2020-01-11 05:36:40 +01:00
/*******************************************************************************
* Copyright ( c ) 2015 - 2018 Skymind , Inc .
* Copyright ( c ) 2019 Konduit K . K .
*
* This program and the accompanying materials are made available under the
* terms of the Apache License , Version 2.0 which is available at
* https : //www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing , software
* distributed under the License is distributed on an " AS IS " BASIS , WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND , either express or implied . See the
* License for the specific language governing permissions and limitations
* under the License .
*
* SPDX - License - Identifier : Apache - 2.0
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
//
// @author Yurii Shyrma (iuriish@yahoo.com)
//
# include <ops/declarable/PlatformHelper.h>
# include <ops/declarable/OpRegistrator.h>
2020-03-02 10:49:41 +01:00
# include <system/platform_boilerplate.h>
2020-01-11 05:36:40 +01:00
# include <helpers/MKLDNNStream.h>
# include <ops/declarable/helpers/convolutions.h>
# include "mkldnnUtils.h"
using namespace dnnl ;
2020-03-02 10:49:41 +01:00
namespace sd {
2020-01-11 05:36:40 +01:00
namespace ops {
namespace platforms {
//////////////////////////////////////////////////////////////////////////
static void depthwiseConv2dMKLDNN ( const NDArray * input , const NDArray * weights , const NDArray * bias , NDArray * output ,
const int kH , const int kW , const int sH , const int sW , const int pH , const int pW , const int dH , const int dW ,
const int paddingMode , const bool isNCHW ) {
// mkl supports only following case: mC = 1, oC = iC
// input [bS, iC, iH, iW] nchw or [bS, iH, iW, iC] nhwc, since mkl doesn't support nhwc format we'll permute when nhwc is given
// weights [kH, kW, iC, mC], mkl doesn't support this format, so we'll make permute
// bias [oC], may be nullptr
// output [bS, oC, oH, oW] nchw or [bS, oH, oW, oC] nhwc
// oC = iC*mC
int bS , iC , iH , iW , mC , oC , oH , oW ; // batch size, input channels, input height/width, output channels, output height/width;
int indIOioC , indIiH , indWmC , indWiC , indWkH , indOoH ; // corresponding indexes
ConvolutionUtils : : getSizesAndIndexesConv2d ( isNCHW , * input , * output , bS , iC , iH , iW , oC , oH , oW , indIOioC , indIiH , indWiC , indWmC , indWkH , indOoH ) ;
mC = weights - > sizeAt ( indWmC ) ; // channels multiplier
const int pWSame = ( paddingMode = = 2 & & dW > 1 ) ? ( ( oW - 1 ) * sW + ( kW - 1 ) * dW + 1 - iW ) / 2 : pW ; // dH == 1 for causal mode in conv1d
dnnl : : memory : : dims strides = { sH , sW } ;
dnnl : : memory : : dims padding = { pH , pW } ;
dnnl : : memory : : dims padding_r = { ( oH - 1 ) * sH - iH + kH - pH , ( oW - 1 ) * sW - iW + kW - pWSame } ;
dnnl : : memory : : dims dilation = { dH - 1 , dW - 1 } ;
// input type
dnnl : : memory : : data_type xType ;
if ( input - > dataType ( ) = = DataType : : FLOAT32 )
xType = dnnl : : memory : : data_type : : f32 ;
else if ( input - > dataType ( ) = = DataType : : HALF )
xType = dnnl : : memory : : data_type : : f16 ;
else if ( input - > dataType ( ) = = DataType : : UINT8 )
xType = dnnl : : memory : : data_type : : u8 ;
else
xType = dnnl : : memory : : data_type : : s8 ;
// weights type
dnnl : : memory : : data_type wType = xType ;
if ( xType = = dnnl : : memory : : data_type : : u8 )
wType = dnnl : : memory : : data_type : : s8 ;
// output and bias type (have the same types)
dnnl : : memory : : data_type zType ;
if ( output - > dataType ( ) = = DataType : : FLOAT32 )
zType = dnnl : : memory : : data_type : : f32 ;
else if ( output - > dataType ( ) = = DataType : : HALF )
zType = dnnl : : memory : : data_type : : f16 ;
else if ( output - > dataType ( ) = = DataType : : UINT8 )
zType = dnnl : : memory : : data_type : : u8 ;
else if ( output - > dataType ( ) = = DataType : : INT8 )
zType = dnnl : : memory : : data_type : : s8 ;
else
