2019-06-06 14:21:15 +02:00
|
|
|
/*******************************************************************************
|
|
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
|
|
*
|
|
|
|
* This program and the accompanying materials are made available under the
|
|
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
|
|
* License for the specific language governing permissions and limitations
|
|
|
|
* under the License.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
//
|
|
|
|
// @author raver119@gmail.com
|
|
|
|
//
|
|
|
|
|
|
|
|
#include "testlayers.h"
|
2020-03-02 10:49:41 +01:00
|
|
|
#include <array/NDArray.h>
|
|
|
|
#include <array/NDArrayFactory.h>
|
|
|
|
#include <graph/Context.h>
|
|
|
|
#include <graph/Node.h>
|
2019-06-06 14:21:15 +02:00
|
|
|
#include <graph/Variable.h>
|
|
|
|
#include <graph/VariableSpace.h>
|
|
|
|
#include <execution/LaunchContext.h>
|
2020-03-02 10:49:41 +01:00
|
|
|
#include <ops/specials_cuda.h>
|
|
|
|
#include <helpers/TAD.h>
|
2019-06-06 14:21:15 +02:00
|
|
|
#include <ops/declarable/CustomOperations.h>
|
|
|
|
|
|
|
|
#include <cuda.h>
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
using namespace sd;
|
|
|
|
using namespace sd::graph;
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
class NDArrayCudaBasicsTests : public testing::Test {
|
|
|
|
public:
|
|
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
static cudaError_t allocateDeviceMem(LaunchContext& lc, std::vector<void*>& devicePtrs, const std::vector<std::pair<void*,size_t>>& hostData) {
|
|
|
|
|
|
|
|
if(devicePtrs.size() != hostData.size())
|
|
|
|
throw std::invalid_argument("prepareDataForCuda: two input sts::vectors should same sizes !");
|
|
|
|
|
|
|
|
cudaError_t cudaResult;
|
|
|
|
|
|
|
|
void* reductionPointer;
|
|
|
|
cudaResult = cudaMalloc(reinterpret_cast<void **>(&reductionPointer), 1024*1024); if(cudaResult != 0) return cudaResult;
|
|
|
|
int* allocationPointer;
|
|
|
|
cudaResult = cudaMalloc(reinterpret_cast<void **>(&allocationPointer), 1024*1024); if(cudaResult != 0) return cudaResult;
|
|
|
|
|
|
|
|
lc.setReductionPointer(reductionPointer);
|
|
|
|
lc.setAllocationPointer(allocationPointer);
|
|
|
|
cudaStream_t stream = *lc.getCudaStream();
|
|
|
|
|
|
|
|
for(int i = 0; i < devicePtrs.size(); ++i) {
|
|
|
|
|
|
|
|
cudaResult = cudaMalloc(reinterpret_cast<void **>(&devicePtrs[i]), hostData[i].second); if(cudaResult != 0) return cudaResult;
|
|
|
|
cudaMemcpyAsync(devicePtrs[i], hostData[i].first, hostData[i].second, cudaMemcpyHostToDevice, stream);
|
|
|
|
}
|
|
|
|
return cudaResult;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, Test_Registration_1) {
|
|
|
|
auto x = NDArrayFactory::create<int>('c', {5}, {1, 2, 3, 4, 5});
|
|
|
|
auto y = NDArrayFactory::create<int>('c', {5}, {5, 4, 3, 2, 1});
|
|
|
|
|
|
|
|
ASSERT_TRUE(x.isActualOnDeviceSide());
|
2019-08-02 19:01:03 +02:00
|
|
|
ASSERT_FALSE(x.isActualOnHostSide());
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, Test_Registration_2) {
|
|
|
|
auto x = NDArrayFactory::create<int>('c', {5});
|
|
|
|
auto y = NDArrayFactory::create<int>('c', {5});
|
|
|
|
|
|
|
|
ASSERT_TRUE(x.isActualOnDeviceSide());
|
|
|
|
ASSERT_FALSE(x.isActualOnHostSide());
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, Test_Registration_3) {
|
|
|
|
auto x = NDArrayFactory::create<int>('c', {5}, {1, 2, 3, 4, 5});
|
|
|
|
auto y = NDArrayFactory::create<int>('c', {5}, {5, 4, 3, 2, 1});
|
|
|
|
|
|
|
|
ASSERT_TRUE(x.isActualOnDeviceSide());
|
2019-08-02 19:01:03 +02:00
|
|
|
ASSERT_FALSE(x.isActualOnHostSide());
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
NDArray::registerSpecialUse({&x}, {&y});
|
|
|
|
|
|
|
|
ASSERT_TRUE(x.isActualOnDeviceSide());
|
|
|
|
ASSERT_FALSE(x.isActualOnHostSide());
|
|
|
|
|
|
|
|
ASSERT_TRUE(y.isActualOnDeviceSide());
|
2019-08-02 19:01:03 +02:00
|
|
|
ASSERT_FALSE(y.isActualOnHostSide());
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, Test_Registration_01) {
|
|
|
|
auto x = NDArrayFactory::create_<int>('c', {5}, {1, 2, 3, 4, 5});
|
|
|
|
auto y = NDArrayFactory::create_<int>('c', {5}, {5, 4, 3, 2, 1});
|
|
|
|
|
|
|
|
ASSERT_TRUE(x->isActualOnDeviceSide());
|
2019-08-02 19:01:03 +02:00
|
|
|
ASSERT_FALSE(x->isActualOnHostSide());
|
2019-06-06 14:21:15 +02:00
|
|
|
delete x;
|
|
|
|
delete y;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, Test_Registration_02) {
|
|
|
|
auto x = NDArrayFactory::create_<int>('c', {5});
|
|
|
|
auto y = NDArrayFactory::create_<int>('c', {5});
|
|
|
|
|
|
|
|
ASSERT_TRUE(x->isActualOnDeviceSide());
|
|
|
|
ASSERT_FALSE(x->isActualOnHostSide());
|
|
|
|
delete x;
|
|
|
|
delete y;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, Test_Registration_03) {
|
|
|
|
auto x = NDArrayFactory::create_<int>('c', {5}, {1, 2, 3, 4, 5});
|
|
|
|
auto y = NDArrayFactory::create_<int>('c', {5}, {5, 4, 3, 2, 1});
|
|
|
|
|
|
|
|
ASSERT_TRUE(x->isActualOnDeviceSide());
|
2019-08-02 19:01:03 +02:00
|
|
|
ASSERT_FALSE(x->isActualOnHostSide());
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
NDArray::registerSpecialUse({y}, {x});
|
2019-12-20 20:35:39 +01:00
|
|
|
x->applyTransform(transform::Neg, *y);
|
2019-06-06 14:21:15 +02:00
|
|
|
//ASSERT_TRUE(x->isActualOnDeviceSide());
|
|
|
|
//ASSERT_FALSE(x->isActualOnHostSide());
|
|
|
|
|
|
|
|
//ASSERT_TRUE(y->isActualOnDeviceSide());
|
|
|
|
//ASSERT_TRUE(y->isActualOnHostSide());
|
|
|
|
//y->syncToHost();
|
|
|
|
// y->printBuffer("Negatives");
|
|
|
|
delete x;
|
|
|
|
delete y;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, Test_Cosine_1) {
|
|
|
|
auto x = NDArrayFactory::create_<double>('c', {5}, {1, 2, 3, 4, 5});
|
|
|
|
auto y = NDArrayFactory::create_<double>('c', {5}, {5, 4, 3, 2, 1});
|
|
|
|
|
|
|
|
ASSERT_TRUE(x->isActualOnDeviceSide());
|
2019-08-02 19:01:03 +02:00
|
|
|
ASSERT_FALSE(x->isActualOnHostSide());
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
NDArray::registerSpecialUse({y}, {x});
|
2019-12-20 20:35:39 +01:00
|
|
|
x->applyTransform(transform::Cosine, *y);
|
2019-06-06 14:21:15 +02:00
|
|
|
//ASSERT_TRUE(x->isActualOnDeviceSide());
|
|
|
|
//ASSERT_FALSE(x->isActualOnHostSide());
|
|
|
|
|
|
|
|
//ASSERT_TRUE(y->isActualOnDeviceSide());
|
|
|
|
//ASSERT_TRUE(y->isActualOnHostSide());
|
|
|
|
//y->syncToHost();
|
|
|
|
delete x;
|
|
|
|
delete y;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, TestAdd_1) {
|
|
|
|
// allocating host-side arrays
|
|
|
|
auto x = NDArrayFactory::create<double>('c', { 5 }, { 1, 2, 3, 4, 5});
|
|
|
|
auto y = NDArrayFactory::create<double>('c', { 5 }, { 1, 2, 3, 4, 5});
|
|
|
|
auto z = NDArrayFactory::create<double>('c', { 5 }, {10, 10, 10, 10, 10});
|
|
|
|
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', { 5 }, { 2, 4, 6, 8, 10 });
|
|
|
|
|
|
|
|
// making raw buffers
|
|
|
|
//Nd4jPointer devBufferPtrX, devBufferPtrZ, devShapePtrX;
|
|
|
|
//cudaError_t res = cudaMalloc(reinterpret_cast<void **>(&devBufferPtrX), x.lengthOf() * x.sizeOfT());
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
//res = cudaMalloc(reinterpret_cast<void **>(&devBufferPtrZ), x.lengthOf() * x.sizeOfT());
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
//res = cudaMalloc(reinterpret_cast<void **>(&devShapePtrX), shape::shapeInfoByteLength(x.shapeInfo()));
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
|
|
|
|
Nd4jPointer nativeStream = (Nd4jPointer)malloc(sizeof(cudaStream_t));
|
|
|
|
CHECK_ALLOC(nativeStream, "Failed to allocate memory for new CUDA stream", sizeof(cudaStream_t));
|
|
|
|
cudaError_t dZ = cudaStreamCreate(reinterpret_cast<cudaStream_t *>(&nativeStream));
|
|
|
|
auto stream = reinterpret_cast<cudaStream_t *>(&nativeStream);
|
|
|
|
|
|
|
|
//cudaMemcpyAsync(devBufferPtrX, x.buffer(), x.lengthOf() * x.sizeOfT(), cudaMemcpyHostToDevice, *stream);
|
|
|
|
//cudaMemcpyAsync(devShapePtrX, x.shapeInfo(), shape::shapeInfoByteLength(x.shapeInfo()), cudaMemcpyHostToDevice, *stream);
|
|
|
|
|
|
|
|
LaunchContext lc(stream, nullptr, nullptr);
|
|
|
|
NativeOpExecutioner::execPairwiseTransform(&lc, pairwise::Add, x.buffer(), x.shapeInfo(), x.specialBuffer(), x.specialShapeInfo(), y.buffer(), y.shapeInfo(), y.specialBuffer(), y.specialShapeInfo(), z.buffer(), z.shapeInfo(), z.specialBuffer(), z.specialShapeInfo(), nullptr);
|
|
|
|
z.tickWriteDevice();
|
|
|
|
auto res = cudaStreamSynchronize(*stream);
|
|
|
|
ASSERT_EQ(0, res);
|
|
|
|
|
|
|
|
for (int e = 0; e < z.lengthOf(); e++)
|
|
|
|
ASSERT_NEAR(exp.e<double>(e), z.e<double>(e), 1e-5);
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, TestAdd_2) {
|
|
|
|
// allocating host-side arrays
|
|
|
|
NDArray x('c', { 5 }, { 1, 2, 3, 4, 5});
|
|
|
|
NDArray y('c', { 5 }, { 1, 2, 3, 4, 5});
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray z('c', { 5 }, sd::DataType::DOUBLE);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
NDArray exp('c', { 5 }, { 2, 4, 6, 8, 10 });
|
|
|
|
|
|
|
|
Nd4jPointer nativeStream = (Nd4jPointer)malloc(sizeof(cudaStream_t));
|
|
|
|
CHECK_ALLOC(nativeStream, "Failed to allocate memory for new CUDA stream", sizeof(cudaStream_t));
|
|
|
|
cudaError_t dZ = cudaStreamCreate(reinterpret_cast<cudaStream_t *>(&nativeStream));
|
|
|
|
auto stream = reinterpret_cast<cudaStream_t *>(&nativeStream);
|
|
|
|
|
|
|
|
LaunchContext lc(stream, *stream, nullptr, nullptr);
|
|
|
|
NativeOpExecutioner::execPairwiseTransform(&lc, pairwise::Add, nullptr, x.shapeInfo(), x.specialBuffer(), x.specialShapeInfo(), nullptr, y.shapeInfo(), y.specialBuffer(), y.specialShapeInfo(), nullptr, z.shapeInfo(), z.specialBuffer(), z.specialShapeInfo(), nullptr);
|
|
|
|
auto res = cudaStreamSynchronize(*stream);
|
|
|
|
ASSERT_EQ(0, res);
|
|
|
|
|
|
|
|
for (int e = 0; e < z.lengthOf(); e++)
|
|
|
|
ASSERT_NEAR(exp.e<double>(e), z.e<double>(e), 1e-5);
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, TestAdd_3) {
|
|
|
|
// allocating host-side arrays
|
|
|
|
auto x = NDArrayFactory::create<double>('c', { 5 }, { 1, 2, 3, 4, 5});
|
|
|
|
auto y = NDArrayFactory::create<double>('c', { 5 }, { 1, 2, 3, 4, 5});
|
|
|
|
auto z = NDArrayFactory::create<double>('c', { 5 }, {10, 10, 10, 10, 10});
|
|
|
|
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', { 5 }, { 2, 4, 6, 8, 10 });
|
|
|
|
|
|
|
|
// making raw buffers
|
|
|
|
//Nd4jPointer devBufferPtrX, devBufferPtrZ, devShapePtrX;
|
|
|
|
//cudaError_t res = cudaMalloc(reinterpret_cast<void **>(&devBufferPtrX), x.lengthOf() * x.sizeOfT());
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
//res = cudaMalloc(reinterpret_cast<void **>(&devBufferPtrZ), x.lengthOf() * x.sizeOfT());
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
//res = cudaMalloc(reinterpret_cast<void **>(&devShapePtrX), shape::shapeInfoByteLength(x.shapeInfo()));
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
|
|
|
|
Nd4jPointer nativeStream = (Nd4jPointer)malloc(sizeof(cudaStream_t));
|
|
|
|
CHECK_ALLOC(nativeStream, "Failed to allocate memory for new CUDA stream", sizeof(cudaStream_t));
|
|
|
|
cudaError_t dZ = cudaStreamCreate(reinterpret_cast<cudaStream_t *>(&nativeStream));
|
|
|
|
auto stream = reinterpret_cast<cudaStream_t *>(&nativeStream);
|
|
|
|
|
|
|
|
//cudaMemcpyAsync(devBufferPtrX, x.buffer(), x.lengthOf() * x.sizeOfT(), cudaMemcpyHostToDevice, *stream);
|
|
|
|
//cudaMemcpyAsync(devShapePtrX, x.shapeInfo(), shape::shapeInfoByteLength(x.shapeInfo()), cudaMemcpyHostToDevice, *stream);
|
|
|
|
|
|
|
|
LaunchContext lc(stream, *stream, nullptr, nullptr);
|
|
|
|
NativeOpExecutioner::execPairwiseTransform(&lc, pairwise::Add, x.buffer(), x.shapeInfo(), x.specialBuffer(), x.specialShapeInfo(), y.buffer(), y.shapeInfo(), y.specialBuffer(), y.specialShapeInfo(), z.buffer(), z.shapeInfo(), z.specialBuffer(), z.specialShapeInfo(), nullptr);
|
|
|
|
z.tickWriteDevice();
|
|
|
|
auto res = cudaStreamSynchronize(*stream);
|
|
|
|
ASSERT_EQ(0, res);
|
|
|
|
//double* localBuffer = ;
|
2020-01-20 19:32:46 +01:00
|
|
|
z.syncToHost();
|
2019-06-06 14:21:15 +02:00
|
|
|
cudaMemcpy(z.buffer(), z.specialBuffer(), z.lengthOf() * z.sizeOfT(), cudaMemcpyDeviceToHost);
|
|
|
|
res = cudaStreamSynchronize(*stream);
|
2020-01-20 19:32:46 +01:00
|
|
|
z.tickWriteHost();
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_EQ(0, res);
|
|
|
|
|
|
|
|
//
|
|
|
|
// cudaFree(devBufferPtrX);
|
|
|
|
//cudaFree(devBufferPtrZ);
|
|
|
|
//cudaFree(devShapePtrX);
|
|
|
|
|
|
|
|
for (int e = 0; e < z.lengthOf(); e++) {
|
|
|
|
ASSERT_NEAR(exp.e<double>(e), z.e<double>(e), 1e-5);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, TestAdd_4) {
|
|
|
|
// allocating host-side arrays
|
|
|
|
auto x = NDArrayFactory::create<double>('c', { 5 }, { 1, 2, 3, 4, 5});
|
|
|
|
auto y = NDArrayFactory::create<double>('c', { 5 }, { 1, 2, 3, 4, 5});
|
|
|
|
auto z = NDArrayFactory::create<double>('c', { 5 });
|
|
|
|
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', { 5 }, { 2, 4, 6, 8, 10 });
|
|
|
|
|
|
|
|
// making raw buffers
|
|
|
|
//Nd4jPointer devBufferPtrX, devBufferPtrZ, devShapePtrX;
|
|
|
|
//cudaError_t res = cudaMalloc(reinterpret_cast<void **>(&devBufferPtrX), x.lengthOf() * x.sizeOfT());
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
//res = cudaMalloc(reinterpret_cast<void **>(&devBufferPtrZ), x.lengthOf() * x.sizeOfT());
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
//res = cudaMalloc(reinterpret_cast<void **>(&devShapePtrX), shape::shapeInfoByteLength(x.shapeInfo()));
|
|
|
|
//ASSERT_EQ(0, res);
|
2019-12-20 20:35:39 +01:00
|
|
|
x.applyPairwiseTransform(pairwise::Add, y, z);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
