cavis/deeplearning4j/deeplearning4j-core/src/test/java/org/deeplearning4j/nn/conf/MultiNeuralNetConfLayerBuilderTest.java

86 lines
3.5 KiB
Java
Raw Normal View History

2019-06-06 15:21:15 +03:00
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.nn.conf;
import org.deeplearning4j.BaseDL4JTest;
import org.deeplearning4j.datasets.iterator.impl.MnistDataSetIterator;
import org.deeplearning4j.nn.api.OptimizationAlgorithm;
import org.deeplearning4j.nn.conf.layers.DenseLayer;
import org.deeplearning4j.nn.conf.layers.OutputLayer;
import org.deeplearning4j.nn.conf.layers.SubsamplingLayer.PoolingType;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.nn.params.DefaultParamInitializer;
import org.deeplearning4j.nn.weights.WeightInit;
import org.junit.Test;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.convolution.Convolution;
import org.nd4j.linalg.dataset.DataSet;
import org.nd4j.linalg.lossfunctions.LossFunctions;
import org.nd4j.linalg.lossfunctions.LossFunctions.LossFunction;
import static org.junit.Assert.assertArrayEquals;
import static org.junit.Assert.assertFalse;
/**
* @author Jeffrey Tang.
*/
public class MultiNeuralNetConfLayerBuilderTest extends BaseDL4JTest {
int numIn = 10;
int numOut = 5;
double drop = 0.3;
Activation act = Activation.SOFTMAX;
PoolingType poolType = PoolingType.MAX;
int[] filterSize = new int[] {2, 2};
int filterDepth = 6;
int[] stride = new int[] {2, 2};
int k = 1;
Convolution.Type convType = Convolution.Type.FULL;
LossFunction loss = LossFunction.MCXENT;
WeightInit weight = WeightInit.XAVIER;
double corrupt = 0.4;
double sparsity = 0.3;
@Test
public void testNeuralNetConfigAPI() {
LossFunction newLoss = LossFunction.SQUARED_LOSS;
int newNumIn = numIn + 1;
int newNumOut = numOut + 1;
WeightInit newWeight = WeightInit.UNIFORM;
double newDrop = 0.5;
int[] newFS = new int[] {3, 3};
int newFD = 7;
int[] newStride = new int[] {3, 3};
Convolution.Type newConvType = Convolution.Type.SAME;
PoolingType newPoolType = PoolingType.AVG;
double newCorrupt = 0.5;
double newSparsity = 0.5;
MultiLayerConfiguration multiConf1 =
new NeuralNetConfiguration.Builder().list()
.layer(0, new DenseLayer.Builder().nIn(newNumIn).nOut(newNumOut).activation(act)
.build())
.layer(1, new DenseLayer.Builder().nIn(newNumIn + 1).nOut(newNumOut + 1)
.activation(act).build())
.build();
NeuralNetConfiguration firstLayer = multiConf1.getConf(0);
NeuralNetConfiguration secondLayer = multiConf1.getConf(1);
assertFalse(firstLayer.equals(secondLayer));
}
}