zType = dnnl : : memory : : data_type : : s32 ;
2020-02-06 19:12:54 +01:00
dnnl : : memory : : format_tag xzFrmat = isNCHW ? dnnl : : memory : : format_tag : : nchw : dnnl : : memory : : format_tag : : nhwc ;
2020-01-11 05:36:40 +01:00
dnnl : : memory : : format_tag wFormat = dnnl : : memory : : format_tag : : goihw ;
dnnl : : memory : : dims xDims = { bS , iC , iH , iW } ;
dnnl : : memory : : dims wDims = { iC , mC , 1 , kH , kW } ;
dnnl : : memory : : dims zDims = { bS , oC , oH , oW } ;
// memory descriptors for arrays
// input
dnnl : : memory : : desc x_mkl_md = dnnl : : memory : : desc ( xDims , xType , dnnl : : memory : : format_tag : : any ) ;
dnnl : : memory : : desc x_user_md = dnnl : : memory : : desc ( xDims , xType , xzFrmat ) ;
2020-02-06 19:12:54 +01:00
if ( input - > ews ( ) ! = 1 | | input - > ordering ( ) ! = ' c ' ) {
x_user_md . data . format_kind = dnnl_blocked ; // overrides format
x_user_md . data . format_desc . blocking . strides [ 0 ] = input - > strideAt ( 0 ) ;
x_user_md . data . format_desc . blocking . strides [ 1 ] = input - > strideAt ( 1 ) ; // do permutation NHWC -> NCHW
x_user_md . data . format_desc . blocking . strides [ 2 ] = input - > strideAt ( 2 ) ;
x_user_md . data . format_desc . blocking . strides [ 3 ] = input - > strideAt ( 3 ) ;
}
2020-01-11 05:36:40 +01:00
// weights, make permute [kH, kW, iC, mC] -> [iC, mC, 1, kH, kW];
dnnl : : memory : : desc w_mkl_md = dnnl : : memory : : desc ( wDims , wType , dnnl : : memory : : format_tag : : any ) ;
dnnl : : memory : : desc w_user_md = dnnl : : memory : : desc ( wDims , wType , wFormat ) ;
w_user_md . data . format_kind = dnnl_blocked ; // overrides format
w_user_md . data . format_desc . blocking . strides [ 0 ] = weights - > strideAt ( 2 ) ; // permute
w_user_md . data . format_desc . blocking . strides [ 1 ] = weights - > strideAt ( 3 ) ;
w_user_md . data . format_desc . blocking . strides [ 2 ] = 0 ;
w_user_md . data . format_desc . blocking . strides [ 3 ] = weights - > strideAt ( 0 ) ;
w_user_md . data . format_desc . blocking . strides [ 4 ] = weights - > strideAt ( 1 ) ;
// bias
dnnl : : memory : : desc b_mkl_md ;
if ( bias ! = nullptr )
b_mkl_md = dnnl : : memory : : desc ( { oC } , zType , dnnl : : memory : : format_tag : : x ) ;
// output
dnnl : : memory : : desc z_mkl_md = dnnl : : memory : : desc ( zDims , zType , dnnl : : memory : : format_tag : : any ) ;
dnnl : : memory : : desc z_user_md = dnnl : : memory : : desc ( zDims , zType , xzFrmat ) ;
2020-02-06 19:12:54 +01:00
if ( output - > ews ( ) ! = 1 | | output - > ordering ( ) ! = ' c ' ) {
z_user_md . data . format_kind = dnnl_blocked ; // overrides format
z_user_md . data . format_desc . blocking . strides [ 0 ] = output - > strideAt ( 0 ) ;
z_user_md . data . format_desc . blocking . strides [ 1 ] = output - > strideAt ( 1 ) ; // do permutation NHWC -> NCHW
z_user_md . data . format_desc . blocking . strides [ 2 ] = output - > strideAt ( 2 ) ;
z_user_md . data . format_desc . blocking . strides [ 3 ] = output - > strideAt ( 3 ) ;
}
2020-01-11 05:36:40 +01:00
auto engine = mkldnnUtils : : getEngine ( LaunchContext : : defaultContext ( ) - > engine ( ) ) ;
// operation primitive description
dnnl : : convolution_forward : : desc op_desc ( dnnl : : prop_kind : : forward_inference , dnnl : : algorithm : : convolution_auto ,
x_mkl_md , w_mkl_md , b_mkl_md , z_mkl_md , strides , dilation , padding , padding_r ) ;
dnnl : : convolution_forward : : primitive_desc op_prim_desc ( op_desc , engine ) ;
// arguments (memory buffers) necessary for calculations
std : : unordered_map < int , dnnl : : memory > args ;
dnnl : : stream stream ( engine ) ;
// provide memory buffers and check whether reorder is required
// input
auto x_user_mem = dnnl : : memory ( x_user_md , engine , input - > getBuffer ( ) ) ;
const bool xReorder = op_prim_desc . src_desc ( ) ! = x_user_mem . get_desc ( ) ;
auto x_mkl_mem = xReorder ? dnnl : : memory ( op_prim_desc . src_desc ( ) , engine ) : x_user_mem ;