//
|
|
|
|
// cudaFree(devBufferPtrX);
|
|
|
|
//cudaFree(devBufferPtrZ);
|
|
|
|
//cudaFree(devShapePtrX);
|
|
|
|
|
|
|
|
for (int e = 0; e < z.lengthOf(); e++) {
|
|
|
|
ASSERT_NEAR(exp.e<double>(e), z.e<double>(e), 1e-5);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, TestAdd_5) {
|
|
|
|
// allocating host-side arrays
|
|
|
|
auto x = NDArrayFactory::create<double>('c', { 5 }, { 1, 2, 3, 4, 5});
|
|
|
|
auto y = NDArrayFactory::create<double>('c', { 5 }, { 1, 2, 3, 4, 5});
|
|
|
|
//auto z = NDArrayFactory::create<double>('c', { 5 });
|
|
|
|
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', { 5 }, { 2, 4, 6, 8, 10 });
|
|
|
|
|
|
|
|
// making raw buffers
|
|
|
|
//Nd4jPointer devBufferPtrX, devBufferPtrZ, devShapePtrX;
|
|
|
|
//cudaError_t res = cudaMalloc(reinterpret_cast<void **>(&devBufferPtrX), x.lengthOf() * x.sizeOfT());
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
//res = cudaMalloc(reinterpret_cast<void **>(&devBufferPtrZ), x.lengthOf() * x.sizeOfT());
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
//res = cudaMalloc(reinterpret_cast<void **>(&devShapePtrX), shape::shapeInfoByteLength(x.shapeInfo()));
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
x += y;
|
|
|
|
//x.applyPairwiseTransform(pairwise::Add, &y, &z, nullptr);
|
|
|
|
x.syncToHost();
|
|
|
|
//y.printBuffer("3Y = ");
|
|
|
|
//z.printBuffer("3Result out");
|
|
|
|
|
|
|
|
//
|
|
|
|
// cudaFree(devBufferPtrX);
|
|
|
|
//cudaFree(devBufferPtrZ);
|
|
|
|
//cudaFree(devShapePtrX);
|
|
|
|
|
|
|
|
for (int e = 0; e < x.lengthOf(); e++) {
|
|
|
|
ASSERT_NEAR(exp.e<double>(e), x.e<double>(e), 1e-5);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, TestAdd_6) {
|
|
|
|
// allocating host-side arrays
|
|
|
|
auto x = NDArrayFactory::create<double>('c', { 5 }, { 1, 2, 3, 4, 5});
|
|
|
|
auto y = NDArrayFactory::create<double>(2); //.'c', { 5 }, { 1, 2, 3, 4, 5});
|
|
|
|
//auto z = NDArrayFactory::create<double>('c', { 5 });
|
|
|
|
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', { 5 }, { 3, 4, 5, 6, 7 });
|
|
|
|
|
|
|
|
// making raw buffers
|
|
|
|
//Nd4jPointer devBufferPtrX, devBufferPtrZ, devShapePtrX;
|
|
|
|
//cudaError_t res = cudaMalloc(reinterpret_cast<void **>(&devBufferPtrX), x.lengthOf() * x.sizeOfT());
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
//res = cudaMalloc(reinterpret_cast<void **>(&devBufferPtrZ), x.lengthOf() * x.sizeOfT());
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
//res = cudaMalloc(reinterpret_cast<void **>(&devShapePtrX), shape::shapeInfoByteLength(x.shapeInfo()));
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
x += y;
|
|
|
|
//x.applyPairwiseTransform(pairwise::Add, &y, &z, nullptr);
|
|
|
|
x.syncToHost();
|
|
|
|
|
|
|
|
// cudaFree(devBufferPtrX);
|
|
|
|
//cudaFree(devBufferPtrZ);
|
|
|
|
//cudaFree(devShapePtrX);
|
|
|
|
|
|
|
|
for (int e = 0; e < x.lengthOf(); e++) {
|
|
|
|
ASSERT_NEAR(exp.e<double>(e), x.e<double>(e), 1e-5);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, TestAdd_7) {
|
|
|
|
// allocating host-side arrays
|
|
|
|
auto x = NDArrayFactory::create<double>('c', { 5 }, { 1, 2, 3, 4, 5});
|
|
|
|
//auto y = NDArrayFactory::create<double>(2); //.'c', { 5 }, { 1, 2, 3, 4, 5});
|
|
|
|
//auto z = NDArrayFactory::create<double>('c', { 5 });
|
|
|
|
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', { 5 }, { 3, 4, 5, 6, 7 });
|
|
|
|
|
|
|
|
// making raw buffers
|
|
|
|
//Nd4jPointer devBufferPtrX, devBufferPtrZ, devShapePtrX;
|
|
|
|
//cudaError_t res = cudaMalloc(reinterpret_cast<void **>(&devBufferPtrX), x.lengthOf() * x.sizeOfT());
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
//res = cudaMalloc(reinterpret_cast<void **>(&devBufferPtrZ), x.lengthOf() * x.sizeOfT());
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
//res = cudaMalloc(reinterpret_cast<void **>(&devShapePtrX), shape::shapeInfoByteLength(x.shapeInfo()));
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
x += 2.;
|
|
|
|
//x.applyPairwiseTransform(pairwise::Add, &y, &z, nullptr);
|
|
|
|
x.syncToHost();
|
|
|
|
|
|
|
|
// cudaFree(devBufferPtrX);
|
|
|
|
//cudaFree(devBufferPtrZ);
|
|
|
|
//cudaFree(devShapePtrX);
|
|
|
|
|
|
|
|
for (int e = 0; e < x.lengthOf(); e++) {
|
|
|
|
ASSERT_NEAR(exp.e<double>(e), x.e<double>(e), 1e-5);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, TestMultiply_1) {
|
|
|
|
// allocating host-side arrays
|
|
|
|
auto x = NDArrayFactory::create<double>('c', { 5 }, { 1, 2, 3, 4, 5});
|
|
|
|
auto y = NDArrayFactory::create<double>('c', { 5 }, { 1, 2, 3, 4, 5});
|
|
|
|
auto z = NDArrayFactory::create<double>('c', { 5 });
|
|
|
|
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', { 5 }, { 1, 4, 9, 16, 25 });
|
|
|
|
|
|
|
|
// making raw buffers
|
|
|
|
//Nd4jPointer devBufferPtrX, devBufferPtrZ, devShapePtrX;
|
|
|
|
//cudaError_t res = cudaMalloc(reinterpret_cast<void **>(&devBufferPtrX), x.lengthOf() * x.sizeOfT());
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
//res = cudaMalloc(reinterpret_cast<void **>(&devBufferPtrZ), x.lengthOf() * x.sizeOfT());
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
//res = cudaMalloc(reinterpret_cast<void **>(&devShapePtrX), shape::shapeInfoByteLength(x.shapeInfo()));
|
|
|
|
//ASSERT_EQ(0, res);
|
2019-12-20 20:35:39 +01:00
|
|
|
x.applyPairwiseTransform(pairwise::Multiply, y, z);
|
2019-06-06 14:21:15 +02:00
|
|
|
// x.printBuffer("3X = ");
|
|
|
|
// y.printBuffer("3Y = ");
|
|
|
|
// z.printBuffer("3Result out");
|
|
|
|
|
|
|
|
//
|
|
|
|
// cudaFree(devBufferPtrX);
|
|
|
|
//cudaFree(devBufferPtrZ);
|
|
|
|
//cudaFree(devShapePtrX);
|
|
|
|
|
|
|
|
for (int e = 0; e < z.lengthOf(); e++) {
|
|
|
|
ASSERT_NEAR(exp.e<double>(e), z.e<double>(e), 1e-5);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, TestMultiply_2) {
|
|
|
|
// allocating host-side arrays
|
|
|
|
auto x = NDArrayFactory::create<double>('c', { 5 }, { 1, 2, 3, 4, 5});
|
|
|
|
auto y = NDArrayFactory::create<double>('c', { 5 }, { 1, 2, 3, 4, 5});
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray z('c', { 5 }, sd::DataType::DOUBLE);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', { 5 }, { 1, 4, 9, 16, 25 });
|
|
|
|
|
|
|
|
// making raw buffers
|
|
|
|
//Nd4jPointer devBufferPtrX, devBufferPtrZ, devShapePtrX;
|
|
|
|
//cudaError_t res = cudaMalloc(reinterpret_cast<void **>(&devBufferPtrX), x.lengthOf() * x.sizeOfT());
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
//res = cudaMalloc(reinterpret_cast<void **>(&devBufferPtrZ), x.lengthOf() * x.sizeOfT());
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
//res = cudaMalloc(reinterpret_cast<void **>(&devShapePtrX), shape::shapeInfoByteLength(x.shapeInfo()));
|
|
|
|
//ASSERT_EQ(0, res);
|
2019-12-20 20:35:39 +01:00
|
|
|
x.applyPairwiseTransform(pairwise::Multiply, y, z);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
//
|
|
|
|
// cudaFree(devBufferPtrX);
|
|
|
|
//cudaFree(devBufferPtrZ);
|
|
|
|
//cudaFree(devShapePtrX);
|
|
|
|
|
|
|
|
for (int e = 0; e < z.lengthOf(); e++) {
|
|
|
|
ASSERT_NEAR(exp.e<double>(e), z.e<double>(e), 1e-5);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, TestMultiply_3) {
|
|
|
|
// allocating host-side arrays
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray x('c', { 5 }, { 1, 2, 3, 4, 5}, sd::DataType::DOUBLE);
|
|
|
|
NDArray y('c', { 5 }, { 1., 2., 3., 4., 5.}, sd::DataType::DOUBLE);
|
2019-06-06 14:21:15 +02:00
|
|
|
auto z = NDArrayFactory::create<double>('c', { 5 });
|
|
|
|
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', { 5 }, { 1, 4, 9, 16, 25 });
|
|
|
|
|
|
|
|
// making raw buffers
|
|
|
|
//Nd4jPointer devBufferPtrX, devBufferPtrZ, devShapePtrX;
|
|
|
|
//cudaError_t res = cudaMalloc(reinterpret_cast<void **>(&devBufferPtrX), x.lengthOf() * x.sizeOfT());
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
//res = cudaMalloc(reinterpret_cast<void **>(&devBufferPtrZ), x.lengthOf() * x.sizeOfT());
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
//res = cudaMalloc(reinterpret_cast<void **>(&devShapePtrX), shape::shapeInfoByteLength(x.shapeInfo()));
|
|
|
|
//ASSERT_EQ(0, res);
|
2019-12-20 20:35:39 +01:00
|
|
|
x.applyPairwiseTransform(pairwise::Multiply, y, z);
|
2019-06-06 14:21:15 +02:00
|
|
|
//x.printBuffer("23X = ");
|
|
|
|
//y.printBuffer("23Y = ");
|
|
|
|
// z.printBuffer("23Result out");
|
|
|
|
|
|
|
|
//
|
|
|
|
// cudaFree(devBufferPtrX);
|
|
|
|
//cudaFree(devBufferPtrZ);
|
|
|
|
//cudaFree(devShapePtrX);
|
|
|
|
|
|
|
|
for (int e = 0; e < z.lengthOf(); e++) {
|
|
|
|
ASSERT_NEAR(exp.e<double>(e), z.e<double>(e), 1e-5);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, TestMultiply_4) {
|
|
|
|
// allocating host-side arrays
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray x('c', { 5 }, { 1, 2, 3, 4, 5}, sd::DataType::DOUBLE);
|
|
|
|
NDArray y('c', { 5 }, { 1., 2., 3., 4., 5.}, sd::DataType::DOUBLE);
|
2019-06-06 14:21:15 +02:00
|
|
|
//auto z = NDArrayFactory::create<double>('c', { 5 });
|
|
|
|
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', { 5 }, { 1, 4, 9, 16, 25 });
|
|
|
|
|
|
|
|
// making raw buffers
|
|
|
|
//Nd4jPointer devBufferPtrX, devBufferPtrZ, devShapePtrX;
|
|
|
|
//cudaError_t res = cudaMalloc(reinterpret_cast<void **>(&devBufferPtrX), x.lengthOf() * x.sizeOfT());
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
//res = cudaMalloc(reinterpret_cast<void **>(&devBufferPtrZ), x.lengthOf() * x.sizeOfT());
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
//res = cudaMalloc(reinterpret_cast<void **>(&devShapePtrX), shape::shapeInfoByteLength(x.shapeInfo()));
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
//x.applyPairwiseTransform(pairwise::Multiply, &y, &z, nullptr);
|
|
|
|
//x.printBuffer("23X = ");
|
|
|
|
//y.printBuffer("23Y = ");
|
|
|
|
x *= y;
|
|
|
|
//x.tickWriteDevice();
|
|
|
|
// x.printBuffer("33Result out");
|
|
|
|
|
|
|
|
//
|
|
|
|
// cudaFree(devBufferPtrX);
|
|
|
|
//cudaFree(devBufferPtrZ);
|
|
|
|
//cudaFree(devShapePtrX);
|
|
|
|
|
|
|
|
for (int e = 0; e < x.lengthOf(); e++) {
|
|
|
|
ASSERT_NEAR(exp.e<double>(e), x.e<double>(e), 1e-5);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, TestPrimitiveNeg_01) {
|
|
|
|
// allocating host-side arrays
|
|
|
|
auto x = NDArrayFactory::create<int>('c', { 5 }, { 1, 2, 3, 4, 5});
|
|
|
|
auto y = NDArrayFactory::create<int>('c', { 5 }, { 1, 2, 3, 4, 5});
|
|
|
|
auto exp = NDArrayFactory::create<int>('c', { 5 }, { -1, -2, -3, -4, -5 });
|
|
|
|
|
|
|
|
auto stream = x.getContext()->getCudaStream();//reinterpret_cast<cudaStream_t *>(&nativeStream);
|
|
|
|
|
|
|
|
NativeOpExecutioner::execTransformSame(x.getContext(), transform::Neg, x.buffer(), x.shapeInfo(), x.specialBuffer(), x.specialShapeInfo(), y.buffer(), y.shapeInfo(), y.specialBuffer(), y.specialShapeInfo(), nullptr, nullptr, nullptr);
|
|
|
|
auto res = cudaStreamSynchronize(*stream);
|
|
|
|
ASSERT_EQ(0, res);
|
|
|
|
y.tickWriteDevice();
|
|
|
|
|
|
|
|
// x.printBuffer("X = ");
|
|
|
|
// y.printBuffer("Y = ");
|
|
|
|
|
|
|
|
for (int e = 0; e < y.lengthOf(); e++) {
|
|
|
|
ASSERT_NEAR(exp.e<int>(e), y.e<int>(e), 1e-5);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, Test_PrimitiveNeg_2) {
|
|
|
|
auto x = NDArrayFactory::create<double>('c', {5}, {1, 2, 3, 4, 5});
|
|
|
|
auto y = NDArrayFactory::create<double>('c', {5});
|
|
|
|
|
|
|
|
ASSERT_TRUE(x.isActualOnDeviceSide());
|
2019-08-02 19:01:03 +02:00
|
|
|
ASSERT_FALSE(x.isActualOnHostSide());
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
x.applyTransform(transform::Neg, y);
|
2019-06-06 14:21:15 +02:00
|
|
|
//ASSERT_TRUE(x->isActualOnDeviceSide());
|
|
|
|
//ASSERT_FALSE(x->isActualOnHostSide());
|
|
|
|
|
|
|
|
//ASSERT_TRUE(y->isActualOnDeviceSide());
|
|
|
|
//ASSERT_TRUE(y->isActualOnHostSide());
|
|
|
|
//auto res = cudaStreamSynchronize(*y.getContext()->getCudaStream());
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
// y.printBuffer("Negatives2");
|
|
|
|
//delete x;
|
|
|
|
//delete y;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, Test_PrimitiveSqrt_1) { // strict
|
|
|
|
auto x = NDArrayFactory::create<double>('c', {5}, {1, 2, 3, 4, 5});
|
|
|
|
auto y = NDArrayFactory::create<double>('c', {5});
|
|
|
|
auto exp = NDArrayFactory::create<double>({1.000000, 1.414214, 1.732051, 2.000000, 2.236068});
|
|
|
|
ASSERT_TRUE(x.isActualOnDeviceSide());
|
2019-08-02 19:01:03 +02:00
|
|
|
ASSERT_FALSE(x.isActualOnHostSide());
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
x.applyTransform(transform::Sqrt, y);
|
2019-06-06 14:21:15 +02:00
|
|
|
//ASSERT_TRUE(x->isActualOnDeviceSide());
|
|
|
|
//ASSERT_FALSE(x->isActualOnHostSide());
|
|
|
|
|
|
|
|
//ASSERT_TRUE(y->isActualOnDeviceSide());
|
|
|
|
//ASSERT_TRUE(y->isActualOnHostSide());
|
|
|
|
//auto res = cudaStreamSynchronize(*y.getContext()->getCudaStream());
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
ASSERT_TRUE(y.equalsTo(exp));
|
|
|
|
//y.printBuffer("SQRT output");
|
|
|
|
//delete x;
|
|
|
|
//delete y;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, Test_PrimitiveAssign_1) { // strict
|
|
|
|
auto x = NDArrayFactory::create<double>('c', {5}, {1, 2, 3, 4, 5});
|
|
|
|
auto y = NDArrayFactory::create<double>('c', {5});
|
|
|
|
//auto exp = NDArrayFactory::create<double>({1.000000, 1.414214, 1.732051, 2.000000, 2.236068});
|
|
|
|
//ASSERT_TRUE(x.isActualOnDeviceSide());
|
|
|
|
//ASSERT_TRUE(x.isActualOnHostSide());
|
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
x.applyTransform(transform::Assign, y);
|
