity transformation
|
|
|
|
|
// A = U T U^T
|
|
|
|
|
// T - real quasi-upper-triangular matrix - block upper triangular matrix where the blocks on the diagonal are 1×1 or 2×2 with complex eigenvalues
|
|
|
|
|
// U - real orthogonal matrix
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
class Schur {
|
|
|
|
|
// suppose we got input square NxN matrix
|
|
|
|
|
|
|
|
|
|
public:
|
|
|
|
|
|
|
|
|
|
NDArray _T; // {N,N}
|
|
|
|
|
NDArray _U; // {N,N}
|
|
|
|
|
|
|
|
|
|
explicit Schur(const NDArray& matrix);
|
|
|
|
|
|
|
|
|
|
void splitTwoRows(const int ind, const T shift);
|
|
|
|
|
|
|
|
|
|
void calcShift(const int ind, const int iter, T& shift, NDArray& shiftInfo);
|
|
|
|
|
|
|
|
|
|
void initFrancisQR(const int ind1, const int ind2, const NDArray& shiftVec, int& ind3, NDArray& householderVec);
|
|
|
|
|
|
|
|
|
|
void doFrancisQR(const int ind1, const int ind2, const int ind3, const NDArray& householderVec);
|
|
|
|
|
|
|
|
|
|
void calcFromHessenberg();
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
|
|
|
|
|
static const int _maxItersPerRow = 40;
|
|
|
|
|
|
|
|
|
|
void evalData(const NDArray& matrix);
|
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
|
FORCEINLINE int getSmallSubdiagEntry(const int inInd) {
|
|
|
|
|
|
|
|
|
|
int outInd = inInd;
|
|
|
|
|
while (outInd > 0) {
|
|
|
|
|
T factor = math::nd4j_abs<T>(_T.t<T>(outInd-1, outInd-1)) + math::nd4j_abs<T>(_T.t<T>(outInd, outInd));
|
|
|
|
|
if (math::nd4j_abs<T>(_T.t<T>(outInd, outInd-1)) <= DataTypeUtils::eps<T>() * factor)
|
|
|
|
|
break;
|
|
|
|
|
outInd--;
|
|
|
|
|
}
|
|
|
|
|
return outInd;
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#endif //LIBND4J_HESSENBERGANDSCHUR_H
|