if ( xReorder )
dnnl : : reorder ( x_user_mem , x_mkl_mem ) . execute ( stream , x_user_mem , x_mkl_mem ) ;
args [ DNNL_ARG_SRC ] = x_mkl_mem ;
// weights
auto w_user_mem = dnnl : : memory ( w_user_md , engine , weights - > getBuffer ( ) ) ;
const bool wReorder = op_prim_desc . weights_desc ( ) ! = w_user_mem . get_desc ( ) ;
auto w_mkl_mem = wReorder ? dnnl : : memory ( op_prim_desc . weights_desc ( ) , engine ) : w_user_mem ;
if ( wReorder )
dnnl : : reorder ( w_user_mem , w_mkl_mem ) . execute ( stream , w_user_mem , w_mkl_mem ) ;
args [ DNNL_ARG_WEIGHTS ] = w_mkl_mem ;
// bias
if ( bias ! = nullptr ) {
auto b_mkl_mem = dnnl : : memory ( b_mkl_md , engine , bias - > getBuffer ( ) ) ;
args [ DNNL_ARG_BIAS ] = b_mkl_mem ;
}
// output
auto z_user_mem = dnnl : : memory ( z_user_md , engine , output - > getBuffer ( ) ) ;
const bool zReorder = op_prim_desc . dst_desc ( ) ! = z_user_mem . get_desc ( ) ;
auto z_mkl_mem = zReorder ? dnnl : : memory ( op_prim_desc . dst_desc ( ) , engine ) : z_user_mem ;
args [ DNNL_ARG_DST ] = z_mkl_mem ;
// run calculations
dnnl : : convolution_forward ( op_prim_desc ) . execute ( stream , args ) ;
// reorder outputs if necessary
if ( zReorder )
dnnl : : reorder ( z_mkl_mem , z_user_mem ) . execute ( stream , z_mkl_mem , z_user_mem ) ;
stream . wait ( ) ;
// shape::printArray(z_mkl_mem.map_data<float>(),8);
}
//////////////////////////////////////////////////////////////////////////
static void depthwiseConv2dNackPropMKLDNN ( const NDArray * input , const NDArray * weights , const NDArray * gradO , NDArray * gradI , NDArray * gradW , NDArray * gradB ,
const int kH , const int kW , const int sH , const int sW , const int pH , const int pW , const int dH , const int dW ,
const int paddingMode , const bool isNCHW ) {
// mkl supports only following case: mC = 1, oC = iC
// input, gradI [bS, iC, iH, iW] nchw or [bS, iH, iW, iC] nhwc, since mkl doesn't support nhwc format we'll permute when nhwc is given
// weights, gradW [kH, kW, iC, mC], mkl doesn't support this format, so we'll make permute
// gradB [oC], may be nullptr
// gradO [bS, oC, oH, oW] nchw or [bS, oH, oW, oC] nhwc
// oC = iC*mC
int bS , iC , iH , iW , mC , oC , oH , oW ; // batch size, input channels, input height/width, output channels, output height/width;
int indIOioC , indIiH , indWmC , indWiC , indWkH , indOoH ; // corresponding indexes
ConvolutionUtils : : getSizesAndIndexesConv2d ( isNCHW , * input , * gradO , bS , iC , iH , iW , oC , oH , oW , indIOioC , indIiH , indWiC , indWmC , indWkH , indOoH ) ;
mC = weights - > sizeAt ( indWmC ) ;
const int pWSame = ( paddingMode = = 2 & & dW > 1 ) ? ( ( oW - 1 ) * sW + ( kW - 1 ) * dW + 1 - iW ) / 2 : pW ; // dH == 1 for causal mode in conv1d
dnnl : : memory : : dims strides = { sH , sW } ;
dnnl : : memory : : dims padding = { pH , pW } ;
dnnl : : memory : : dims padding_r = { ( oH - 1 ) * sH - iH + kH - pH , ( oW - 1 ) * sW - iW + kW - pWSame } ;
dnnl : : memory : : dims dilation = { dH - 1 , dW - 1 } ;
// input type
dnnl : : memory : : data_type xType = input - > dataType ( ) = = DataType : : FLOAT32 ? dnnl : : memory : : data_type : : f32 : dnnl : : memory : : data_type : : bf16 ;
// weights type
dnnl : : memory : : data_type wType = weights - > dataType ( ) = = DataType : : FLOAT32 ? dnnl : : memory : : data_type : : f32 : dnnl : : memory : : data_type : : bf16 ;
// gradO type
dnnl : : memory : : data_type gradOType = gradO - > dataType ( ) = = DataType : : FLOAT32 ? dnnl : : memory : : data_type : : f32 : dnnl : : memory : : data_type : : bf16 ;
// gradI type
dnnl : : memory : : data_type gradIType = gradI - > dataType ( ) = = DataType : : FLOAT32 ? dnnl : : memory : : data_type : : f32 : dnnl : : memory : : data_type : : bf16 ;
// gradW type
dnnl : : memory : : data_type gradWType = gradW - > dataType ( ) = = DataType : : FLOAT32 ? dnnl : : memory : : data_type : : f32 : dnnl : : memory : : data_type : : bf16 ;