2019-06-06 14:21:15 +02:00
|
|
|
//ASSERT_TRUE(x->isActualOnDeviceSide());
|
|
|
|
//ASSERT_FALSE(x->isActualOnHostSide());
|
|
|
|
|
|
|
|
//ASSERT_TRUE(y->isActualOnDeviceSide());
|
|
|
|
//ASSERT_TRUE(y->isActualOnHostSide());
|
|
|
|
//auto res = cudaStreamSynchronize(*y.getContext()->getCudaStream());
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
|
|
|
|
// printf("Assigned to another array\n");
|
|
|
|
// y.printBuffer("OUput");
|
|
|
|
ASSERT_TRUE(y.equalsTo(x));
|
|
|
|
//y.syncToHost();
|
|
|
|
//y.printBuffer("IsMax output");
|
|
|
|
//delete x;
|
|
|
|
//delete y;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, Test_PrimitiveCosine_1) { // strict
|
|
|
|
auto x = NDArrayFactory::create<double>('c', {5}, {1, 2, 3, 4, 5});
|
|
|
|
auto y = NDArrayFactory::create<double>('c', {5});
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', {5}, {0.540302, -0.416147, -0.989992, -0.653644, 0.283662});
|
|
|
|
|
|
|
|
ASSERT_TRUE(x.isActualOnDeviceSide());
|
2019-08-02 19:01:03 +02:00
|
|
|
ASSERT_FALSE(x.isActualOnHostSide());
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
x.applyTransform(transform::Cosine, y);
|
2019-06-06 14:21:15 +02:00
|
|
|
//ASSERT_TRUE(x->isActualOnDeviceSide());
|
|
|
|
//ASSERT_FALSE(x->isActualOnHostSide());
|
|
|
|
|
|
|
|
//ASSERT_TRUE(y->isActualOnDeviceSide());
|
|
|
|
//ASSERT_TRUE(y->isActualOnHostSide());
|
|
|
|
//auto res = cudaStreamSynchronize(*y.getContext()->getCudaStream());
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
ASSERT_TRUE(exp.isSameShape(y));
|
|
|
|
ASSERT_TRUE(exp.dataType() == y.dataType());
|
|
|
|
//y.printBuffer("Cosine2");
|
|
|
|
//delete x;
|
|
|
|
//delete y;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, Test_PrimitiveCosine_2) {
|
|
|
|
auto x = NDArrayFactory::create<double>('c', {5}, {1, 2, 3, 4, 5});
|
|
|
|
auto y = NDArrayFactory::create<double>('c', {5});
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', {5}, {0.540302, -0.416147, -0.989992, -0.653644, 0.283662});
|
|
|
|
|
|
|
|
ASSERT_TRUE(x.isActualOnDeviceSide());
|
2019-08-02 19:01:03 +02:00
|
|
|
ASSERT_FALSE(x.isActualOnHostSide());
|
2019-12-20 20:35:39 +01:00
|
|
|
x.applyTransform(transform::Cosine, y);
|
2019-06-06 14:21:15 +02:00
|
|
|
//ASSERT_TRUE(x->isActualOnDeviceSide());
|
|
|
|
//ASSERT_FALSE(x->isActualOnHostSide());
|
|
|
|
|
|
|
|
//ASSERT_TRUE(y->isActualOnDeviceSide());
|
|
|
|
//ASSERT_TRUE(y->isActualOnHostSide());
|
|
|
|
//auto res = cudaStreamSynchronize(*y.getContext()->getCudaStream());
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
//exp.syncToHost();
|
|
|
|
//y.printBuffer("PrimitiveCosine2");
|
|
|
|
//exp.printBuffer("Primitive Cosine exp");
|
|
|
|
ASSERT_TRUE(exp.isSameShape(y));
|
|
|
|
ASSERT_TRUE(exp.dataType() == y.dataType());
|
|
|
|
//for (int e = 0; e < y.lengthOf(); e++) {
|
|
|
|
// ASSERT_NEAR(exp.e<double>(e), y.e<double>(e), 1e-5);
|
|
|
|
//}
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.equalsTo(y));
|
|
|
|
//delete x;
|
|
|
|
//delete y;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, Test_PrimitiveCosine_3) {
|
|
|
|
auto x = NDArrayFactory::create<double>('c', {5}, {1, 2, 3, 4, 5});
|
|
|
|
auto y = NDArrayFactory::create<double>('c', {5});
|
|
|
|
auto exp = NDArrayFactory::create<double>({0.540302, -0.416147, -0.989992, -0.653644, 0.283662});
|
|
|
|
|
|
|
|
ASSERT_TRUE(x.isActualOnDeviceSide());
|
2019-08-02 19:01:03 +02:00
|
|
|
ASSERT_FALSE(x.isActualOnHostSide());
|
2019-12-20 20:35:39 +01:00
|
|
|
x.applyTransform(transform::Cosine, y);
|
2019-06-06 14:21:15 +02:00
|
|
|
//ASSERT_TRUE(x->isActualOnDeviceSide());
|
|
|
|
//ASSERT_FALSE(x->isActualOnHostSide());
|
|
|
|
|
|
|
|
//ASSERT_TRUE(y->isActualOnDeviceSide());
|
|
|
|
//ASSERT_TRUE(y->isActualOnHostSide());
|
|
|
|
//auto res = cudaStreamSynchronize(*y.getContext()->getCudaStream());
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
//exp.syncToHost();
|
|
|
|
// y.printBuffer("PrimitiveCosine3");
|
|
|
|
// exp.printBuffer("Primitive Cosine3 exp");
|
|
|
|
// y.printShapeInfo("Y shape");
|
|
|
|
// exp.printShapeInfo("Exp Shape");
|
|
|
|
ASSERT_TRUE(exp.isSameShape(y));
|
|
|
|
//
|
|
|
|
// for (int e = 0; e < y.lengthOf(); e++) {
|
|
|
|
// printf("%lf == %lf\n", exp.e<double>(e), y.e<double>(e));
|
|
|
|
//// ASSERT_NEAR(exp.e<double>(e), y.e<double>(e), 1e-5);
|
|
|
|
// }
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.equalsTo(y));
|
|
|
|
//delete x;
|
|
|
|
//delete y;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, TestRawBroadcast_2) {
|
|
|
|
|
|
|
|
//if (!Environment::getInstance()->isExperimentalBuild())
|
|
|
|
// return;
|
|
|
|
|
|
|
|
NDArray x = NDArrayFactory::create<double>('c', {2,3,4});
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray y('c', {2,4}, {10,20,30,40,50,60,70,80}, sd::DataType::DOUBLE);
|
|
|
|
NDArray z('c', {2,3,4}, {100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100}, sd::DataType::DOUBLE);
|
|
|
|
// NDArray exp('c', {2,3,4}, {10., 21., 32., 43., 14., 25., 36., 47., 18., 29., 40., 51., 62., 73., 84., 95., 66., 77., 88., 99., 70., 81., 92., 103}, sd::DataType::DOUBLE);
|
|
|
|
NDArray exp('c', {2,3,4}, {10., 40., 90., 160., 50., 120., 210., 320., 90., 200., 330., 480., 650., 840., 1050., 1280., 850., 1080., 1330., 1600., 1050., 1320., 1610., 1920.}, sd::DataType::DOUBLE);
|
2019-06-06 14:21:15 +02:00
|
|
|
x.linspace(1); x.syncToDevice();
|
|
|
|
|
|
|
|
std::vector<int> dimensions = {0,2};
|
|
|
|
|
|
|
|
// evaluate xTad data
|
|
|
|
shape::TAD xTad;
|
|
|
|
xTad.init(x.getShapeInfo(), dimensions.data(), dimensions.size());
|
|
|
|
xTad.createTadOnlyShapeInfo();
|
|
|
|
xTad.createOffsets();
|
|
|
|
|
|
|
|
// prepare input arrays for prepareDataForCuda function
|
|
|
|
std::vector<std::pair<void*,size_t>> hostData;
|
|
|
|
hostData.emplace_back(dimensions.data(), dimensions.size() * sizeof(int)); // 0 -- dimensions
|
|
|
|
hostData.emplace_back(xTad.tadOnlyShapeInfo, shape::shapeInfoByteLength(xTad.tadOnlyShapeInfo)); // 1 -- xTadShapeInfo
|
|
|
|
hostData.emplace_back(xTad.tadOffsets, xTad.numTads * sizeof(Nd4jLong)); // 2 -- xTadOffsets
|
|
|
|
std::vector<void*> devicePtrs(hostData.size(), nullptr);
|
|
|
|
|
|
|
|
// create cuda stream and LaunchContext
|
|
|
|
cudaError_t cudaResult;
|
|
|
|
cudaStream_t stream;
|
|
|
|
cudaResult = cudaStreamCreate(&stream); ASSERT_EQ(0, cudaResult);
|
|
|
|
LaunchContext lc(&stream);
|
|
|
|
|
|
|
|
// allocate required amount of global device memory and copy host data to it
|
|
|
|
cudaResult = allocateDeviceMem(lc, devicePtrs, hostData); ASSERT_EQ(0, cudaResult);
|
|
|
|
|
|
|
|
// call cuda kernel which calculates result
|
2020-03-02 10:49:41 +01:00
|
|
|
NativeOpExecutioner::execBroadcast(&lc, sd::broadcast::Multiply,
|
2019-06-06 14:21:15 +02:00
|
|
|
nullptr, x.getShapeInfo(), x.specialBuffer(), x.specialShapeInfo(),
|
|
|
|
nullptr, y.getShapeInfo(), y.specialBuffer(), y.specialShapeInfo(),
|
|
|
|
nullptr, z.getShapeInfo(), z.specialBuffer(), z.specialShapeInfo(),
|
|
|
|
(int*)devicePtrs[0], dimensions.size(),
|
|
|
|
(Nd4jLong*)devicePtrs[1], (Nd4jLong*)devicePtrs[2],
|
|
|
|
nullptr, nullptr);
|
|
|
|
|
|
|
|
cudaResult = cudaStreamSynchronize(stream); ASSERT_EQ(0, cudaResult);
|
|
|
|
z.tickWriteDevice();
|
2019-11-13 15:15:18 +01:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
// verify results
|
|
|
|
for (int e = 0; e < z.lengthOf(); e++)
|
|
|
|
ASSERT_NEAR(exp.e<double>(e), z.e<double>(e), 1e-5);
|
|
|
|
|
|
|
|
// free allocated global device memory
|
|
|
|
for(int i = 0; i < devicePtrs.size(); ++i)
|
|
|
|
cudaFree(devicePtrs[i]);
|
|
|
|
|
|
|
|
// delete cuda stream
|
|
|
|
cudaResult = cudaStreamDestroy(stream); ASSERT_EQ(0, cudaResult);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, TestRawBroadcast_3) {
|
|
|
|
|
|
|
|
//if (!Environment::getInstance()->isExperimentalBuild())
|
|
|
|
// return;
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray x('c', {2,3,4}, sd::DataType::DOUBLE);
|
|
|
|
NDArray y('c', {2,4}, {10,20,30,40,50,60,70,80}, sd::DataType::DOUBLE);
|
|
|
|
NDArray z('c', {2,3,4}, {100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100}, sd::DataType::DOUBLE);
|
|
|
|
// NDArray exp('c', {2,3,4}, {10., 21., 32., 43., 14., 25., 36., 47., 18., 29., 40., 51., 62., 73., 84., 95., 66., 77., 88., 99., 70., 81., 92., 103}, sd::DataType::DOUBLE);
|
|
|
|
NDArray exp('c', {2,3,4}, {10., 40., 90., 160., 50., 120., 210., 320., 90., 200., 330., 480., 650., 840., 1050., 1280., 850., 1080., 1330., 1600., 1050., 1320., 1610., 1920.}, sd::DataType::DOUBLE);
|
2019-06-06 14:21:15 +02:00
|
|
|
x.linspace(1); x.syncToDevice();
|
|
|
|
|
|
|
|
std::vector<int> dimensions = {0,2};
|
|
|
|
|
|
|
|
// evaluate xTad data
|
|
|
|
shape::TAD xTad;
|
|
|
|
xTad.init(x.getShapeInfo(), dimensions.data(), dimensions.size());
|
|
|
|
xTad.createTadOnlyShapeInfo();
|
|
|
|
xTad.createOffsets();
|
|
|
|
|
|
|
|
// prepare input arrays for prepareDataForCuda function
|
|
|
|
std::vector<std::pair<void*,size_t>> hostData;
|
|
|
|
hostData.emplace_back(dimensions.data(), dimensions.size() * sizeof(int)); // 0 -- dimensions
|
|
|
|
hostData.emplace_back(xTad.tadOnlyShapeInfo, shape::shapeInfoByteLength(xTad.tadOnlyShapeInfo)); // 1 -- xTadShapeInfo
|
|
|
|
hostData.emplace_back(xTad.tadOffsets, xTad.numTads * sizeof(Nd4jLong)); // 2 -- xTadOffsets
|
|
|
|
std::vector<void*> devicePtrs(hostData.size(), nullptr);
|
|
|
|
|
|
|
|
// create cuda stream and LaunchContext
|
|
|
|
cudaError_t cudaResult;
|
|
|
|
//cudaStream_t stream;
|
|
|
|
//cudaResult = cudaStreamCreate(&stream); ASSERT_EQ(0, cudaResult);
|
|
|
|
LaunchContext* pLc = x.getContext();//(&stream);
|
|
|
|
cudaStream_t* stream = pLc->getCudaStream();
|
|
|
|
// allocate required amount of global device memory and copy host data to it
|
|
|
|
// cudaResult = allocateDeviceMem(*pLc, devicePtrs, hostData); ASSERT_EQ(0, cudaResult);
|
|
|
|
for(int i = 0; i < devicePtrs.size(); ++i) {
|
|
|
|
|
|
|
|
cudaResult = cudaMalloc(reinterpret_cast<void **>(&devicePtrs[i]), hostData[i].second); ASSERT_EQ(0, cudaResult);
|
|
|
|
cudaMemcpyAsync(devicePtrs[i], hostData[i].first, hostData[i].second, cudaMemcpyHostToDevice, *stream);
|
|
|
|
}
|
|
|
|
|
|
|
|
NDArray::registerSpecialUse({&z}, {&x, &y});
|
|
|
|
// call cuda kernel which calculates result
|
2020-03-02 10:49:41 +01:00
|
|
|
NativeOpExecutioner::execBroadcast(pLc, sd::broadcast::Multiply,
|
2019-06-06 14:21:15 +02:00
|
|
|
nullptr, x.getShapeInfo(), x.specialBuffer(), x.specialShapeInfo(),
|
|
|
|
nullptr, y.getShapeInfo(), y.specialBuffer(), y.specialShapeInfo(),
|
|
|
|
nullptr, z.getShapeInfo(), z.specialBuffer(), z.specialShapeInfo(),
|
|
|
|
(int*)devicePtrs[0], dimensions.size(),
|
|
|
|
(Nd4jLong*)devicePtrs[1], (Nd4jLong*)devicePtrs[2],
|
|
|
|
nullptr, nullptr);
|
|
|
|
|
|
|
|
//cudaResult = cudaStreamSynchronize(stream); ASSERT_EQ(0, cudaResult);
|
|
|
|
//z.syncToHost();
|
|
|
|
// verify results
|
|
|
|
for (int e = 0; e < z.lengthOf(); e++)
|
|
|
|
ASSERT_NEAR(exp.e<double>(e), z.e<double>(e), 1e-5);
|
|
|
|
|
|
|
|
// free allocated global device memory
|
|
|
|
for(int i = 0; i < devicePtrs.size(); ++i)
|
|
|
|
cudaFree(devicePtrs[i]);
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
// delete cuda stream
|
|
|
|
//cudaResult = cudaStreamDestroy(stream); ASSERT_EQ(0, cudaResult);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, TestBroadcastMultiply_1) {
|
|
|
|
// allocating host-side arrays
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray x('c', { 2, 3 }, { 1, 2, 3, 4, 5, 6}, sd::DataType::DOUBLE);
|
|
|
|
NDArray y = NDArrayFactory::create<double>(3.); //'c', { 3 }, { 2., 3., 4.}, sd::DataType::DOUBLE);
|
2019-06-06 14:21:15 +02:00
|
|
|
//auto z = NDArrayFactory::create<double>('c', { 5 });
|
|
|
|
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', { 2, 3 }, { 3, 6, 9, 12, 15, 18 });
|
|
|
|
|
|
|
|
// making raw buffers
|
|
|
|
//Nd4jPointer devBufferPtrX, devBufferPtrZ, devShapePtrX;
|
|
|
|
//cudaError_t res = cudaMalloc(reinterpret_cast<void **>(&devBufferPtrX), x.lengthOf() * x.sizeOfT());
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
//res = cudaMalloc(reinterpret_cast<void **>(&devBufferPtrZ), x.lengthOf() * x.sizeOfT());
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
//res = cudaMalloc(reinterpret_cast<void **>(&devShapePtrX), shape::shapeInfoByteLength(x.shapeInfo()));
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
//x.applyPairwiseTransform(pairwise::Multiply, &y, &z, nullptr);
|
|
|
|
x *= y;
|
|
|
|
//x.syncToHost();
|
|
|
|
|
|
|
|
//
|
|
|
|
// cudaFree(devBufferPtrX);
|
|
|
|
//cudaFree(devBufferPtrZ);
|
|
|
|
//cudaFree(devShapePtrX);
|
|
|
|
ASSERT_TRUE(exp.equalsTo(x));
|
|
|
|
// for (int e = 0; e < x.lengthOf(); e++) {
|
|
|
|
// ASSERT_NEAR(exp.e<double>(e), x.e<double>(e), 1e-5);
|
|
|
|
// }
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, TestBroadcastMultiply_01) {
|
|
|
|
// allocating host-side arrays
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray x('c', { 2, 3 }, { 1, 2, 3, 4, 5, 6}, sd::DataType::DOUBLE);
|
|
|
|
NDArray y = NDArrayFactory::create<double>(3.); //'c', { 3 }, { 2., 3., 4.}, sd::DataType::DOUBLE);
|
2019-06-06 14:21:15 +02:00
|
|
|
auto z = NDArrayFactory::create<double>('c', { 2, 3 });
|
|
|
|
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', { 2, 3 }, { 3, 6, 9, 12, 15, 18 });
|
|
|
|
|
|
|
|
// making raw buffers
|
|
|
|
//Nd4jPointer devBufferPtrX, devBufferPtrZ, devShapePtrX;
|
|
|
|
