86 lines
3.5 KiB
Java
86 lines
3.5 KiB
Java
|
/*******************************************************************************
|
||
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
||
|
*
|
||
|
* This program and the accompanying materials are made available under the
|
||
|
* terms of the Apache License, Version 2.0 which is available at
|
||
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||
|
* License for the specific language governing permissions and limitations
|
||
|
* under the License.
|
||
|
*
|
||
|
* SPDX-License-Identifier: Apache-2.0
|
||
|
******************************************************************************/
|
||
|
|
||
|
package org.deeplearning4j.nn.conf;
|
||
|
|
||
|
import org.deeplearning4j.BaseDL4JTest;
|
||
|
import org.deeplearning4j.datasets.iterator.impl.MnistDataSetIterator;
|
||
|
import org.deeplearning4j.nn.api.OptimizationAlgorithm;
|
||
|
import org.deeplearning4j.nn.conf.layers.DenseLayer;
|
||
|
import org.deeplearning4j.nn.conf.layers.OutputLayer;
|
||
|
import org.deeplearning4j.nn.conf.layers.SubsamplingLayer.PoolingType;
|
||
|
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
|
||
|
import org.deeplearning4j.nn.params.DefaultParamInitializer;
|
||
|
import org.deeplearning4j.nn.weights.WeightInit;
|
||
|
import org.junit.Test;
|
||
|
import org.nd4j.linalg.activations.Activation;
|
||
|
import org.nd4j.linalg.api.ndarray.INDArray;
|
||
|
import org.nd4j.linalg.convolution.Convolution;
|
||
|
import org.nd4j.linalg.dataset.DataSet;
|
||
|
import org.nd4j.linalg.lossfunctions.LossFunctions;
|
||
|
import org.nd4j.linalg.lossfunctions.LossFunctions.LossFunction;
|
||
|
|
||
|
import static org.junit.Assert.assertArrayEquals;
|
||
|
import static org.junit.Assert.assertFalse;
|
||
|
|
||
|
/**
|
||
|
* @author Jeffrey Tang.
|
||
|
*/
|
||
|
public class MultiNeuralNetConfLayerBuilderTest extends BaseDL4JTest {
|
||
|
int numIn = 10;
|
||
|
int numOut = 5;
|
||
|
double drop = 0.3;
|
||
|
Activation act = Activation.SOFTMAX;
|
||
|
PoolingType poolType = PoolingType.MAX;
|
||
|
int[] filterSize = new int[] {2, 2};
|
||
|
int filterDepth = 6;
|
||
|
int[] stride = new int[] {2, 2};
|
||
|
int k = 1;
|
||
|
Convolution.Type convType = Convolution.Type.FULL;
|
||
|
LossFunction loss = LossFunction.MCXENT;
|
||
|
WeightInit weight = WeightInit.XAVIER;
|
||
|
double corrupt = 0.4;
|
||
|
double sparsity = 0.3;
|
||
|
|
||
|
@Test
|
||
|
public void testNeuralNetConfigAPI() {
|
||
|
LossFunction newLoss = LossFunction.SQUARED_LOSS;
|
||
|
int newNumIn = numIn + 1;
|
||
|
int newNumOut = numOut + 1;
|
||
|
WeightInit newWeight = WeightInit.UNIFORM;
|
||
|
double newDrop = 0.5;
|
||
|
int[] newFS = new int[] {3, 3};
|
||
|
int newFD = 7;
|
||
|
int[] newStride = new int[] {3, 3};
|
||
|
Convolution.Type newConvType = Convolution.Type.SAME;
|
||
|
PoolingType newPoolType = PoolingType.AVG;
|
||
|
double newCorrupt = 0.5;
|
||
|
double newSparsity = 0.5;
|
||
|
|
||
|
MultiLayerConfiguration multiConf1 =
|
||
|
new NeuralNetConfiguration.Builder().list()
|
||
|
.layer(0, new DenseLayer.Builder().nIn(newNumIn).nOut(newNumOut).activation(act)
|
||
|
.build())
|
||
|
.layer(1, new DenseLayer.Builder().nIn(newNumIn + 1).nOut(newNumOut + 1)
|
||
|
.activation(act).build())
|
||
|
.build();
|
||
|
NeuralNetConfiguration firstLayer = multiConf1.getConf(0);
|
||
|
NeuralNetConfiguration secondLayer = multiConf1.getConf(1);
|
||
|
|
||
|
assertFalse(firstLayer.equals(secondLayer));
|
||
|
}
|
||
|
}
|