// gradB type
dnnl : : memory : : data_type gradBType = gradB ! = nullptr ? ( gradB - > dataType ( ) = = DataType : : FLOAT32 ? dnnl : : memory : : data_type : : f32 : dnnl : : memory : : data_type : : bf16 ) : dnnl : : memory : : data_type : : f32 ;
2020-02-06 19:12:54 +01:00
dnnl : : memory : : format_tag xzFrmat = isNCHW ? dnnl : : memory : : format_tag : : nchw : dnnl : : memory : : format_tag : : nhwc ;
2020-01-11 05:36:40 +01:00
dnnl : : memory : : format_tag wFormat = dnnl : : memory : : format_tag : : goihw ;
dnnl : : memory : : dims xDims = { bS , iC , iH , iW } ;
dnnl : : memory : : dims wDims = { iC , mC , 1 , kH , kW } ;
dnnl : : memory : : dims zDims = { bS , oC , oH , oW } ;
// memory descriptors for arrays
// input
dnnl : : memory : : desc x_mkl_md = dnnl : : memory : : desc ( xDims , xType , dnnl : : memory : : format_tag : : any ) ;
2020-02-06 19:12:54 +01:00
dnnl : : memory : : desc x_user_md = dnnl : : memory : : desc ( xDims , xType , xzFrmat ) ;
if ( input - > ews ( ) ! = 1 | | input - > ordering ( ) ! = ' c ' ) {
x_user_md . data . format_kind = dnnl_blocked ; // overrides format
x_user_md . data . format_desc . blocking . strides [ 0 ] = input - > strideAt ( 0 ) ;
x_user_md . data . format_desc . blocking . strides [ 1 ] = input - > strideAt ( 1 ) ;
x_user_md . data . format_desc . blocking . strides [ 2 ] = input - > strideAt ( 2 ) ;
x_user_md . data . format_desc . blocking . strides [ 3 ] = input - > strideAt ( 3 ) ;
}
2020-01-11 05:36:40 +01:00
// weights, make permute [kH, kW, iC, mC] -> [iC, mC, 1, kH, kW];
dnnl : : memory : : desc w_mkl_md = dnnl : : memory : : desc ( wDims , wType , dnnl : : memory : : format_tag : : any ) ;
dnnl : : memory : : desc w_user_md = dnnl : : memory : : desc ( wDims , wType , wFormat ) ;
w_user_md . data . format_kind = dnnl_blocked ; // overrides format
w_user_md . data . format_desc . blocking . strides [ 0 ] = weights - > strideAt ( 2 ) ; // permute
w_user_md . data . format_desc . blocking . strides [ 1 ] = weights - > strideAt ( 3 ) ;
w_user_md . data . format_desc . blocking . strides [ 2 ] = 0 ;
w_user_md . data . format_desc . blocking . strides [ 3 ] = weights - > strideAt ( 0 ) ;
w_user_md . data . format_desc . blocking . strides [ 4 ] = weights - > strideAt ( 1 ) ;
// gradO
dnnl : : memory : : desc gradO_mkl_md = dnnl : : memory : : desc ( zDims , gradOType , dnnl : : memory : : format_tag : : any ) ;
2020-02-06 19:12:54 +01:00
dnnl : : memory : : desc gradO_user_md = dnnl : : memory : : desc ( zDims , gradOType , xzFrmat ) ;
if ( gradO - > ews ( ) ! = 1 | | gradO - > ordering ( ) ! = ' c ' ) {
gradO_user_md . data . format_kind = dnnl_blocked ; // overrides format
gradO_user_md . data . format_desc . blocking . strides [ 0 ] = gradO - > strideAt ( 0 ) ;
gradO_user_md . data . format_desc . blocking . strides [ 1 ] = gradO - > strideAt ( 1 ) ;
gradO_user_md . data . format_desc . blocking . strides [ 2 ] = gradO - > strideAt ( 2 ) ;
gradO_user_md . data . format_desc . blocking . strides [ 3 ] = gradO - > strideAt ( 3 ) ;
}
2020-01-11 05:36:40 +01:00
// gradI
dnnl : : memory : : desc gradI_mkl_md = dnnl : : memory : : desc ( xDims , gradIType , dnnl : : memory : : format_tag : : any ) ;
2020-02-06 19:12:54 +01:00
dnnl : : memory : : desc gradI_user_md = dnnl : : memory : : desc ( xDims , gradIType , xzFrmat ) ;
if ( gradI - > ews ( ) ! = 1 | | gradI - > ordering ( ) ! = ' c ' ) {
gradI_user_md . data . format_kind = dnnl_blocked ; // overrides format
gradI_user_md . data . format_desc . blocking . strides [ 0 ] = gradI - > strideAt ( 0 ) ;
gradI_user_md . data . format_desc . blocking . strides [ 1 ] = gradI - > strideAt ( 1 ) ;
gradI_user_md . data . format_desc . blocking . strides [ 2 ] = gradI - > strideAt ( 2 ) ;
gradI_user_md . data . format_desc . blocking . strides [ 3 ] = gradI - > strideAt ( 3 ) ;
}
2020-01-11 05:36:40 +01:00
// gradW, make permute [kH, kW, iC, mC] -> [iC, mC, 1, kH, kW];