//cudaError_t res = cudaMalloc(reinterpret_cast<void **>(&devBufferPtrX), x.lengthOf() * x.sizeOfT());
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
//res = cudaMalloc(reinterpret_cast<void **>(&devBufferPtrZ), x.lengthOf() * x.sizeOfT());
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
//res = cudaMalloc(reinterpret_cast<void **>(&devShapePtrX), shape::shapeInfoByteLength(x.shapeInfo()));
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
//x.applyPairwiseTransform(pairwise::Multiply, &y, &z, nullptr);
|
|
|
|
//x.printBuffer("23X = ");
|
|
|
|
//y.printBuffer("23Y = ");
|
2019-12-20 20:35:39 +01:00
|
|
|
x.applyTrueBroadcast(BroadcastOpsTuple::Multiply(), y, z);// *= y;
|
2019-06-06 14:21:15 +02:00
|
|
|
// z.printBuffer("53Result out");
|
|
|
|
|
|
|
|
//
|
|
|
|
// cudaFree(devBufferPtrX);
|
|
|
|
//cudaFree(devBufferPtrZ);
|
|
|
|
//cudaFree(devShapePtrX);
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
// for (int e = 0; e < x.lengthOf(); e++) {
|
|
|
|
// ASSERT_NEAR(exp.e<double>(e), z.e<double>(e), 1e-5);
|
|
|
|
// }
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, TestBroadcastMultiply_02) {
|
|
|
|
// allocating host-side arrays
|
2020-03-02 10:49:41 +01:00
|
|
|
auto x = NDArrayFactory::create<double>('c', { 2, 3 }, { 1, 2, 3, 4, 5, 6}); //, sd::DataType::DOUBLE);
|
|
|
|
auto y = NDArrayFactory::create<double>('c', {2,3}, {3, 3, 3, 3, 3, 3}); //'c', { 3 }, { 2., 3., 4.}, sd::DataType::DOUBLE);
|
2019-06-06 14:21:15 +02:00
|
|
|
auto z = NDArrayFactory::create<double>('c', { 2, 3 });
|
|
|
|
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', { 2, 3 }, { 3, 6, 9, 12, 15, 18 });
|
|
|
|
//if (x.isActualOnHostSide() && !x.isActualOnDeviceSide())
|
|
|
|
// making raw buffers
|
|
|
|
//Nd4jPointer devBufferPtrX, devBufferPtrZ, devShapePtrX;
|
|
|
|
//cudaError_t res = cudaMalloc(reinterpret_cast<void **>(&devBufferPtrX), x.lengthOf() * x.sizeOfT());
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
//res = cudaMalloc(reinterpret_cast<void **>(&devBufferPtrZ), x.lengthOf() * x.sizeOfT());
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
//res = cudaMalloc(reinterpret_cast<void **>(&devShapePtrX), shape::shapeInfoByteLength(x.shapeInfo()));
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
//x.applyPairwiseTransform(pairwise::Multiply, &y, &z, nullptr);
|
|
|
|
//x.printBuffer("23X = ");
|
|
|
|
//y.printBuffer("23Y = ");
|
2019-12-20 20:35:39 +01:00
|
|
|
x.applyTrueBroadcast(BroadcastOpsTuple::Multiply(), y, z);// *= y;
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
// z.printBuffer("52Result out");
|
|
|
|
|
|
|
|
//
|
|
|
|
// cudaFree(devBufferPtrX);
|
|
|
|
//cudaFree(devBufferPtrZ);
|
|
|
|
//cudaFree(devShapePtrX);
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
// for (int e = 0; e < x.lengthOf(); e++) {
|
|
|
|
// ASSERT_NEAR(exp.e<double>(e), z.e<double>(e), 1e-5);
|
|
|
|
// }
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, TestBroadcastMultiply_002) {
|
|
|
|
// allocating host-side arrays
|
2020-03-02 10:49:41 +01:00
|
|
|
auto x = NDArrayFactory::create<double>('c', { 2, 3 }, { 1, 2, 3, 4, 5, 6}); //, sd::DataType::DOUBLE);
|
|
|
|
auto y = NDArrayFactory::create<double>('c', {2, 3}, {2., 3., 3., 3., 3., 3.}); //'c', { 3 }, { 2., 3., 4.}, sd::DataType::DOUBLE);
|
2019-06-06 14:21:15 +02:00
|
|
|
auto z = NDArrayFactory::create<double>('c', { 2, 3 });
|
|
|
|
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', { 2, 3 }, { 2, 6, 9, 12, 15, 18 });
|
|
|
|
//if (x.isActualOnHostSide() && !x.isActualOnDeviceSide())
|
|
|
|
// making raw buffers
|
|
|
|
//Nd4jPointer devBufferPtrX, devBufferPtrZ, devShapePtrX;
|
|
|
|
//cudaError_t res = cudaMalloc(reinterpret_cast<void **>(&devBufferPtrX), x.lengthOf() * x.sizeOfT());
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
//res = cudaMalloc(reinterpret_cast<void **>(&devBufferPtrZ), x.lengthOf() * x.sizeOfT());
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
//res = cudaMalloc(reinterpret_cast<void **>(&devShapePtrX), shape::shapeInfoByteLength(x.shapeInfo()));
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
//x.applyPairwiseTransform(pairwise::Multiply, &y, &z, nullptr);
|
|
|
|
//x.printBuffer("23X = ");
|
|
|
|
//y.printBuffer("23Y = ");
|
2019-12-20 20:35:39 +01:00
|
|
|
x.applyPairwiseTransform(pairwise::Multiply, y, z);// *= y;
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
// z.printBuffer("51Result out");
|
|
|
|
|
|
|
|
//
|
|
|
|
// cudaFree(devBufferPtrX);
|
|
|
|
//cudaFree(devBufferPtrZ);
|
|
|
|
//cudaFree(devShapePtrX);
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
|
|
|
|
// for (int e = 0; e < x.lengthOf(); e++) {
|
|
|
|
// ASSERT_NEAR(exp.e<double>(e), z.e<double>(e), 1e-5);
|
|
|
|
// }
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, TestBroadcastRaw_1) {
|
|
|
|
|
|
|
|
//if (!Environment::getInstance()->isExperimentalBuild())
|
|
|
|
// return;
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray x('c', {2,3,4}, {100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100}, sd::DataType::INT32);
|
|
|
|
NDArray y('c', {3}, {10, 20, 30}, sd::DataType::INT64);
|
|
|
|
NDArray z('c', {2,3,4}, {100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100}, sd::DataType::INT32);
|
|
|
|
NDArray exp('c', {2,3,4}, {10, 11, 12, 13,24, 25, 26, 27,38, 39, 40, 41,22, 23, 24, 25,36, 37, 38, 39,50, 51, 52, 53}, sd::DataType::INT32);
|
2019-06-06 14:21:15 +02:00
|
|
|
//real output [10, 11, 12, 13, 4, 5, 6, 7, 28, 29, 30, 31, 22, 23, 24, 25, 16, 17, 18, 19, 40, 41, 42, 43]
|
|
|
|
x.linspace(0); x.syncToDevice();
|
|
|
|
|
|
|
|
std::vector<int> dimensions = {1};
|
|
|
|
|
|
|
|
// evaluate xTad data
|
|
|
|
shape::TAD xTad;
|
|
|
|
xTad.init(x.getShapeInfo(), dimensions.data(), dimensions.size());
|
|
|
|
xTad.createTadOnlyShapeInfo();
|
|
|
|
xTad.createOffsets();
|
|
|
|
|
|
|
|
// prepare input arrays for prepareDataForCuda function
|
|
|
|
std::vector<std::pair<void*,size_t>> hostData;
|
|
|
|
hostData.emplace_back(dimensions.data(), dimensions.size() * sizeof(Nd4jLong)); // 0 -- dimensions
|
|
|
|
hostData.emplace_back(xTad.tadOnlyShapeInfo, shape::shapeInfoByteLength(xTad.tadOnlyShapeInfo)); // 1 -- xTadShapeInfo
|
|
|
|
hostData.emplace_back(xTad.tadOffsets, xTad.numTads * sizeof(Nd4jLong)); // 2 -- xTadOffsets
|
|
|
|
std::vector<void*> devicePtrs(hostData.size(), nullptr);
|
|
|
|
|
|
|
|
// create cuda stream and LaunchContext
|
|
|
|
cudaError_t cudaResult;
|
|
|
|
cudaStream_t* stream = x.getContext()->getCudaStream();
|
|
|
|
LaunchContext* pLc = x.getContext();
|
|
|
|
|
|
|
|
// allocate required amount of global device memory and copy host data to it
|
|
|
|
//cudaResult = allocateDeviceMem(*pLc, devicePtrs, hostData); ASSERT_EQ(0, cudaResult);
|
|
|
|
for(size_t i = 0; i < devicePtrs.size(); ++i) {
|
|
|
|
cudaResult = cudaMalloc(&devicePtrs[i], hostData[i].second); //if(cudaResult != 0) return cudaResult;
|
|
|
|
ASSERT_EQ(cudaResult, 0);
|
|
|
|
cudaMemcpy(devicePtrs[i], hostData[i].first, hostData[i].second, cudaMemcpyHostToDevice);
|
|
|
|
}
|
|
|
|
|
|
|
|
// call cuda kernel which calculates result
|
2020-03-02 10:49:41 +01:00
|
|
|
NativeOpExecutioner::execBroadcast(pLc, sd::broadcast::Add,
|
2019-06-06 14:21:15 +02:00
|
|
|
nullptr, x.getShapeInfo(), x.specialBuffer(), x.specialShapeInfo(),
|
|
|
|
nullptr, y.getShapeInfo(), y.specialBuffer(), y.specialShapeInfo(),
|
|
|
|
nullptr, z.getShapeInfo(), z.specialBuffer(), z.specialShapeInfo(),
|
|
|
|
(int*)devicePtrs[0], dimensions.size(),
|
|
|
|
(Nd4jLong*)devicePtrs[1], (Nd4jLong*)devicePtrs[2],
|
|
|
|
nullptr, nullptr);
|
|
|
|
|
|
|
|
cudaResult = cudaStreamSynchronize(*stream); ASSERT_EQ(0, cudaResult);
|
|
|
|
|
|
|
|
// x.printIndexedBuffer(" X");
|
|
|
|
// y.printIndexedBuffer("+Y");
|
|
|
|
// z.printBuffer("ADD broadcasted output");
|
|
|
|
// verify results
|
|
|
|
// for (int e = 0; e < z.lengthOf(); e++)
|
|
|
|
// ASSERT_NEAR(exp.e<double>(e), z.e<double>(e), 1e-5);
|
|
|
|
|
|
|
|
// free allocated global device memory
|
|
|
|
for(int i = 0; i < devicePtrs.size(); ++i)
|
|
|
|
cudaFree(devicePtrs[i]);
|
|
|
|
|
|
|
|
// delete cuda stream
|
|
|
|
//cudaResult = cudaStreamDestroy(stream); ASSERT_EQ(0, cudaResult);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, TestBroadcastMultiply) {
|
|
|
|
// allocating host-side arrays
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray x('c', { 2, 3 }, { 1, 2, 3, 4, 5, 6}, sd::DataType::DOUBLE);
|
|
|
|
NDArray y('c', { 3 }, { 2., 3., 4.}, sd::DataType::DOUBLE);
|
2019-06-06 14:21:15 +02:00
|
|
|
//auto z = NDArrayFactory::create<double>('c', { 5 });
|
|
|
|
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', { 2, 3 }, { 2, 6, 12, 8, 15, 24 });
|
|
|
|
|
|
|
|
// making raw buffers
|
|
|
|
//Nd4jPointer devBufferPtrX, devBufferPtrZ, devShapePtrX;
|
|
|
|
//cudaError_t res = cudaMalloc(reinterpret_cast<void **>(&devBufferPtrX), x.lengthOf() * x.sizeOfT());
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
//res = cudaMalloc(reinterpret_cast<void **>(&devBufferPtrZ), x.lengthOf() * x.sizeOfT());
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
//res = cudaMalloc(reinterpret_cast<void **>(&devShapePtrX), shape::shapeInfoByteLength(x.shapeInfo()));
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
//x.applyPairwiseTransform(pairwise::Multiply, &y, &z, nullptr);
|
|
|
|
//x.printBuffer("23X = ");
|
|
|
|
//y.printBuffer("23Y = ");
|
|
|
|
x *= y;
|
|
|
|
|
|
|
|
//
|
|
|
|
// cudaFree(devBufferPtrX);
|
|
|
|
//cudaFree(devBufferPtrZ);
|
|
|
|
//cudaFree(devShapePtrX);
|
|
|
|
|
|
|
|
//for (int e = 0; e < x.lengthOf(); e++) {
|
|
|
|
// ASSERT_NEAR(exp.e<double>(e), x.e<double>(e), 1e-5);
|
|
|
|
//}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, TestBroadcastMultiply_2) {
|
|
|
|
// allocating host-side arrays
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray x('c', { 2, 3 }, { 1, 2, 3, 4, 5, 6}, sd::DataType::DOUBLE);
|
|
|
|
NDArray y('c', { 3 }, { 2., 3., 4.}, sd::DataType::DOUBLE);
|
2019-06-06 14:21:15 +02:00
|
|
|
//auto z = NDArrayFactory::create<double>('c', { 5 });
|
|
|
|
|
|
|
|
auto exp = NDArrayFactory::create<double>('c', { 2, 3 }, { 11,12, 13,14, 15, 16 });
|
|
|
|
auto expZ = NDArrayFactory::create<double>('c', { 2, 3 }, { 2, 6, 12, 8, 15, 24 });
|
|
|
|
|
|
|
|
// making raw buffers
|
|
|
|
//Nd4jPointer devBufferPtrX, devBufferPtrZ, devShapePtrX;
|
|
|
|
//cudaError_t res = cudaMalloc(reinterpret_cast<void **>(&devBufferPtrX), x.lengthOf() * x.sizeOfT());
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
//res = cudaMalloc(reinterpret_cast<void **>(&devBufferPtrZ), x.lengthOf() * x.sizeOfT());
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
//res = cudaMalloc(reinterpret_cast<void **>(&devShapePtrX), shape::shapeInfoByteLength(x.shapeInfo()));
|
|
|
|
//ASSERT_EQ(0, res);
|
|
|
|
//x.applyPairwiseTransform(pairwise::Multiply, &y, &z, nullptr);
|
|
|
|
//x.printBuffer("23X = ");
|
|
|
|
//y.printBuffer("23Y = ");
|
2020-03-02 10:49:41 +01:00
|
|
|
//void NDArray::applyTrueBroadcast(sd::BroadcastOpsTuple op, const NDArray* other, NDArray* target, const bool checkTargetShape, ExtraArguments *extraArgs)
|
2019-12-20 20:35:39 +01:00
|
|
|
x.applyTrueBroadcast(BroadcastOpsTuple::Multiply(), y, exp);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
//
|
|
|
|
// cudaFree(devBufferPtrX);
|
|
|
|
//cudaFree(devBufferPtrZ);
|
|
|
|
//cudaFree(devShapePtrX);
|
|
|
|
|
|
|
|
//for (int e = 0; e < x.lengthOf(); e++) {
|
|
|
|
// ASSERT_NEAR(exp.e<double>(e), x.e<double>(e), 1e-5);
|
|
|
|
//}
|
|
|
|
ASSERT_TRUE(exp.equalsTo(expZ));
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, TestReduceSum_1) {
|
|
|
|
// allocating host-side arrays
|
|
|
|
auto x = NDArrayFactory::create<double>('c', { 5 }, { 1, 2, 3, 4, 5});
|
|
|
|
auto y = NDArrayFactory::create<double>(15);
|
|
|
|
auto exp = NDArrayFactory::create<double>(15);
|
|
|
|
|
|
|
|
auto stream = x.getContext()->getCudaStream();//reinterpret_cast<cudaStream_t *>(&nativeStream);
|
|
|
|
|
|
|
|
NativeOpExecutioner::execReduceSameScalar(x.getContext(), reduce::Sum, x.buffer(), x.shapeInfo(), x.specialBuffer(), x.specialShapeInfo(), nullptr, y.buffer(), y.shapeInfo(), y.specialBuffer(), y.specialShapeInfo());
|
|
|
|
auto res = cudaStreamSynchronize(*stream);
|
|
|
|
ASSERT_EQ(0, res);
|
|
|
|
y.syncToHost();
|
|
|
|
|
|
|
|
ASSERT_NEAR(y.e<double>(0), 15, 1e-5);
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, TestDup1) {
|
|
|
|
|
|
|
|
NDArray array('c', {2,3}, {1,2,3,4,5,6});
|
|
|
|
auto arrC = array.dup('c');
|
|
|
|
auto arrF = array.dup('f');
|
|
|
|
// arrC->printBuffer("arrC");
|
|
|
|
|
|
|
|
// arrF->printBuffer("arrF");
|
|
|
|
//arrC->printShapeInfo("C shape");
|
|
|
|
//arrF->printShapeInfo("F shape");
|
|
|
|
|
|
|
|
ASSERT_TRUE(array.equalsTo(arrF));
|
|
|
|
ASSERT_TRUE(array.equalsTo(arrC));
|
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
ASSERT_TRUE(arrF.equalsTo(arrC));
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, equalsTo_1) {
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray x('c', {2,5}, {1,2,3,4,5,6,7,8,9,10}, sd::DataType::DOUBLE);
|
|
|
|
NDArray y('c', {2,5}, {1,2,3,4,5,6,7,8,9,10}, sd::DataType::DOUBLE);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_TRUE(x.equalsTo(y));
|
|
|
|
|
|
|
|
x.permutei({1,0});
|
|
|
|
y.permutei({1,0});
|
|
|
|
|
|
|
|
ASSERT_TRUE(x.equalsTo(y));
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, equalsTo_2) {
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray x('c', {2,5}, {1,2,3,4,5,6,7,8,10,10}, sd::DataType::DOUBLE);
|
|
