2019-06-06 14:21:15 +02:00
|
|
|
/*******************************************************************************
|
|
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
|
|
*
|
|
|
|
* This program and the accompanying materials are made available under the
|
|
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
|
|
* License for the specific language governing permissions and limitations
|
|
|
|
* under the License.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
|
|
//
|
|
|
|
// @author GS <sgazeos@gmail.com>
|
|
|
|
//
|
|
|
|
|
|
|
|
#include <ops/declarable/helpers/sequence_mask.h>
|
|
|
|
|
|
|
|
namespace nd4j {
|
|
|
|
namespace ops {
|
|
|
|
namespace helpers {
|
|
|
|
|
2019-07-20 07:58:44 +02:00
|
|
|
template <typename I, typename B>
|
|
|
|
static __global__ void sequenceMaskKernel(void* inputBuf, Nd4jLong* inputShape, void* outputBuf, Nd4jLong* outputShape, int maxIndex) {
|
|
|
|
|
|
|
|
__shared__ I* input;
|
|
|
|
__shared__ B* output;
|
|
|
|
__shared__ Nd4jLong inputLen, outputLen;
|
|
|
|
if (threadIdx.x == 0) {
|
|
|
|
input = reinterpret_cast<I*>(inputBuf);
|
|
|
|
output = reinterpret_cast<B*>(outputBuf);
|
|
|
|
inputLen = shape::length(inputShape);
|
|
|
|
outputLen = shape::length(outputShape);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (auto i = blockIdx.x; i < maxIndex; i += gridDim.x)
|
|
|
|
for(auto k = threadIdx.x; k < inputLen; k += blockDim.x)
|
|
|
|
if (i < input[shape::getIndexOffset(k, inputShape, inputLen)])
|
|
|
|
output[shape::getIndexOffset(k * maxIndex + i, outputShape, outputLen)] = B(true);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename I, typename B>
|
|
|
|
static void sequenceMask_(LaunchContext* context, NDArray* input, NDArray* output, int maxIndex) {
|
|
|
|
dim3 launchDims(maxIndex, input->lengthOf(), 128);
|
|
|
|
NDArray::prepareSpecialUse({output}, {input});
|
|
|
|
auto stream = context->getCudaStream();
|
|
|
|
sequenceMaskKernel<I, B><<<launchDims.x, launchDims.y, launchDims.z, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), output->specialBuffer(), output->specialShapeInfo(), maxIndex);
|
|
|
|
NDArray::registerSpecialUse({output}, {input});
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
void sequenceMask(nd4j::LaunchContext * context, NDArray* input, NDArray* output, int maxIndex) {
|
2019-07-20 07:58:44 +02:00
|
|
|
BUILD_DOUBLE_SELECTOR(input->dataType(), output->dataType(), sequenceMask_, (context, input, output, maxIndex), INTEGER_TYPES, BOOL_TYPES);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
|
2019-07-20 07:58:44 +02:00
|
|
|
BUILD_DOUBLE_TEMPLATE(template void sequenceMask_, (nd4j::LaunchContext* context, NDArray* input, NDArray* output, int maxIndex), INTEGER_TYPES, BOOL_TYPES);
|
2019-06-06 14:21:15 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|