dnnl : : memory : : desc gradW_mkl_md = dnnl : : memory : : desc ( wDims , gradWType , dnnl : : memory : : format_tag : : any ) ;
dnnl : : memory : : desc gradW_user_md = dnnl : : memory : : desc ( wDims , gradWType , wFormat ) ;
gradW_user_md . data . format_kind = dnnl_blocked ; // overrides format
gradW_user_md . data . format_desc . blocking . strides [ 0 ] = gradW - > strideAt ( 2 ) ; // permute
gradW_user_md . data . format_desc . blocking . strides [ 1 ] = gradW - > strideAt ( 3 ) ;
gradW_user_md . data . format_desc . blocking . strides [ 2 ] = 0 ;
gradW_user_md . data . format_desc . blocking . strides [ 3 ] = gradW - > strideAt ( 0 ) ;
gradW_user_md . data . format_desc . blocking . strides [ 4 ] = gradW - > strideAt ( 1 ) ;
// gradB
dnnl : : memory : : desc gradB_mkl_md ;
if ( gradB ! = nullptr )
gradB_mkl_md = dnnl : : memory : : desc ( { oC } , gradBType , dnnl : : memory : : format_tag : : x ) ;
auto engine = mkldnnUtils : : getEngine ( LaunchContext : : defaultContext ( ) - > engine ( ) ) ;
// forward primitive description
dnnl : : convolution_forward : : desc op_ff_desc ( dnnl : : prop_kind : : forward_inference , dnnl : : algorithm : : convolution_auto , x_mkl_md , w_mkl_md , gradB_mkl_md , gradO_mkl_md , strides , dilation , padding , padding_r ) ;
dnnl : : convolution_forward : : primitive_desc op_ff_prim_desc ( op_ff_desc , engine ) ;
// backward data primitive description
dnnl : : convolution_backward_data : : desc op_data_bp_desc ( dnnl : : algorithm : : convolution_auto , gradI_mkl_md , w_mkl_md , gradO_mkl_md , strides , dilation , padding , padding_r ) ;
dnnl : : convolution_backward_data : : primitive_desc op_data_bp_prim_desc ( op_data_bp_desc , engine , op_ff_prim_desc ) ;
// backward weights primitive description
dnnl : : convolution_backward_weights : : desc op_weights_bp_desc ( dnnl : : algorithm : : convolution_auto , x_mkl_md , gradW_mkl_md , gradB_mkl_md , gradO_mkl_md , strides , dilation , padding , padding_r ) ;
dnnl : : convolution_backward_weights : : primitive_desc op_weights_bp_prim_desc ( op_weights_bp_desc , engine , op_ff_prim_desc ) ;
// arguments (memory buffers) necessary for calculations
std : : unordered_map < int , dnnl : : memory > args ;
dnnl : : stream stream ( engine ) ;
// provide memory buffers and check whether reorder is required
// input
auto x_user_mem = dnnl : : memory ( x_user_md , engine , input - > getBuffer ( ) ) ;
const bool xReorder = op_weights_bp_prim_desc . src_desc ( ) ! = x_user_mem . get_desc ( ) ;
auto x_mkl_mem = xReorder ? dnnl : : memory ( op_weights_bp_prim_desc . src_desc ( ) , engine ) : x_user_mem ;
if ( xReorder )
dnnl : : reorder ( x_user_mem , x_mkl_mem ) . execute ( stream , x_user_mem , x_mkl_mem ) ;
args [ DNNL_ARG_SRC ] = x_mkl_mem ;
// weights
auto w_user_mem = dnnl : : memory ( w_user_md , engine , weights - > getBuffer ( ) ) ;
const bool wReorder = op_data_bp_prim_desc . weights_desc ( ) ! = w_user_mem . get_desc ( ) ;
auto w_mkl_mem = wReorder ? dnnl : : memory ( op_data_bp_prim_desc . weights_desc ( ) , engine ) : w_user_mem ;
if ( wReorder )
dnnl : : reorder ( w_user_mem , w_mkl_mem ) . execute ( stream , w_user_mem , w_mkl_mem ) ;
args [ DNNL_ARG_WEIGHTS ] = w_mkl_mem ;
// gradO
auto gradO_user_mem = dnnl : : memory ( gradO_user_md , engine , gradO - > getBuffer ( ) ) ;
2020-02-06 19:12:54 +01:00
const bool gradOReorderW = op_weights_bp_prim_desc . diff_dst_desc ( ) ! = gradO_user_mem . get_desc ( ) ;
const bool gradOReorderD = op_data_bp_prim_desc . diff_dst_desc ( ) ! = gradO_user_mem . get_desc ( ) ;
auto gradO_mkl_memW = gradOReorderW ? dnnl : : memory ( op_weights_bp_prim_desc . diff_dst_desc ( ) , engine ) : gradO_user_mem ;
auto gradO_mkl_memD = gradOReorderD ? dnnl : : memory ( op_data_bp_prim_desc . diff_dst_desc ( ) , engine ) : gradO_user_mem ;
if ( gradOReorderW )
dnnl : : reorder ( gradO_user_mem , gradO_mkl_memW ) . execute ( stream , gradO_user_mem , gradO_mkl_memW ) ;