|
|
NDArray y('c', {2,5}, {1,2,5,4,5,6,7,8,9,10}, sd::DataType::DOUBLE);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_FALSE(x.equalsTo(y));
|
|
|
|
|
|
|
|
x.permutei({1,0});
|
|
|
|
y.permutei({1,0});
|
|
|
|
|
|
|
|
ASSERT_FALSE(x.equalsTo(y));
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, equalsTo_3) {
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray x('c', {2,5}, {1,2,3,4,5,6,7,8,9,10}, sd::DataType::DOUBLE);
|
|
|
|
NDArray y('c', {2,5}, {1.f,2.f,3.f,4.f,5.f,6.f,7.f,8.f,9.f,10.f}, sd::DataType::FLOAT32);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_FALSE(x.equalsTo(y));
|
|
|
|
|
|
|
|
x.permutei({1,0});
|
|
|
|
y.permutei({1,0});
|
|
|
|
|
|
|
|
ASSERT_FALSE(x.equalsTo(y));
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, applyReduce3_1) {
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray x('c', {2,3,4}, {-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13}, sd::DataType::INT32);
|
|
|
|
NDArray x2('c', {2,3,4}, {-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13}, sd::DataType::INT32);
|
|
|
|
NDArray y('c', {2,3,4}, {-2,3,-4,5,-2,3,-4,5,-2,3,-4,5,-2,3,-4,5,-2,3,-4,5,-2,3,-4,5}, sd::DataType::INT32);
|
|
|
|
NDArray k('c', {2,3}, {-2,3,-4,5,-2,3}, sd::DataType::INT32);
|
|
|
|
NDArray k2('c', {3,2}, {-2,3,-4,5,-2,3}, sd::DataType::INT32);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray exp1('c', {3}, {4.f, 20.f, 36.f}, sd::DataType::FLOAT32);
|
|
|
|
NDArray exp2('c', {2,3}, {-10.f, -2.f, 6.f,14.f, 22.f, 30.f}, sd::DataType::FLOAT32);
|
|
|
|
NDArray exp3('c', {4}, {38.f, 41.f, 44.f, 47.f}, sd::DataType::FLOAT32);
|
|
|
|
NDArray exp4('c', {4}, {114.f, 117.f, 120.f, 123.f}, sd::DataType::FLOAT32);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray z = x.applyReduce3(sd::reduce3::Dot, y, {0,2});
|
2019-12-20 20:35:39 +01:00
|
|
|
ASSERT_TRUE(z.equalsTo(&exp1));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
z = x.applyReduce3(sd::reduce3::Dot, k, {0,1});
|
2019-12-20 20:35:39 +01:00
|
|
|
ASSERT_TRUE(z.equalsTo(&exp3));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
x.permutei({0,2,1});
|
|
|
|
y.permutei({0,2,1});
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
z = y.applyReduce3(sd::reduce3::Dot, x, {1});
|
2019-12-20 20:35:39 +01:00
|
|
|
ASSERT_TRUE(z.equalsTo(&exp2));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
x2.permutei({1,0,2});
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
z = x2.applyReduce3(sd::reduce3::Dot, k2, {0,1});
|
2019-12-20 20:35:39 +01:00
|
|
|
ASSERT_TRUE(z.equalsTo(&exp4));
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, applyReduce3_2) {
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray x('c', {2,3,4}, {-10,-9,-8.5,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13}, sd::DataType::DOUBLE);
|
|
|
|
NDArray x2('c', {2,3,4}, {-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0.5,1,2,3,4,5,6,7,8,9,10,11,12,13}, sd::DataType::DOUBLE);
|
|
|
|
NDArray y('c', {2,3,4}, {-2,3,-4,5,-2,3,-4,5,-2,3,-4,5,-2.5,3,-4,5,-2,3,-4,5,-2,3,-4,5}, sd::DataType::DOUBLE);
|
|
|
|
NDArray k('c', {2,3}, {-2,3,-4,5.5,-2,3}, sd::DataType::DOUBLE);
|
|
|
|
NDArray k2('c', {3,2}, {-2,3,-4,5,-2,3.5}, sd::DataType::DOUBLE);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray exp1('c', {3}, {5., 20., 36.}, sd::DataType::DOUBLE);
|
|
|
|
NDArray exp2('c', {2,3}, {-8., -2., 6., 13., 22., 30.}, sd::DataType::DOUBLE);
|
|
|
|
NDArray exp3('c', {4}, {39., 42.5, 47., 49.5}, sd::DataType::DOUBLE);
|
|
|
|
NDArray exp4('c', {4}, {119., 122.5, 125., 129.5}, sd::DataType::DOUBLE);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray z = x.applyReduce3(sd::reduce3::Dot, y, {0,2});
|
2019-12-20 20:35:39 +01:00
|
|
|
ASSERT_TRUE(z.equalsTo(&exp1));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
z = x.applyReduce3(sd::reduce3::Dot, k, {0,1});
|
2019-12-20 20:35:39 +01:00
|
|
|
ASSERT_TRUE(z.equalsTo(&exp3));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
x.permutei({0,2,1});
|
|
|
|
y.permutei({0,2,1});
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
z = y.applyReduce3(sd::reduce3::Dot, x, {1});
|
2019-12-20 20:35:39 +01:00
|
|
|
ASSERT_TRUE(z.equalsTo(&exp2));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
x2.permutei({1,0,2});
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
z = x2.applyReduce3(sd::reduce3::Dot, k2, {0,1});
|
2019-12-20 20:35:39 +01:00
|
|
|
ASSERT_TRUE(z.equalsTo(&exp4));
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, applyReduce3_3) {
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray x1('c', {2,2,2}, {1,2,3,4,5,6,7,8}, sd::DataType::INT32);
|
|
|
|
NDArray x2('c', {2,2,2}, {-1,-2,-3,-4,-5,-6,-7,-8}, sd::DataType::INT32);
|
|
|
|
NDArray x3('c', {3,2}, {1.5,1.5,1.5,1.5,1.5,1.5}, sd::DataType::DOUBLE);
|
|
|
|
NDArray x4('c', {3,2}, {1,2,3,4,5,6}, sd::DataType::DOUBLE);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray exp1('c', {}, std::vector<double>{-204}, sd::DataType::FLOAT32);
|
|
|
|
NDArray exp2('c', {}, std::vector<double>{31.5}, sd::DataType::DOUBLE);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
auto z = x1.applyReduce3(reduce3::Dot, x2);
|
|
|
|
ASSERT_TRUE(z.equalsTo(&exp1));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
z = x3.applyReduce3(reduce3::Dot, x4);
|
|
|
|
ASSERT_TRUE(z.equalsTo(&exp2));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
x1.permutei({2,1,0});
|
|
|
|
x2.permutei({2,1,0});
|
|
|
|
x3.permutei({1,0});
|
|
|
|
x4.permutei({1,0});
|
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
z = x1.applyReduce3(reduce3::Dot, x2);
|
|
|
|
ASSERT_TRUE(z.equalsTo(&exp1));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
z = x3.applyReduce3(reduce3::Dot, x4);
|
|
|
|
ASSERT_TRUE(z.equalsTo(&exp2));
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, applyAllReduce3_1) {
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray x1('c', {2,3,2}, {1,2,3,4,5,6,7,8,-1,-2,-3,-4,}, sd::DataType::INT32);
|
|
|
|
NDArray x2('c', {2,2,2}, {-1,-2,-3,-4,-5,-6,-7,-8}, sd::DataType::INT32);
|
|
|
|
NDArray x3('c', {3,2}, {1.5,1.5,1.5,1.5,1.5,1.5}, sd::DataType::DOUBLE);
|
|
|
|
NDArray x4('c', {3,2}, {1,2,3,4,5,6}, sd::DataType::DOUBLE);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray exp1('c', {3,2}, {-88.f, -124.f, 6.f, -2.f, 22.f, 14.f}, sd::DataType::FLOAT32);
|
2019-12-06 09:10:44 +01:00
|
|
|
NDArray exp2('c', {6,4}, {-36.f, -44.f, -52.f, -60.f,-42.f, -52.f, -62.f, -72.f, 2.f, 0.f, -2.f,
|
|
|
|
-4.f, 6.f, 4.f, 2.f, 0.f, 10.f, 8.f, 6.f, 4.f, 14.f, 12.f, 10.f, 8.f},
|
2020-03-02 10:49:41 +01:00
|
|
|
sd::DataType::FLOAT32);
|
|
|
|
NDArray exp3('c', {1,1}, std::vector<double>{31.5}, sd::DataType::DOUBLE);
|
|
|
|
NDArray exp4('c', {3,3}, {4.5, 10.5, 16.5,4.5, 10.5, 16.5,4.5, 10.5, 16.5}, sd::DataType::DOUBLE);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
auto z = x1.applyAllReduce3(reduce3::Dot, x2, {0,2});
|
|
|
|
ASSERT_TRUE(z.equalsTo(&exp1));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
z = x1.applyAllReduce3(reduce3::Dot, x2, {0});
|
|
|
|
ASSERT_TRUE(z.equalsTo(&exp2));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
z = x3.applyAllReduce3(reduce3::Dot, x4, {0,1});
|
|
|
|
ASSERT_TRUE(z.equalsTo(&exp3));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
z = x3.applyAllReduce3(reduce3::Dot, x4, {1});
|
|
|
|
ASSERT_TRUE(z.equalsTo(&exp4));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
x1.permutei({2,1,0});
|
|
|
|
x2.permutei({2,1,0});
|
|
|
|
x3.permutei({1,0});
|
|
|
|
x4.permutei({1,0});
|
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
z = x1.applyAllReduce3(reduce3::Dot, x2, {0,2});
|
|
|
|
ASSERT_TRUE(z.equalsTo(&exp1));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
z = x3.applyAllReduce3(reduce3::Dot, x4, {0});
|
|
|
|
ASSERT_TRUE(z.equalsTo(&exp4));
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, applyIndexReduce_test1) {
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray x('c', {2,3}, {0, 10, 1, 2, 2.5,-4}, sd::DataType::DOUBLE);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray scalar('c', {}, std::vector<double>{100}, sd::DataType::INT64);
|
|
|
|
NDArray vec1('c', {2}, {100,100}, sd::DataType::INT64);
|
|
|
|
NDArray vec2('c', {3}, {100,100,100}, sd::DataType::INT64);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray exp1('c', {}, std::vector<double>{1}, sd::DataType::INT64);
|
|
|
|
NDArray exp2('c', {2}, {1,1}, sd::DataType::INT64);
|
|
|
|
NDArray exp3('c', {3}, {1,0,0}, sd::DataType::INT64);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray exp4('c', {}, std::vector<double>{2}, sd::DataType::INT64);
|
|
|
|
NDArray exp5('c', {2}, {1,1}, sd::DataType::INT64);
|
|
|
|
NDArray exp6('c', {3}, {1,0,0}, sd::DataType::INT64);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
x.applyIndexReduce(sd::indexreduce::IndexMax, scalar, {0,1});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(scalar.equalsTo(&exp1));
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
x.applyIndexReduce(sd::indexreduce::IndexMax, vec1, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(vec1.equalsTo(&exp2));
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
x.applyIndexReduce(sd::indexreduce::IndexMax, vec2, {0});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(vec2.equalsTo(&exp3));
|
|
|
|
|
|
|
|
x.permutei({1,0});
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
x.applyIndexReduce(sd::indexreduce::IndexMax, scalar, {0,1});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(scalar.equalsTo(&exp4));
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
x.applyIndexReduce(sd::indexreduce::IndexMax, vec1, {0});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(vec1.equalsTo(&exp5));
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
x.applyIndexReduce(sd::indexreduce::IndexMax, vec2, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(vec2.equalsTo(&exp6));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, applyIndexReduce_test2) {
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray x('c', {2,3}, {0, 10, 1, 2, 2.5,-4}, sd::DataType::DOUBLE);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray exp1('c', {}, std::vector<double>{1}, sd::DataType::INT64);
|
|
|
|
NDArray exp2('c', {2}, {1,1}, sd::DataType::INT64);
|
|
|
|
NDArray exp3('c', {3}, {1,0,0}, sd::DataType::INT64);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray exp4('c', {}, std::vector<double>{2}, sd::DataType::INT64);
|
|
|
|
NDArray exp5('c', {2}, {1,1}, sd::DataType::INT64);
|
|
|
|
NDArray exp6('c', {3}, {1,0,0}, sd::DataType::INT64);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
auto z = x.applyIndexReduce(sd::indexreduce::IndexMax, {0,1});
|
2019-12-20 20:35:39 +01:00
|
|
|
ASSERT_TRUE(z.equalsTo(&exp1));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
z = x.applyIndexReduce(sd::indexreduce::IndexMax, {1});
|
2019-12-20 20:35:39 +01:00
|
|
|
ASSERT_TRUE(z.equalsTo(&exp2));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
z = x.applyIndexReduce(sd::indexreduce::IndexMax, {0});
|
2019-12-20 20:35:39 +01:00
|
|
|
ASSERT_TRUE(z.equalsTo(&exp3));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
x.permutei({1,0});
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
z = x.applyIndexReduce(sd::indexreduce::IndexMax, {0,1});
|
2019-12-20 20:35:39 +01:00
|
|
|
ASSERT_TRUE(z.equalsTo(&exp4));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
z = x.applyIndexReduce(sd::indexreduce::IndexMax, {0});
|
2019-12-20 20:35:39 +01:00
|
|
|
ASSERT_TRUE(z.equalsTo(&exp5));
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
z = x.applyIndexReduce(sd::indexreduce::IndexMax, {1});
|
2019-12-20 20:35:39 +01:00
|
|
|
ASSERT_TRUE(z.equalsTo(&exp6));
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, reduceAlongDimension_float_test1) {
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray x('c', {2,3,2}, {1,2,3,4,5,6,7,8,-1,-2,-3,-4,}, sd::DataType::INT32);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray z1('c', {}, std::vector<double>{100}, sd::DataType::DOUBLE);
|
|
|
|
NDArray z2('c', {2,2}, {100,100,100,100}, sd::DataType::FLOAT32);
|
|
|
|
NDArray z3('c', {3}, {100,100,100}, sd::DataType::DOUBLE);
|
|
|
|
NDArray z4('c', {3,2}, {100,100,100,100,100,100}, sd::DataType::FLOAT32);
|
|
|
|
NDArray z5('c', {2}, {100,100}, sd::DataType::FLOAT32);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray exp1('c', {}, std::vector<double>{2.166667}, sd::DataType::DOUBLE);
|
|
|
|
NDArray exp2('c', {2,2}, {3.f,4.f,1.f,0.666667f}, sd::DataType::FLOAT32);
|
|
|
|
NDArray exp3('c', {3}, {4.5,1,1}, sd::DataType::DOUBLE);
|
|
|
|
NDArray exp4('c', {3,2}, {4,5,1,1,1,1}, sd::DataType::FLOAT32);
|
|
|
|
NDArray exp5('c', {2}, {3.5f,0.833333f}, sd::DataType::FLOAT32);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
x.reduceAlongDimension(sd::reduce::Mean, z1, {0,1,2});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z1.equalsTo(&exp1));
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
x.reduceAlongDimension(sd::reduce::Mean, z2, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z2.equalsTo(&exp2));
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
x.reduceAlongDimension(sd::reduce::Mean, z3, {0,2});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z3.equalsTo(&exp3));
|
|
|
|
|
|
|
|
x.permutei({1,0,2}); // 3x2x2
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
x.reduceAlongDimension(sd::reduce::Mean, z1, {0,1,2});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z1.equalsTo(&exp1));
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