if ( gradOReorderD )
dnnl : : reorder ( gradO_user_mem , gradO_mkl_memD ) . execute ( stream , gradO_user_mem , gradO_mkl_memD ) ;
args [ DNNL_ARG_DIFF_DST ] = gradO_mkl_memD ;
2020-01-11 05:36:40 +01:00
// gradI
auto gradI_user_mem = dnnl : : memory ( gradI_user_md , engine , gradI - > getBuffer ( ) ) ;
const bool gradIReorder = op_data_bp_prim_desc . diff_src_desc ( ) ! = gradI_user_mem . get_desc ( ) ;
auto gradI_mkl_mem = gradIReorder ? dnnl : : memory ( op_data_bp_prim_desc . diff_src_desc ( ) , engine ) : gradI_user_mem ;
args [ DNNL_ARG_DIFF_SRC ] = gradI_mkl_mem ;
// gradW
auto gradW_user_mem = dnnl : : memory ( gradW_user_md , engine , gradW - > getBuffer ( ) ) ;
const bool gradWReorder = op_weights_bp_prim_desc . diff_weights_desc ( ) ! = gradW_user_mem . get_desc ( ) ;
auto gradW_mkl_mem = gradWReorder ? dnnl : : memory ( op_weights_bp_prim_desc . diff_weights_desc ( ) , engine ) : gradW_user_mem ;
args [ DNNL_ARG_DIFF_WEIGHTS ] = gradW_mkl_mem ;
// gradB
if ( gradB ! = nullptr ) {
auto gradB_mkl_mem = dnnl : : memory ( gradB_mkl_md , engine , gradB - > getBuffer ( ) ) ;
args [ DNNL_ARG_DIFF_BIAS ] = gradB_mkl_mem ;
}
// run backward data calculations
dnnl : : convolution_backward_data ( op_data_bp_prim_desc ) . execute ( stream , args ) ;
2020-02-06 19:12:54 +01:00
if ( gradOReorderW | | gradOReorderD )
args [ DNNL_ARG_DIFF_DST ] = gradO_mkl_memW ;
2020-01-11 05:36:40 +01:00
// run backward weights calculations
dnnl : : convolution_backward_weights ( op_weights_bp_prim_desc ) . execute ( stream , args ) ;
// reorder gradI if necessary
if ( gradIReorder )
dnnl : : reorder ( gradI_mkl_mem , gradI_user_mem ) . execute ( stream , gradI_mkl_mem , gradI_user_mem ) ;
if ( gradWReorder )
dnnl : : reorder ( gradW_mkl_mem , gradW_user_mem ) . execute ( stream , gradW_mkl_mem , gradW_user_mem ) ;
stream . wait ( ) ;
// shape::printArray(z_mkl_mem.map_data<float>(),8);
}
//////////////////////////////////////////////////////////////////////
2020-01-20 19:32:46 +01:00
PLATFORM_IMPL ( depthwise_conv2d , ENGINE_CPU ) {
2020-01-11 05:36:40 +01:00
auto input = INPUT_VARIABLE ( 0 ) ; // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW)
auto weights = INPUT_VARIABLE ( 1 ) ; // [kH, kW, iC, mC] always
auto bias = block . width ( ) > 2 ? INPUT_VARIABLE ( 2 ) : nullptr ; // [oC] = iC*mC
auto output = OUTPUT_VARIABLE ( 0 ) ; // [bS, oH, oW, iC*mC] (NHWC) or [bS, iC*mC, oH, oW] (NCHW)
int kH = INT_ARG ( 0 ) > 0 ? INT_ARG ( 0 ) : static_cast < int > ( weights - > sizeAt ( 0 ) ) ; // filter(kernel) height
int kW = INT_ARG ( 1 ) > 0 ? INT_ARG ( 1 ) : static_cast < int > ( weights - > sizeAt ( 1 ) ) ; // filter(kernel) width
int sH = INT_ARG ( 2 ) ; // strides height
int sW = INT_ARG ( 3 ) ; // strides width
int pH = INT_ARG ( 4 ) ; // paddings height
int pW = INT_ARG ( 5 ) ; // paddings width
int dH = INT_ARG ( 6 ) ; // dilations height
int dW = INT_ARG ( 7 ) ; // dilations width
int paddingMode = INT_ARG ( 8 ) ; // 0-VALID, 1-SAME
int isNCHW = block . getIArguments ( ) - > size ( ) > 9 ? ! INT_ARG ( 9 ) : 1 ; // INT_ARG(9): 0-NCHW, 1-NHWC
int bS , iC , iH , iW , mC , oC , oH , oW ; // batch size, input channels, input height/width, channels multiplier(oC = iC*mC), output channels, output height/width
int indIOioC , indIiH , indWmC , indWiC , indWkH , indOoH ; // corresponding indexes
ConvolutionUtils : : getSizesAndIndexesConv2d ( isNCHW , * input , * output , bS , iC , iH , iW , oC , oH , oW , indIOioC , indIiH , indWiC , indWmC , indWkH , indOoH ) ;
mC = weights - > sizeAt ( indWmC ) ; // channels multiplier
ConvolutionUtils : : calcPadding2D ( pH , pW , oH , oW , iH , iW , kH , kW , sH , sW , dH , dW , paddingMode ) ;
std : : vector < Nd4jLong > expectedWeightsShape = { kH , kW , iC , mC } ;
REQUIRE_TRUE ( weights - > isSameShape ( expectedWeightsShape ) , 0 , " CUSTOM DEPTHWISECONV2D MKL OP: wrong shape of weights array, expected is %s, but got %s instead ! " , ShapeUtils : : shapeAsString ( expectedWeightsShape ) . c_str ( ) , ShapeUtils : : shapeAsString ( weights ) . c_str ( ) ) ;
REQUIRE_TRUE ( output - > sizeAt ( indIOioC ) = = iC * mC , 0 , " CUSTOM DEPTHWISECONV2D MKL OP: the output_channels must be equal to input_channels * channels_multiplier = %i ! " , iC * mC ) ;
if ( bias )
REQUIRE_TRUE ( bias - > rankOf ( ) < = 2 & & oC = = bias - > lengthOf ( ) , 0 , " CUSTOM DEPTHWISECONV2D MKL OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead ! " , oC , bias - > rankOf ( ) , bias - > lengthOf ( ) ) ;
depthwiseConv2dMKLDNN ( input , weights , bias , output , kH , kW , sH , sW , pH , pW , dH , dW , paddingMode , isNCHW ) ;
return Status : : OK ( ) ;
}
//////////////////////////////////////////////////////////////////////
2020-01-20 19:32:46 +01:00
PLATFORM_CHECK ( depthwise_conv2d , ENGINE_CPU ) {
2020-02-06 19:12:54 +01:00
2020-01-11 05:36:40 +01:00
auto input = INPUT_VARIABLE ( 0 ) ;
auto weights = INPUT_VARIABLE ( 1 ) ;
auto bias = block . width ( ) > 2 ? INPUT_VARIABLE ( 2 ) : nullptr ;
auto output = INPUT_VARIABLE ( 0 ) ;
const DataType xType = input - > dataType ( ) ;
const DataType wType = weights - > dataType ( ) ;
const DataType zType = output - > dataType ( ) ;
const DataType bType = bias ! = nullptr ? bias - > dataType ( ) : zType ;
const int mC = weights - > sizeAt ( 3 ) ;
return block . isUseMKLDNN ( ) & & mC = = 1 & &
(
( xType = = DataType : : FLOAT32 & & wType = = DataType : : FLOAT32 & & bType = = DataType : : FLOAT32 & & zType = = DataType : : FLOAT32 ) | |
2020-01-28 16:23:07 +01:00
( xType = = DataType : : BFLOAT16 & & wType = = DataType : : BFLOAT16 & & bType = = DataType : : BFLOAT16 & & zType = = DataType : : BFLOAT16 ) | |
2020-01-11 05:36:40 +01:00
( ( xType = = DataType : : UINT8 | | xType = = DataType : : INT8 ) & & wType = = DataType : : INT8 & & ( zType = = DataType : : UINT8 | | zType = = DataType : : INT8 | | zType = = DataType : : INT32 | | zType = = DataType : : FLOAT32 ) & & bType = = zType )
) ;
}
//////////////////////////////////////////////////////////////////////////
2020-01-20 19:32:46 +01:00
PLATFORM_IMPL ( depthwise_conv2d_bp , ENGINE_CPU ) {
2020-01-11 05:36:40 +01:00
auto input = INPUT_VARIABLE ( 0 ) ; // [bS, iH, iW, iC] (NDHWC) or [bS, iC, iH, iW] (NCDHW)
auto weights = INPUT_VARIABLE ( 1 ) ; // [kH, kW, iC, mC] always
auto bias = block . width ( ) > 3 ? INPUT_VARIABLE ( 2 ) : nullptr ; // [oC] = [iC*mC]
auto gradO = block . width ( ) > 3 ? INPUT_VARIABLE ( 3 ) : INPUT_VARIABLE ( 2 ) ; // [bS, oH, oW, oC] (NDHWC) or [bS, oC, oH, oW] (NCDHW), epsilon_next
auto gradI = OUTPUT_VARIABLE ( 0 ) ; // [bS, iH, iW, iC] (NDHWC) or [bS, iC, iH, iW] (NCDHW), epsilon
auto gradW = OUTPUT_VARIABLE ( 1 ) ; // [kH, kW, iC, mC] always
auto gradB = block . width ( ) > 3 ? OUTPUT_VARIABLE ( 2 ) : nullptr ; // [oC]
REQUIRE_TRUE ( input - > rankOf ( ) = = 4 , 0 , " CUSTOM DEPTHWISECONV2D_BP MKL OP: rank of input array must be equal to 4, but got %i instead ! " , input - > rankOf ( ) ) ;
REQUIRE_TRUE ( weights - > rankOf ( ) = = 4 , 0 , " CUSTOM DEPTHWISECONV2D_BP MKL OP: rank of weights array must be equal to 4, but got %i instead ! " , weights - > rankOf ( ) ) ;
REQUIRE_TRUE ( gradO - > rankOf ( ) = = 4 , 0 , " CUSTOM DEPTHWISECONV2D_BP MKL OP: rank of output gradients (next epsilon) array must be equal to 4, but got %i instead ! " , gradO - > rankOf ( ) ) ;
int kH = INT_ARG ( 0 ) > 0 ? INT_ARG ( 0 ) : static_cast < int > ( weights - > sizeAt ( 0 ) ) ; // filter(kernel) height
int kW = INT_ARG ( 1 ) > 0 ? INT_ARG ( 1 ) : static_cast < int > ( weights - > sizeAt ( 1 ) ) ; // filter(kernel) width
int sH = INT_ARG ( 2 ) ; // strides height
int sW = INT_ARG ( 3 ) ; // strides width
int pH = INT_ARG ( 4 ) ; // paddings height
int pW = INT_ARG ( 5 ) ; // paddings width
int dH = INT_ARG ( 6 ) ; // dilations height
int dW = INT_ARG ( 7 ) ; // dilations width
int paddingMode = INT_ARG ( 8 ) ; // 0-VALID, 1-SAME