x.reduceAlongDimension(sd::reduce::Mean, z4, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z4.equalsTo(&exp4));
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
x.reduceAlongDimension(sd::reduce::Mean, z5, {0,2});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z5.equalsTo(&exp5));
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, reduceAlongDimension_float_test2) {
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray x('c', {2,3,2}, {1,2,3,4,5,6,7,8,-1,-2,-3,-4,}, sd::DataType::DOUBLE);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray exp1('c', {}, std::vector<double>{2.166667}, sd::DataType::DOUBLE);
|
|
|
|
NDArray exp2('c', {2,2}, {3,4,1,0.666667}, sd::DataType::DOUBLE);
|
|
|
|
NDArray exp3('c', {3}, {4.5,1,1}, sd::DataType::DOUBLE);
|
|
|
|
NDArray exp4('c', {3,2}, {4,5,1,1,1,1}, sd::DataType::DOUBLE);
|
|
|
|
NDArray exp5('c', {2}, {3.5,0.833333}, sd::DataType::DOUBLE);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray z1 = x.reduceAlongDimension(sd::reduce::Mean, {0,1,2});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z1.equalsTo(&exp1));
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray z2 = x.reduceAlongDimension(sd::reduce::Mean, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z2.equalsTo(&exp2));
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray z3 = x.reduceAlongDimension(sd::reduce::Mean, {0,2});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z3.equalsTo(&exp3));
|
|
|
|
|
|
|
|
x.permutei({1,0,2}); // 3x2x2
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray z4 = x.reduceAlongDimension(sd::reduce::Mean, {0,1,2});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z4.equalsTo(&exp1));
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray z5 = x.reduceAlongDimension(sd::reduce::Mean, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z5.equalsTo(&exp4));
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray z6 = x.reduceAlongDimension(sd::reduce::Mean, {0,2});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z6.equalsTo(&exp5));
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, EqualityTest1) {
|
|
|
|
auto arrayA = NDArrayFactory::create_<float>('f', {3, 5});
|
|
|
|
auto arrayB = NDArrayFactory::create_<float>('f', {3, 5});
|
|
|
|
auto arrayC = NDArrayFactory::create_<float>('f', {3, 5});
|
|
|
|
|
|
|
|
auto arrayD = NDArrayFactory::create_<float>('f', {2, 4});
|
|
|
|
auto arrayE = NDArrayFactory::create_<float>('f', {1, 15});
|
|
|
|
|
|
|
|
for (int i = 0; i < arrayA->rows(); i++) {
|
|
|
|
for (int k = 0; k < arrayA->columns(); k++) {
|
|
|
|
arrayA->p(i, k, (float) i);
|
|
|
|
}
|
|
|
|
}
|
2019-11-13 15:15:18 +01:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
for (int i = 0; i < arrayB->rows(); i++) {
|
|
|
|
for (int k = 0; k < arrayB->columns(); k++) {
|
|
|
|
arrayB->p(i, k, (float) i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int i = 0; i < arrayC->rows(); i++) {
|
|
|
|
for (int k = 0; k < arrayC->columns(); k++) {
|
|
|
|
arrayC->p(i, k, (float) i+1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ASSERT_TRUE(arrayA->equalsTo(arrayB, 1e-5));
|
|
|
|
|
|
|
|
ASSERT_FALSE(arrayC->equalsTo(arrayB, 1e-5));
|
|
|
|
|
|
|
|
ASSERT_FALSE(arrayD->equalsTo(arrayB, 1e-5));
|
|
|
|
|
|
|
|
ASSERT_FALSE(arrayE->equalsTo(arrayB, 1e-5));
|
|
|
|
|
|
|
|
delete arrayA;
|
|
|
|
delete arrayB;
|
|
|
|
delete arrayC;
|
|
|
|
delete arrayD;
|
|
|
|
delete arrayE;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, reduceAlongDimension_same_test1) {
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray x('c', {2,3,2}, {1.5f,2.f,3.f,4.f,5.f,6.f,7.5f,8.f,-1.f,-2.f,-3.5f,-4.f}, sd::DataType::FLOAT32);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray z1('c', {}, std::vector<double>{100}, sd::DataType::FLOAT32);
|
|
|
|
NDArray z2('c', {2,2}, {100,100,100,100}, sd::DataType::FLOAT32);
|
|
|
|
NDArray z3('c', {3}, {100,100,100}, sd::DataType::FLOAT32);
|
|
|
|
NDArray z4('c', {3,2}, {100,100,100,100,100,100}, sd::DataType::FLOAT32);
|
|
|
|
NDArray z5('c', {2}, {100,100}, sd::DataType::FLOAT32);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray exp1('c', {}, std::vector<double>{26.5f}, sd::DataType::FLOAT32);
|
|
|
|
NDArray exp2('c', {2,2}, {9.5f,12.f,3.f,2.f}, sd::DataType::FLOAT32);
|
|
|
|
NDArray exp3('c', {3}, {19.f,4.f,3.5f}, sd::DataType::FLOAT32);
|
|
|
|
NDArray exp4('c', {3,2}, {9.f,10.f,2.f,2.f,1.5f,2.f}, sd::DataType::FLOAT32);
|
|
|
|
NDArray exp5('c', {2}, {21.5f,5.f}, sd::DataType::FLOAT32);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
x.reduceAlongDimension(sd::reduce::Sum, z1, {0,1,2});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z1.equalsTo(&exp1));
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
x.reduceAlongDimension(sd::reduce::Sum, z2, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z2.equalsTo(&exp2));
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
x.reduceAlongDimension(sd::reduce::Sum, z3, {0,2});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z3.equalsTo(&exp3));
|
|
|
|
|
|
|
|
x.permutei({1,0,2}); // 3x2x2
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
x.reduceAlongDimension(sd::reduce::Sum, z1, {0,1,2});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z1.equalsTo(&exp1));
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
x.reduceAlongDimension(sd::reduce::Sum, z4, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z4.equalsTo(&exp4));
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
x.reduceAlongDimension(sd::reduce::Sum, z5, {0,2});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z5.equalsTo(&exp5));
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, reduceAlongDimension_same_test2) {
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray x('c', {2,3,2}, {1.5,2,3,4,5,6,7.5,8,-1,-2,-3.5,-4,}, sd::DataType::INT64);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray exp1('c', {}, std::vector<double>{26}, sd::DataType::INT64);
|
|
|
|
NDArray exp2('c', {2,2}, {9,12,3,2}, sd::DataType::INT64);
|
|
|
|
NDArray exp3('c', {3}, {18,4,4}, sd::DataType::INT64);
|
|
|
|
NDArray exp4('c', {3,2}, {8,10,2,2,2,2}, sd::DataType::INT64);
|
|
|
|
NDArray exp5('c', {2}, {21,5}, sd::DataType::INT64);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray z1 = x.reduceAlongDimension(sd::reduce::Sum, {0,1,2});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z1.equalsTo(&exp1));
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray z2 = x.reduceAlongDimension(sd::reduce::Sum, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z2.equalsTo(&exp2));
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray z3 = x.reduceAlongDimension(sd::reduce::Sum, {0,2});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z3.equalsTo(&exp3));
|
|
|
|
|
|
|
|
x.permutei({1,0,2}); // 3x2x2
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray z4 = x.reduceAlongDimension(sd::reduce::Sum, {0,1,2});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z4.equalsTo(&exp1));
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray z5 = x.reduceAlongDimension(sd::reduce::Sum, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z5.equalsTo(&exp4));
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray z6 = x.reduceAlongDimension(sd::reduce::Sum, {0,2});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z6.equalsTo(&exp5));
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, reduceAlongDimension_bool_test1) {
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray x('c', {2,3,2}, {0.5,2,3,-4,5,6,-7.5,8,-1,-0.5,-3.5,4}, sd::DataType::DOUBLE);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray z1('c', {}, std::vector<double>{true}, sd::DataType::BOOL);
|
|
|
|
NDArray z2('c', {2,2}, {true,true,true,true}, sd::DataType::BOOL);
|
|
|
|
NDArray z3('c', {3}, {true,true,true}, sd::DataType::BOOL);
|
|
|
|
NDArray z4('c', {3,2}, {true,true,true,true,true,true}, sd::DataType::BOOL);
|
|
|
|
NDArray z5('c', {2}, {true,true}, sd::DataType::BOOL);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray exp1('c', {}, std::vector<double>{true}, sd::DataType::BOOL);
|
|
|
|
NDArray exp2('c', {2,2}, {true,true,false,true}, sd::DataType::BOOL);
|
|
|
|
NDArray exp3('c', {3}, {true,true,true}, sd::DataType::BOOL);
|
|
|
|
NDArray exp4('c', {3,2}, {true,true,true,false,true,true}, sd::DataType::BOOL);
|
|
|
|
NDArray exp5('c', {2}, {true,true}, sd::DataType::BOOL);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
x.reduceAlongDimension(sd::reduce::IsPositive, z1, {0,1,2});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z1.equalsTo(&exp1));
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
x.reduceAlongDimension(sd::reduce::IsPositive, z2, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z2.equalsTo(&exp2));
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
x.reduceAlongDimension(sd::reduce::IsPositive, z3, {0,2});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z3.equalsTo(&exp3));
|
|
|
|
|
|
|
|
x.permutei({1,0,2}); // 3x2x2
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
x.reduceAlongDimension(sd::reduce::IsPositive, z1, {0,1,2});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z1.equalsTo(&exp1));
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
x.reduceAlongDimension(sd::reduce::IsPositive, z4, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z4.equalsTo(&exp4));
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
x.reduceAlongDimension(sd::reduce::IsPositive, z5, {0,2});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z5.equalsTo(&exp5));
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, reduceAlongDimension_bool_test2) {
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray x('c', {2,3,2}, {0.5,2,3,-4,5,6,-7.5,8,-1,-0.5,-3.5,4}, sd::DataType::INT32);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray exp1('c', {}, std::vector<double>{1}, sd::DataType::BOOL);
|
|
|
|
NDArray exp2('c', {2,2}, {1,1,0,1}, sd::DataType::BOOL);
|
|
|
|
NDArray exp3('c', {3}, {1,1,1}, sd::DataType::BOOL);
|
|
|
|
NDArray exp4('c', {3,2}, {0,1,1,0,1,1}, sd::DataType::BOOL);
|
|
|
|
NDArray exp5('c', {2}, {1,1}, sd::DataType::BOOL);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray z1 = x.reduceAlongDimension(sd::reduce::IsPositive, {0,1,2});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z1.equalsTo(&exp1));
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray z2 = x.reduceAlongDimension(sd::reduce::IsPositive, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z2.equalsTo(&exp2));
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray z3 = x.reduceAlongDimension(sd::reduce::IsPositive, {0,2});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z3.equalsTo(&exp3));
|
|
|
|
|
|
|
|
x.permutei({1,0,2}); // 3x2x2
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray z4 = x.reduceAlongDimension(sd::reduce::IsPositive, {0,1,2});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z4.equalsTo(&exp1));
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray z5 = x.reduceAlongDimension(sd::reduce::IsPositive, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z5.equalsTo(&exp4));
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray z6 = x.reduceAlongDimension(sd::reduce::IsPositive, {0,2});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z6.equalsTo(&exp5));
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, reduceAlongDimension_long_test1) {
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray x('c', {2,3,2}, {0.5f,2.f,3.f,-0.f,5.f,6.f,-7.5f,0.f,-1.f,-0.5f,-3.5f,4.f}, sd::DataType::FLOAT32);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray z1('c', {}, std::vector<double>{100}, sd::DataType::INT64);
|
|
|
|
NDArray z2('c', {2,2}, {100,100,100,100}, sd::DataType::INT64);
|
|
|
|
NDArray z3('c', {3}, {100,100,100}, sd::DataType::INT64);
|
|
|
|
NDArray z4('c', {3,2}, {100,100,100,100,100,100}, sd::DataType::INT64);
|
|
|
|
NDArray z5('c', {2}, {100,100}, sd::DataType::INT64);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray exp1('c', {}, std::vector<double>{2}, sd::DataType::INT64);
|
|
|
|
NDArray exp2('c', {2,2}, {0,1,0,1}, sd::DataType::INT64);
|
|
|
|
NDArray exp3('c', {3}, {1,1,0}, sd::DataType::INT64);
|
|
|
|
NDArray exp4('c', {3,2}, {0,1,0,1,0,0}, sd::DataType::INT64);
|
|
|
|
NDArray exp5('c', {2}, {1,1}, sd::DataType::INT64);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
x.reduceAlongDimension(sd::reduce::CountZero, z1, {0,1,2});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z1.equalsTo(&exp1));
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
x.reduceAlongDimension(sd::reduce::CountZero, z2, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z2.equalsTo(&exp2));
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
x.reduceAlongDimension(sd::reduce::CountZero, z3, {0,2});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z3.equalsTo(&exp3));
|
|
|
|
|
|
|
|
x.permutei({1,0,2}); // 3x2x2
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
x.reduceAlongDimension(sd::reduce::CountZero, z1, {0,1,2});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z1.equalsTo(&exp1));
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
x.reduceAlongDimension(sd::reduce::CountZero, z4, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z4.equalsTo(&exp4));
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
x.reduceAlongDimension(sd::reduce::CountZero, z5, {0,2});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z5.equalsTo(&exp5));
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, reduceAlongDimension_long_test2) {
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray x('c', {2,3,2}, {0.5,2,3,-0,5,6,-7.5,0,-1,-0.5,-3.5,4}, sd::DataType::INT32);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray exp1('c', {}, std::vector<double>{4}, sd::DataType::INT64);
|
|
|
|
NDArray exp2('c', {2,2}, {1,1,0,2}, sd::DataType::INT64);
|
|
|
|
NDArray exp3('c', {3}, {2,2,0}, sd::DataType::INT64);
|
|
|
|
NDArray exp4('c', {3,2}, {1,1,0,2,0,0}, sd::DataType::INT64);
|
|
|
|
NDArray exp5('c', {2}, {2,2}, sd::DataType::INT64);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray z1 = x.reduceAlongDimension(sd::reduce::CountZero, {0,1,2});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z1.equalsTo(&exp1));
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray z2 = x.reduceAlongDimension(sd::reduce::CountZero, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z2.equalsTo(&exp2));
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray z3 = x.reduceAlongDimension(sd::reduce::CountZero, {0,2});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z3.equalsTo(&exp3));
|
|
|
|
|
|
|
|
x.permutei({1,0,2}); // 3x2x2
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray z4 = x.reduceAlongDimension(sd::reduce::CountZero, {0,1,2});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z4.equalsTo(&exp1));
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray z5 = x.reduceAlongDimension(sd::reduce::CountZero, {1});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z5.equalsTo(&exp4));
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray z6 = x.reduceAlongDimension(sd::reduce::CountZero, {0,2});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(z6.equalsTo(&exp5));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, BroadcastOpsTest1) {
|
|
|
|
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {5, 5});
|
|
|
|
auto z = NDArrayFactory::create<float>('c', {5, 5});
|
|
|
|
auto row = NDArrayFactory::linspace(1.0f, 5.0f, 5);
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray expRow('c', {1, 5,}, {1,2,3,4,5}, sd::DataType::FLOAT32);
|
|
|
|
NDArray exp('c', {5,5}, {1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5}, sd::DataType::FLOAT32);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_TRUE(row->equalsTo(&expRow));
|
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
x.applyBroadcast(broadcast::Add, {1}, *row, z);
|
2019-06-06 14:21:15 +02:00
|
|
|
x += *row;
|
|
|
|
|
|
|
|
ASSERT_TRUE(x.equalsTo(z));
|
|
|
|
//ASSERT_TRUE(z.equalsTo(&exp));
|
|
|
|
|
|
|
|
delete row;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, BroadcastOpsTest2) {
|
|
|
|
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {5, 5});
|
|
|
|
//auto z = NDArrayFactory::create<float>('c', {5, 5});
|
|
|
|
auto row = NDArrayFactory::linspace(1.0f, 5.0f, 5);
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray expRow('c', {1, 5,}, {1,2,3,4,5}, sd::DataType::FLOAT32);
|
|
|
|
NDArray exp('c', {5,5}, {1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5}, sd::DataType::FLOAT32);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_TRUE(row->equalsTo(&expRow));
|
2019-12-20 20:35:39 +01:00
|
|
|
x.applyBroadcast(broadcast::Add, {1}, *row, x);
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(x.equalsTo(&exp));
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, TestBroadcast_1) {
|
|
|
|
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray exp('c', {2, 3, 2, 2}, {1., 1., 1., 1., 2., 2., 2., 2., 3., 3., 3., 3., 1., 1., 1., 1., 2., 2., 2., 2., 3., 3., 3., 3.}, sd::DataType::DOUBLE);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
auto input = NDArrayFactory::create<double>('c',{ 2, 3, 2, 2});
|
|
|
|
auto bias = NDArrayFactory::create<double>('c', {1, 3});
|
|
|
|
|
|
|
|
bias.linspace(1);
|
2019-12-20 20:35:39 +01:00
|
|
|
input.applyBroadcast(broadcast::Add, {1}, bias, input);
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(exp.equalsTo(&input));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, TestFloat16_1) {
|
|
|
|
auto x = NDArrayFactory::create<float>({1,2,3,4,5,7,8,9});
|
|
|
|
auto y = NDArrayFactory::create<float>({1,2,3,4,5,7,8,9});
|
|
|
|
ASSERT_TRUE(x.equalsTo(&y));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, TestFloat16_2) {
|
2019-08-02 19:01:03 +02:00
|
|
|
auto x = NDArrayFactory::create<float16>('c', {9}, {1,2,3,4,5,6,7,8,9});
|
|
|
|
auto y = NDArrayFactory::create<float16>('c', {9}, {1,2,3,4,5,6,7,8,9});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(x.equalsTo(y));
|
|
|
|
//for (int e = 0; e < x.lengthOf(); e++)
|
|
|
|
// ASSERT_NEAR(x.e<float16>(e), y.e<float16>(e), 1.e-5f);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, TestFloat16_3) {
|
|
|
|
auto x = NDArrayFactory::create<bfloat16>({1,2,3,4,5,7,8,9});
|
|
|
|
auto y = NDArrayFactory::create<bfloat16>({1,2,3,4,5,7,8,9});
|
|
|
|
ASSERT_TRUE(x.equalsTo(&y));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, TestFloat_4) {
|
|
|
|
auto x = NDArrayFactory::create<float>({1,2,3,4,5,7,8,9});
|
|
|
|
auto y = NDArrayFactory::create<float>({2,4,5,5,6,7,8,9});
|
|
|
|
ASSERT_FALSE(x.equalsTo(&y));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, TestFloat_5) {
|
2019-08-02 19:01:03 +02:00
|
|
|
auto x = NDArrayFactory::create<float>('c', {3,3}, {1,2,3,4,5,6,7,8,9});
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {3,3}, {2,4,5,5,6,7,8,9, 10});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_FALSE(x.equalsTo(&y));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, TestFloat_6) {
|
2019-08-02 19:01:03 +02:00
|
|
|
auto x = NDArrayFactory::create<float>('f', {3,3}, {1,2,3,4,5,6,7,8,9});
|
|
|
|
auto y = NDArrayFactory::create<float>('f', {3,3}, {2,4,5,5,6,7,8,9,10});
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_FALSE(x.equalsTo(&y));
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, Operator_Plus_Test_05)
|
|
|
|
{
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {8, 8, 8});
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {1, 8, 8});
|
|
|
|
auto expected = NDArrayFactory::create<float>('c', {8, 8, 8});
|
|
|
|
NDArray res2 = NDArrayFactory::create<float>(expected.ordering(), expected.getShapeAsVector());
|
|
|
|
x = 1.;
|
|
|
|
y = 2.;
|
|
|
|
expected = 3.;
|
|
|
|
res2 = 0.f;
|
|
|
|
|
2019-12-20 20:35:39 +01:00
|
|
|
x.applyTrueBroadcast(BroadcastOpsTuple::Add(), y, res2);// *= y;
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(&res2));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(&res2));
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, Operator_Plus_Test_5)
|
|
|
|
{
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {8, 8, 8});
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {8, 1, 8});
|
|
|
|
auto expected = NDArrayFactory::create<float>('c', {8, 8, 8});
|
|
|
|
NDArray res2(expected);
|
|
|
|
x = 1.;
|
|
|
|
y = 2.;
|
|
|
|
expected = 3.;
|
|
|
|
//x.printBuffer("X=");
|
|
|
|
//y.printBuffer("Y=");
|
|
|
|
//expected.printBuffer("EXPECTED");
|
|
|
|
auto result = x + y;
|
|
|
|
//result.printBuffer("1 + 2 =");
|
|
|
|
//res2.assign(x + y);
|
|
|
|
|
|
|
|
//x.applyTrueBroadcast(BroadcastOpsTuple::Add(), &y, &res2);
|
|
|
|
//res2.printBuffer("Z=");
|
|
|
|
//x.applyTrueBroadcast(BroadcastOpsTuple::Add(), &y, &res2);// *= y;
|
|
|
|
// x += y;
|
|
|
|
//x.printBuffer("OutputX");
|
|
|
|
//res2.syncToHost();
|
|
|
|
//res2.printBuffer("OUputZ");
|
|
|
|
//x.printIndexedBuffer("OUtputX");
|
|
|
|
ASSERT_TRUE(expected.isSameShape(&result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(&result));
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, Operator_Plus_Test_51)
|
|
|
|
{
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {8, 8, 8});
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {8, 8});
|
|
|
|
auto expected = NDArrayFactory::create<float>('c', {8, 8, 8});
|
|
|
|
NDArray res2(expected);
|
|
|
|
x = 1.;
|
|
|
|
y = 2.;
|
|
|
|
expected = 3.;
|
|
|
|
//x.printBuffer("X=");
|
|
|
|
//y.printBuffer("Y=");
|
|
|
|
//expected.printBuffer("EXPECTED");
|
|
|
|
auto result = x + y;
|
|
|
|
//result.printBuffer("1 + 2 =");
|
|
|
|
//res2.assign(x + y);
|
|
|
|
|
|
|
|
//x.applyTrueBroadcast(BroadcastOpsTuple::Add(), &y, &res2);
|
|
|
|
//res2.printBuffer("Z=");
|
|
|
|
//x.applyTrueBroadcast(BroadcastOpsTuple::Add(), &y, &res2);// *= y;
|
|
|
|
// x += y;
|
|
|
|
//x.printBuffer("OutputX");
|
|
|
|
//res2.syncToHost();
|
|
|
|
//res2.printBuffer("OUputZ");
|
|
|
|
//x.printIndexedBuffer("OUtputX");
|
|
|
|
ASSERT_TRUE(expected.isSameShape(&result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(&result));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, Tile_Test_2_1)
|
|
|
|
{
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {2, 1, 2});
|
|
|
|
x = 10.;
|
|
|
|
auto y = x.tile({1,2,1});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {2, 2, 2});
|
|
|
|
exp = 10.;
|
|
|
|
|
|
|
|
// y.printShapeInfo("Output SHAPE");
|
|
|
|
// y.printBuffer("Output TILE");
|
|
|
|
// exp.printBuffer("Expect TILE");
|
|
|
|
ASSERT_TRUE(exp.equalsTo(y));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, Tile_Test_2_2)
|
|
|
|
{
|
|
|
|
auto x = NDArrayFactory::create<float>('f', {2, 1, 2});
|
|
|
|
x = 10.;
|
|
|
|
auto y = x.tile({1,2,1});
|
|
|
|
auto exp = NDArrayFactory::create<float>('f', {2, 2, 2});
|
|
|
|
exp = 10.;
|
|
|
|
ASSERT_TRUE(exp.equalsTo(y));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, Tile_Test_2_3)
|
|
|
|
{
|
|
|
|
auto x = NDArrayFactory::create<float>('f', {2, 1, 2});
|
|
|
|
x = 10.;
|
|
|
|
x.p(1,0,1, 20);
|
|
|
|
x.syncToDevice();
|
|
|
|
auto y = x.tile({1,2,1});
|
|
|
|
auto exp = NDArrayFactory::create<float>('f', {2, 2, 2});
|
|
|
|
exp = 10.;
|
|
|
|
exp.p(1,0,1, 20.);
|
|
|
|
exp.p(1, 1, 1, 20.);
|
|
|
|
exp.syncToDevice();
|
|
|
|
ASSERT_TRUE(exp.equalsTo(y));
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, Operator_Plus_Test_2)
|
|
|
|
{
|
|
|
|
double expBuff[] = {2., 3, 3., 4., 4., 5, 5., 6., 6., 7, 7., 8.};
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray a('c', {4,4}, {1,2,3,4,5,6,7,8,9,2,3,2,1,0,4,7}, sd::DataType::FLOAT32);
|
2019-06-06 14:21:15 +02:00
|
|
|
auto x = NDArrayFactory::create<double>('c', {3, 2, 1});
|
|
|
|
auto y = NDArrayFactory::create<double>('c', {1, 2});
|
|
|
|
auto expected = NDArrayFactory::create<double>(expBuff, 'c', {3, 2, 2});
|
|
|
|
|
|
|
|
x.linspace(1);
|
|
|
|
y.linspace(1);
|
|
|
|
auto result = x + y;
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.isSameShape(&result));
|
|
|
|
ASSERT_TRUE(expected.equalsTo(&result));
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, assign_2)
|
|
|
|
{
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray x('c', {4}, {1.5f,2.5f,3.5f,4.5f}, sd::DataType::FLOAT32);
|
|
|
|
NDArray y('c', {4}, sd::DataType::INT32);
|
|
|
|
NDArray expected('c', {4}, {1,2,3,4}, sd::DataType::INT32);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
y.assign(x);
|
|
|
|
// y.printBuffer("ASSIGN VECTOR");
|
|
|
|
|
|
|
|
ASSERT_TRUE(expected.equalsTo(&y));
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, subarray_1)
|
|
|
|
{
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray x('c', {2,3,4}, {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24}, sd::DataType::FLOAT32);
|
|
|
|
NDArray y('f', {2,3,4}, {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24}, sd::DataType::FLOAT32);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-07 14:29:17 +02:00
|
|
|
Nd4jLong shapeExpX0[] = {1, 2, 12, 8192, 1, 99};
|
2019-12-06 09:10:44 +01:00
|
|
|
float buffExpX0[] = {1.f, 13.f};
|
2019-08-07 14:29:17 +02:00
|
|
|
Nd4jLong shapeExpX1[] = {1, 2, 12, 8192, 1, 99};
|
2019-12-06 09:10:44 +01:00
|
|
|
float buffExpX1[] = {2.f, 14.f};
|
2019-08-07 14:29:17 +02:00
|
|
|
Nd4jLong shapeExpX2[] = {3, 2, 1, 1, 12, 4, 1, 8192, 1, 99};
|
2019-12-06 09:10:44 +01:00
|
|
|
float buffExpX2[] = {1.f, 13.f};
|
2019-08-07 14:29:17 +02:00
|
|
|
Nd4jLong shapeExpX3[] = {2, 2, 4, 12, 1, 8192, 1, 99};
|
2019-12-06 09:10:44 +01:00
|
|
|
float buffExpX3[] = {9.f, 10.f, 11.f, 12.f, 21.f, 22.f, 23.f, 24.f};
|
2019-08-07 14:29:17 +02:00
|
|
|
Nd4jLong shapeExpX4[] = {3, 2, 1, 4, 12, 4, 1, 8192, 1, 99};
|
2019-12-06 09:10:44 +01:00
|
|
|
float buffExpX4[] = {9.f, 10.f, 11.f, 12.f, 21.f, 22.f, 23.f, 24.f};
|
2019-08-07 14:29:17 +02:00
|
|
|
Nd4jLong shapeExpX5[] = {2, 2, 3, 12, 4, 8192, 1, 99};
|
2019-12-06 09:10:44 +01:00
|
|
|
float buffExpX5[] = {4.f, 8.f, 12.f, 16.f, 20.f, 24.f};
|
2019-06-06 14:21:15 +02:00
|
|
|
|
2019-08-07 14:29:17 +02:00
|
|
|
Nd4jLong shapeExpY0[] = {1, 2, 1, 8192, 1, 99};
|
2019-12-06 09:10:44 +01:00
|
|
|
float buffExpY0[] = {1.f, 2.f};
|
2019-08-07 14:29:17 +02:00
|
|
|
Nd4jLong shapeExpY1[] = {1, 2, 1, 8192, 1, 99};
|
2019-12-06 09:10:44 +01:00
|
|
|
float buffExpY1[] = {7.f, 8.f};
|
2019-08-07 14:29:17 +02:00
|
|
|
Nd4jLong shapeExpY2[] = {3, 2, 1, 1, 1, 2, 6, 8192, 1, 102};
|
2019-12-06 09:10:44 +01:00
|
|
|
float buffExpY2[] = {1.f, 2.f};
|
2019-08-07 14:29:17 +02:00
|
|
|
Nd4jLong shapeExpY3[] = {2, 2, 4, 1, 6, 8192, 1, 99};
|
2019-12-06 09:10:44 +01:00
|
|
|
float buffExpY3[] = {5.f, 11.f, 17.f, 23.f, 6.f, 12.f, 18.f, 24.f};
|
2019-08-07 14:29:17 +02:00
|
|
|
Nd4jLong shapeExpY4[] = {3, 2, 1, 4, 1, 2, 6, 8192, 1, 102};
|
2019-12-06 09:10:44 +01:00
|
|
|
float buffExpY4[] = {5.f, 11.f, 17.f, 23.f, 6.f, 12.f, 18.f, 24.f};
|
2019-08-07 14:29:17 +02:00
|
|
|
Nd4jLong shapeExpY5[] = {2, 2, 3, 1, 2, 8192, 1, 99};
|
2019-12-06 09:10:44 +01:00
|
|
|
float buffExpY5[] = {19.f, 21.f, 23.f, 20.f, 22.f, 24.f};
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
|
|
|
|
NDArray x0 = x(0, {1,2});