int isNCHW = block . getIArguments ( ) - > size ( ) > 9 ? ! INT_ARG ( 9 ) : 1 ; // INT_ARG(9): 1-NHWC, 0-NCHW
int bS , iC , iH , iW , mC , oC , oH , oW ; // batch size, input channels, input height/width, channels multiplier(oC = iC*mC), output channels, output height/width
int indIOioC , indIiH , indWmC , indWiC , indWkH , indOoH ; // corresponding indexes
ConvolutionUtils : : getSizesAndIndexesConv2d ( isNCHW , * input , * gradO , bS , iC , iH , iW , oC , oH , oW , indIOioC , indIiH , indWiC , indWmC , indWkH , indOoH ) ;
mC = weights - > sizeAt ( indWmC ) ; // channels multiplier
int trueoH , trueoW ; // correct output height, width
ConvolutionUtils : : calcOutSizePool2D ( trueoH , trueoW , kH , kW , sH , sW , pH , pW , dH , dW , iH , iW , paddingMode ) ;
ConvolutionUtils : : calcPadding2D ( pH , pW , oH , oW , iH , iW , kH , kW , sH , sW , dH , dW , paddingMode ) ;
std : : vector < Nd4jLong > expectedGradOShape = ShapeUtils : : composeShapeUsingDimsAndIdx ( { bS , oC , trueoH , trueoW , 0 , indIOioC , indOoH , indOoH + 1 } ) ;
std : : vector < Nd4jLong > expectedWeightsShape = { kH , kW , iC , mC } ;
REQUIRE_TRUE ( gradO - > isSameShape ( expectedGradOShape ) , 0 , " CUSTOM DEPTHWISECONV2D_BP MKL OP: wrong shape of output gradients (next epsilon) array, expected is %s, but got %s instead ! " , ShapeUtils : : shapeAsString ( expectedGradOShape ) . c_str ( ) , ShapeUtils : : shapeAsString ( gradO ) . c_str ( ) ) ;
REQUIRE_TRUE ( weights - > isSameShape ( expectedWeightsShape ) , 0 , " CUSTOM DEPTHWISECONV2D_BP MKL OP: wrong shape of weights array, expected is %s, but got %s instead ! " , ShapeUtils : : shapeAsString ( expectedWeightsShape ) . c_str ( ) , ShapeUtils : : shapeAsString ( weights ) . c_str ( ) ) ;
if ( bias )
REQUIRE_TRUE ( bias - > rankOf ( ) < = 2 & & oC = = bias - > lengthOf ( ) , 0 , " CUSTOM DEPTHWISECONV2D_BP MKL OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead ! " , oC , bias - > rankOf ( ) , bias - > lengthOf ( ) ) ;
depthwiseConv2dNackPropMKLDNN ( input , weights , gradO , gradI , gradW , gradB , kH , kW , sH , sW , pH , pW , dH , dW , paddingMode , isNCHW ) ;
return Status : : OK ( ) ;
}
//////////////////////////////////////////////////////////////////////
2020-01-20 19:32:46 +01:00
PLATFORM_CHECK ( depthwise_conv2d_bp , ENGINE_CPU ) {
2020-02-06 19:12:54 +01:00
2020-01-11 05:36:40 +01:00
auto input = INPUT_VARIABLE ( 0 ) ; // [bS, iH, iW, iC] (NDHWC) or [bS, iC, iH, iW] (NCDHW)
auto weights = INPUT_VARIABLE ( 1 ) ; // [kH, kW, iC, mC] always
auto bias = block . width ( ) > 3 ? INPUT_VARIABLE ( 2 ) : nullptr ; // [oC] = [iC*mC]
auto gradO = block . width ( ) > 3 ? INPUT_VARIABLE ( 3 ) : INPUT_VARIABLE ( 2 ) ; // [bS, oH, oW, oC] (NDHWC) or [bS, oC, oH, oW] (NCDHW), epsilon_next
auto gradI = OUTPUT_VARIABLE ( 0 ) ; // [bS, iH, iW, iC] (NDHWC) or [bS, iC, iH, iW] (NCDHW), epsilon
auto gradW = OUTPUT_VARIABLE ( 1 ) ; // [kH, kW, iC, mC] always
auto gradB = block . width ( ) > 3 ? OUTPUT_VARIABLE ( 2 ) : nullptr ; // [oC]
const DataType xType = input - > dataType ( ) ;
const DataType wType = weights - > dataType ( ) ;
const DataType gradOType = gradO - > dataType ( ) ;
const DataType gradIType = gradI - > dataType ( ) ;
const DataType gradWType = gradW - > dataType ( ) ;
const DataType gradBType = gradB ! = nullptr ? gradB - > dataType ( ) : DataType : : FLOAT32 ;
const int mC = weights - > sizeAt ( 3 ) ;
return block . isUseMKLDNN ( ) & & mC = = 1 & & ( ( xType = = DataType : : FLOAT32 | | xType = = DataType : : BFLOAT16 ) & & ( wType = = DataType : : FLOAT32 | | wType = = DataType : : BFLOAT16 ) & & ( gradOType = = DataType : : FLOAT32 | | gradOType = = DataType : : BFLOAT16 ) & & ( gradIType = = DataType : : FLOAT32 | | gradIType = = DataType : : BFLOAT16 ) & & ( gradWType = = DataType : : FLOAT32 | | gradWType = = DataType : : BFLOAT16 ) & & ( gradBType = = DataType : : FLOAT32 | | gradBType = = DataType : : BFLOAT16 ) ) ;
}
}
}
}