|
|
|
|
NDArray xExp(buffExpX0, shapeExpX0);
|
2019-08-07 14:29:17 +02:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(xExp.isSameShape(x0));
|
|
|
|
ASSERT_TRUE(xExp.equalsTo(x0));
|
|
|
|
// for(int i = 0; i < shape::shapeInfoLength(x0.rankOf()); ++i)
|
|
|
|
// ASSERT_TRUE(x0.getShapeInfo()[i] == shapeExpX0[i]);
|
|
|
|
// for(int i = 0; i < x0.lengthOf(); ++i)
|
|
|
|
// ASSERT_TRUE(x0.e<float>(i) == buffExpX0[i]);
|
|
|
|
|
|
|
|
NDArray x1 = x(1, {1,2});
|
|
|
|
NDArray x1Exp(buffExpX1, shapeExpX1);
|
|
|
|
ASSERT_TRUE(x1Exp.isSameShape(x1));
|
|
|
|
ASSERT_TRUE(x1Exp.equalsTo(x1));
|
|
|
|
|
|
|
|
// for(int i = 0; i < shape::shapeInfoLength(x1.rankOf()); ++i)
|
|
|
|
// ASSERT_TRUE(x1.getShapeInfo()[i] == shapeExpX1[i]);
|
|
|
|
// for(int i = 0; i < x1.lengthOf(); ++i)
|
|
|
|
// ASSERT_TRUE(x1.e<float>(i) == buffExpX1[i]);
|
|
|
|
|
|
|
|
NDArray x2 = x(0, {1,2}, true);
|
|
|
|
NDArray x2Exp(buffExpX2, shapeExpX2);
|
|
|
|
ASSERT_TRUE(x2Exp.isSameShape(x2));
|
2019-08-07 14:29:17 +02:00
|
|
|
// x2.printBuffer("X2");
|
|
|
|
// x2Exp.printBuffer("X2 EXPECT");
|
2019-06-06 14:21:15 +02:00
|
|
|
ASSERT_TRUE(x2Exp.equalsTo(x2));
|
|
|
|
// for(int i = 0; i < shape::shapeInfoLength(x2.rankOf()); ++i)
|
|
|
|
// ASSERT_TRUE(x2.getShapeInfo()[i] == shapeExpX2[i]);
|
|
|
|
// for(int i = 0; i < x2.lengthOf(); ++i)
|
|
|
|
// ASSERT_TRUE(x2.e<float>(i) == buffExpX2[i]);
|
|
|
|
|
|
|
|
NDArray x3 = x(2, {1});
|
|
|
|
NDArray x3Exp(buffExpX3, shapeExpX3);
|
|
|
|
ASSERT_TRUE(x3Exp.isSameShape(x3));
|
|
|
|
ASSERT_TRUE(x3Exp.equalsTo(x3));
|
|
|
|
// for(int i = 0; i < shape::shapeInfoLength(x3.rankOf()); ++i)
|
|
|
|
// ASSERT_TRUE(x3.getShapeInfo()[i] == shapeExpX3[i]);
|
|
|
|
// for(int i = 0; i < x3.lengthOf(); ++i)
|
|
|
|
// ASSERT_TRUE(x3.e<float>(i) == buffExpX3[i]);
|
|
|
|
|
|
|
|
NDArray x4 = x(2, {1}, true);
|
|
|
|
NDArray x4Exp(buffExpX4, shapeExpX4);
|
|
|
|
ASSERT_TRUE(x4Exp.isSameShape(x4));
|
|
|
|
ASSERT_TRUE(x4Exp.equalsTo(x4));
|
|
|
|
// for(int i = 0; i < shape::shapeInfoLength(x4.rankOf()); ++i)
|
|
|
|
// ASSERT_TRUE(x4.getShapeInfo()[i] == shapeExpX4[i]);
|
|
|
|
// for(int i = 0; i < x4.lengthOf(); ++i)
|
|
|
|
// ASSERT_TRUE(x4.e<float>(i) == buffExpX4[i]);
|
|
|
|
|
|
|
|
NDArray x5 = x(3, {2});
|
|
|
|
NDArray x5Exp(buffExpX5, shapeExpX5);
|
|
|
|
ASSERT_TRUE(x5Exp.isSameShape(x5));
|
|
|
|
ASSERT_TRUE(x5Exp.equalsTo(x5));
|
|
|
|
|
|
|
|
// for(int i = 0; i < shape::shapeInfoLength(x5.rankOf()); ++i)
|
|
|
|
// ASSERT_TRUE(x5.getShapeInfo()[i] == shapeExpX5[i]);
|
|
|
|
// for(int i = 0; i < x5.lengthOf(); ++i)
|
|
|
|
// ASSERT_TRUE(x5.e<float>(i) == buffExpX5[i]);
|
|
|
|
|
|
|
|
// ******************* //
|
|
|
|
NDArray y0 = y(0, {1,2});
|
|
|
|
NDArray y0Exp(buffExpY0, shapeExpY0);
|
|
|
|
ASSERT_TRUE(y0Exp.isSameShape(y0));
|
|
|
|
ASSERT_TRUE(y0Exp.equalsTo(y0));
|
|
|
|
// for(int i = 0; i < shape::shapeInfoLength(y0.rankOf()); ++i)
|
|
|
|
// ASSERT_TRUE(y0.getShapeInfo()[i] == shapeExpY0[i]);
|
|
|
|
// for(int i = 0; i < y0.lengthOf(); ++i)
|
|
|
|
// ASSERT_TRUE(y0.e<float>(i) == buffExpY0[i]);
|
|
|
|
|
|
|
|
NDArray y1 = y(1, {1,2});
|
2019-08-07 14:29:17 +02:00
|
|
|
NDArray y1Exp(buffExpY1, shapeExpY1);
|
|
|
|
ASSERT_TRUE(y1Exp.isSameShape(y1));
|
|
|
|
ASSERT_TRUE(y1Exp.equalsTo(y1));
|
|
|
|
// for(int i = 0; i < shape::shapeInfoLength(y1.rankOf()); ++i)
|
|
|
|
// ASSERT_TRUE(y1.getShapeInfo()[i] == shapeExpY1[i]);
|
|
|
|
// for(int i = 0; i < y1.lengthOf(); ++i)
|
|
|
|
// ASSERT_TRUE(y1.e<float>(i) == buffExpY1[i]);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
NDArray y2 = y(0, {1,2}, true);
|
2019-08-07 14:29:17 +02:00
|
|
|
NDArray y2Exp(buffExpY2, shapeExpY2);
|
|
|
|
ASSERT_TRUE(y2Exp.isSameShape(y2));
|
|
|
|
ASSERT_TRUE(y2Exp.equalsTo(y2));
|
|
|
|
// for(int i = 0; i < shape::shapeInfoLength(y2.rankOf()); ++i)
|
|
|
|
// ASSERT_TRUE(y2.getShapeInfo()[i] == shapeExpY2[i]);
|
|
|
|
// for(int i = 0; i < y2.lengthOf(); ++i)
|
|
|
|
// ASSERT_TRUE(y2.e<float>(i) == buffExpY2[i]);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
NDArray y3 = y(2, {1});
|
2019-08-07 14:29:17 +02:00
|
|
|
NDArray y3Exp(buffExpY3, shapeExpY3);
|
|
|
|
ASSERT_TRUE(y3Exp.isSameShape(y3));
|
|
|
|
ASSERT_TRUE(y3Exp.equalsTo(y3));
|
|
|
|
// for(int i = 0; i < shape::shapeInfoLength(y3.rankOf()); ++i)
|
|
|
|
// ASSERT_TRUE(y3.getShapeInfo()[i] == shapeExpY3[i]);
|
|
|
|
// for(int i = 0; i < y3.lengthOf(); ++i)
|
|
|
|
// ASSERT_TRUE(y3.e<float>(i) == buffExpY3[i]);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
NDArray y4 = y(2, {1}, true);
|
2019-08-07 14:29:17 +02:00
|
|
|
NDArray y4Exp = NDArrayFactory::create<float>('f', {2,1,4}, {5, 6, 11, 12, 17, 18, 23, 24});
|
|
|
|
ASSERT_TRUE(y4Exp.isSameShape(y4));
|
|
|
|
ASSERT_TRUE(y4Exp.equalsTo(y4));
|
|
|
|
// for(int i = 0; i < shape::shapeInfoLength(y4.rankOf()); ++i)
|
|
|
|
// ASSERT_TRUE(y4.getShapeInfo()[i] == shapeExpY4[i]);
|
|
|
|
// for(int i = 0; i < y4.lengthOf(); ++i)
|
|
|
|
// ASSERT_TRUE(y4.e<float>(i) == buffExpY4[i]);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
NDArray y5 = y(3, {2});
|
2019-08-07 14:29:17 +02:00
|
|
|
NDArray y5Exp(buffExpY5, shapeExpY5);
|
|
|
|
ASSERT_TRUE(y5Exp.isSameShape(y5));
|
|
|
|
ASSERT_TRUE(y5Exp.equalsTo(y5));
|
|
|
|
// for(int i = 0; i < shape::shapeInfoLength(y5.rankOf()); ++i)
|
|
|
|
// ASSERT_TRUE(y5.getShapeInfo()[i] == shapeExpY5[i]);
|
|
|
|
// for(int i = 0; i < y5.lengthOf(); ++i)
|
|
|
|
// ASSERT_TRUE(y5.e<float>(i) == buffExpY5[i]);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, Test_diagonal_1) {
|
|
|
|
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {2, 3}, {1, 2, 3, 4, 5, 6});
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {2, 1}, {1, 5});
|
|
|
|
|
|
|
|
auto diag = x.diagonal('c');
|
2019-12-20 20:35:39 +01:00
|
|
|
//diag.syncToDevice();
|
2019-06-06 14:21:15 +02:00
|
|
|
for (Nd4jLong e = 0; e < exp.lengthOf(); ++e) {
|
2019-12-20 20:35:39 +01:00
|
|
|
printf("VAL[%ld] = %f\n", e, diag.e<float>(e)); //, exp.e<float>(e), 1.e-5);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
2019-11-13 15:15:18 +01:00
|
|
|
|
2019-06-06 14:21:15 +02:00
|
|
|
for (Nd4jLong e = 0; e < exp.lengthOf(); ++e) {
|
2019-12-20 20:35:39 +01:00
|
|
|
ASSERT_NEAR(diag.e<float>(e), exp.e<float>(e), 1.e-5);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
double eps(1.e-5);
|
2020-03-02 10:49:41 +01:00
|
|
|
NDArray tmp(sd::DataType::FLOAT32, x.getContext()); // scalar = 0
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ExtraArguments extras({eps});
|
2019-12-20 20:35:39 +01:00
|
|
|
NativeOpExecutioner::execReduce3Scalar(diag.getContext(), reduce3::EqualsWithEps, diag.getBuffer(),
|
2020-03-02 10:49:41 +01:00
|
|
|
diag.getShapeInfo(), diag.getSpecialBuffer(), diag.getSpecialShapeInfo(), extras.argumentsAsT(sd::DataType::FLOAT32),
|
2019-06-06 14:21:15 +02:00
|
|
|
exp.getBuffer(), exp.getShapeInfo(), exp.getSpecialBuffer(), exp.getSpecialShapeInfo(),
|
|
|
|
tmp.buffer(), tmp.shapeInfo(), tmp.specialBuffer(), tmp.specialShapeInfo());
|
|
|
|
cudaStream_t* stream = x.getContext()->getCudaStream();
|
|
|
|
auto res = cudaStreamSynchronize(*stream);
|
|
|
|
// tmp.printBuffer("Compare result is (expected 0)");
|
|
|
|
ASSERT_TRUE(exp.isSameShape(diag));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(diag));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, Test_PermuteEquality_02) {
|
|
|
|
auto x = NDArrayFactory::linspace<float>(1.f, 60.f, 60); //('c', {1, 60});
|
|
|
|
//x.linspace(1);
|
2019-12-06 09:10:44 +01:00
|
|
|
auto exp = NDArrayFactory::create<float>('c', {3, 4, 5}, {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f, 11.0f, 12.0f, 13.0f, 14.0f, 15.0f, 16.0f, 17.0f, 18.0f, 19.0f, 20.0f, 21.0f, 22.0f, 23.0f, 24.0f, 25.0f, 26.0f, 27.0f, 28.0f, 29.0f, 30.0f, 31.0f, 32.0f, 33.0f, 34.0f, 35.0f, 36.0f, 37.0f, 38.0f, 39.0f, 40.0f, 41.0f, 42.0f, 43.0f, 44.0f, 45.0f, 46.0f, 47.0f, 48.0f, 49.0f, 50.0f, 51.0f, 52.0f, 53.0f, 54.0f, 55.0f, 56.0f, 57.0f, 58.0f, 59.0f, 60.0});
|
2019-06-06 14:21:15 +02:00
|
|
|
x->reshapei('c', {3, 4, 5});
|
|
|
|
|
|
|
|
x->permutei({0, 1, 2});
|
|
|
|
x->streamline();
|
|
|
|
|
|
|
|
// x.printShapeInfo("{0, 1, 2} shape");
|
|
|
|
// x.printBuffer("{0, 1, 2} data");
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(x));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(x));
|
|
|
|
delete x;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, Test_PermuteEquality_0) {
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {1, 60});
|
|
|
|
x.linspace(1);
|
2019-12-06 09:10:44 +01:00
|
|
|
auto exp = NDArrayFactory::create<float>('c', {3, 4, 5}, {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f, 11.0f, 12.0f, 13.0f, 14.0f, 15.0f, 16.0f, 17.0f, 18.0f, 19.0f, 20.0f, 21.0f, 22.0f, 23.0f, 24.0f, 25.0f, 26.0f, 27.0f, 28.0f, 29.0f, 30.0f, 31.0f, 32.0f, 33.0f, 34.0f, 35.0f, 36.0f, 37.0f, 38.0f, 39.0f, 40.0f, 41.0f, 42.0f, 43.0f, 44.0f, 45.0f, 46.0f, 47.0f, 48.0f, 49.0f, 50.0f, 51.0f, 52.0f, 53.0f, 54.0f, 55.0f, 56.0f, 57.0f, 58.0f, 59.0f, 60.0});
|
2019-06-06 14:21:15 +02:00
|
|
|
x.reshapei('c', {3, 4, 5});
|
|
|
|
|
|
|
|
x.permutei({0, 1, 2});
|
|
|
|
x.streamline();
|
|
|
|
|
|
|
|
// x.printShapeInfo("{0, 1, 2} shape");
|
|
|
|
// x.printBuffer("{0, 1, 2} data");
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(&x));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(&x));
|
|
|
|
}
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, Test_PermuteEquality_1) {
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {1, 60});
|
|
|
|
x.linspace(1);
|
2019-12-06 09:10:44 +01:00
|
|
|
auto exp = NDArrayFactory::create<float>('c', {3, 4, 5}, {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f, 11.0f, 12.0f, 13.0f, 14.0f, 15.0f, 16.0f, 17.0f, 18.0f, 19.0f, 20.0f, 21.0f, 22.0f, 23.0f, 24.0f, 25.0f, 26.0f, 27.0f, 28.0f, 29.0f, 30.0f, 31.0f, 32.0f, 33.0f, 34.0f, 35.0f, 36.0f, 37.0f, 38.0f, 39.0f, 40.0f, 41.0f, 42.0f, 43.0f, 44.0f, 45.0f, 46.0f, 47.0f, 48.0f, 49.0f, 50.0f, 51.0f, 52.0f, 53.0f, 54.0f, 55.0f, 56.0f, 57.0f, 58.0f, 59.0f, 60.0});
|
2019-06-06 14:21:15 +02:00
|
|
|
x.reshapei('c', {3, 4, 5});
|
|
|
|
|
|
|
|
x.permutei({0, 1, 2});
|
|
|
|
x.streamline();
|
|
|
|
|
|
|
|
// x.printShapeInfo("{0, 1, 2} shape");
|
|
|
|
// x.printBuffer("{0, 1, 2} data");
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(&x));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(&x));
|
|
|
|
}
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, Test_PermuteEquality_2) {
|
|
|
|
//auto x = NDArrayFactory::create<float>('c', {1, 60});
|
|
|
|
auto xx = NDArrayFactory::linspace<float>(1.f, 60.f, 60); //('c', {1, 60});
|
|
|
|
// auto x = *xx;
|
|
|
|
//x.linspace(1);
|
2019-12-06 09:10:44 +01:00
|
|
|
// auto exp = NDArrayFactory::create<float>('c', {3, 4, 5}, {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f, 11.0f, 12.0f, 13.0f, 14.0f, 15.0f, 16.0f, 17.0f, 18.0f, 19.0f, 20.0f, 21.0f, 22.0f, 23.0f, 24.0f, 25.0f, 26.0f, 27.0f, 28.0f, 29.0f, 30.0f, 31.0f, 32.0f, 33.0f, 34.0f, 35.0f, 36.0f, 37.0f, 38.0f, 39.0f, 40.0f, 41.0f, 42.0f, 43.0f, 44.0f, 45.0f, 46.0f, 47.0f, 48.0f, 49.0f, 50.0f, 51.0f, 52.0f, 53.0f, 54.0f, 55.0f, 56.0f, 57.0f, 58.0f, 59.0f, 60.0});
|
2019-06-06 14:21:15 +02:00
|
|
|
// x.reshapei('c', {3, 4, 5});
|
|
|
|
|
|
|
|
// x.permutei({0, 1, 2});
|
|
|
|
// x.streamline();
|
|
|
|
|
|
|
|
// x.printShapeInfo("{0, 1, 2} shape");
|
|
|
|
// x.printBuffer("{0, 1, 2} data");
|
|
|
|
|
|
|
|
// ASSERT_TRUE(exp.isSameShape(&x));
|
|
|
|
// ASSERT_TRUE(exp.equalsTo(&x));
|
|
|
|
delete xx;
|
|
|
|
}
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, Test_PermuteEquality_3) {
|
|
|
|
auto x = NDArrayFactory::create<float>('c', {1, 60});
|
|
|
|
//x.linspace(1);
|
|
|
|
for (int l = 0; l < x.lengthOf(); l++)
|
|
|
|
x.p(l, float(l + 1.f));
|
2019-12-06 09:10:44 +01:00
|
|
|
auto exp = NDArrayFactory::create<float>('c', {3, 4, 5}, {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f, 11.0f, 12.0f, 13.0f, 14.0f, 15.0f, 16.0f, 17.0f, 18.0f, 19.0f, 20.0f, 21.0f, 22.0f, 23.0f, 24.0f, 25.0f, 26.0f, 27.0f, 28.0f, 29.0f, 30.0f, 31.0f, 32.0f, 33.0f, 34.0f, 35.0f, 36.0f, 37.0f, 38.0f, 39.0f, 40.0f, 41.0f, 42.0f, 43.0f, 44.0f, 45.0f, 46.0f, 47.0f, 48.0f, 49.0f, 50.0f, 51.0f, 52.0f, 53.0f, 54.0f, 55.0f, 56.0f, 57.0f, 58.0f, 59.0f, 60.0});
|
2019-06-06 14:21:15 +02:00
|
|
|
x.reshapei('c', {3, 4, 5});
|
|
|
|
|
|
|
|
x.permutei({0, 1, 2});
|
|
|
|
x.streamline();
|
|
|
|
|
|
|
|
// x.printShapeInfo("{0, 1, 2} shape");
|
|
|
|
// x.printBuffer("{0, 1, 2} data");
|
|
|
|
|
|
|
|
ASSERT_TRUE(exp.isSameShape(&x));
|
|
|
|
ASSERT_TRUE(exp.equalsTo(&x));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, Test_Empty_1) {
|
|
|
|
auto x = NDArrayFactory::empty<float>();
|
|
|
|
ASSERT_TRUE(x.isActualOnHostSide());
|
|
|
|
ASSERT_TRUE(x.isEmpty());
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, Test_Empty_2) {
|
|
|
|
auto x = NDArrayFactory::empty_<float>();
|
|
|
|
|
|
|
|
ASSERT_TRUE(x->isEmpty());
|
|
|
|
delete x;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, Test_Empty_3) {
|
2020-03-02 10:49:41 +01:00
|
|
|
auto x = NDArrayFactory::empty(sd::DataType::FLOAT32);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_TRUE(x.isEmpty());
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(NDArrayCudaBasicsTests, Test_Empty_4) {
|
2020-03-02 10:49:41 +01:00
|
|
|
auto x = NDArrayFactory::empty_(sd::DataType::FLOAT32);
|
2019-06-06 14:21:15 +02:00
|
|
|
|
|
|
|
ASSERT_TRUE(x->isEmpty());
|
|
|
|
delete x;
|
2019-08-27 11:35:14 +02:00
|
|
|
}
|